: : , DeskMate Dévelopment System I /{) BRI
SRR . Lo Techmcal Reference . . ' 5
o 03 05 Replacement Pages ' @ , “ -

@) Cllpboard Manager " '_] J}/ .
Replace pages 2-3 thru 2-8. o W | A ’
_(3) Communlcatlon Manager . | : . A G

Replace pages 3-3 thru 3 8.

:“'(4) Component Manager o

Replace pages 4-1 thru 4-4,
Add new pages 4-1.1, 4-3 1

Replace pages 14-11 thru 4-14 ..
- +Add new pages 4-11.1, 4-14 1 thru 4-14.3

) "’R_eplace pages 4 25 thru 4-36 .
Replace pages 441 thru4-42 ' i/Z& Céwé 7%6 /W/r//f 74, AZ‘S £
i :’2;'(5) Conflguratlon Manager 7T are Some. A /Wa}/5 Vemﬁ, 7%“{ ﬂl/f’f

/Completely replace thls section. , W/% % 0/00‘”"6"7[’“[7 5@47/‘8 USM} 7%(/
44‘161[!54

(6)Da_tabase Res_ource , . . ,

3
;
o
R
I
Ly
‘1.11

‘ bl_ése‘place pages |6-1 thnre-z. :

. Repl 6-11 thru 6-12;. - :

. Replace pages 6-4Slhrrtl‘1|646w . A/f& /// 0[‘{;[47; /)Usea/l‘o /egémmle /%(/élé
(7) Desk Executive : | ﬂﬂ/a/rcvg 5 }Ic ﬁ//'? 10 vty j,Zn;z .. }I{MP

' Replace pages '

1 Add page 7-231-23 thru‘? 36'““: ' SILOV/()(6v1 Ot' bml‘ ilwﬁ?‘ sr/uyajocajmgl @\Qla/"

" Replace pages 7-47 thru 7- 50.A ' /)Myl . ,}‘

(8) Dlalog Box Manager
rz
. Replace pages !8—1 thru 8- 2

--.- Replace pages |8 -7 lhru 8-8.

‘-‘:(9) Enwronr‘nent Manager

‘ S 1.

Replace page 9-7 lhru 9 8

(10) Event h?anager - . . . i

Replace page 10-11 thru 10- 14. ;_ S : 2
e Y

Page 1

DeskMate 'Development System
‘Technical Reference
@ 03.05 Replacement Pages
(11) File /O Manager _
Replace pages 11-19 thru 11-20.
Replace pages 11-35 thru 11-36.
Replace pages 11-49 thru 11-50.
Replace pages 11-59 thru 11-60.
(12) Form Resource
Replace the table of contents. The FAR FORM table of contents is after page 12-54.
‘Replace page 12-1 thru 12-4.
Replace page 12-15 thru 12-16.
Replace page 12-43 thru 12-44.

Completely replace the FAR FORM Resource section including the table of contents. The pages
are numbered 12-55 thru 12-99.

(13) Intelligent Help Manager
Replace pages 13-3 thru 13-4.
(16)Library Functions .

L Replace pages 16-1 thru 16-2.
’ Add pages 16-1.1 thru 16-1.2.

: Replace pages 16-15 thru 16-16.
(17) Menu Bar Manager
Replace pages 17-1 thru 17-2.

“egll .
(20) Print Managers
Replace pages 20-1 thru 20-2.
Replace pages 20-7 thru 20-12.
Replace pages 20-17 thru 20-18.
Replace pages 20-21 thru 20-22.
(25) Video Manager '
Add new pages 25-8.1 thru 25-8.1..
Replace pages 25-9 thru 25-12.

Replace pages 25-77 thru 25-78.
Replace pages 25-95 thru 25-98.

(26) Window Manager

Replace pages 26-1 thru 26-2.

) I.\‘ Add new page

Page 2

- s b R
TG T e B e i AR i e s e et T e v, e o g GGkl . . .

-

DeskMate Development System
re Technical Reference
0 03.05 Replacement Pages
(27) Font Resource
Add New Section.

(28) Screen Save Resource

Add New Section.

Page 3

DeskMate Development System s L
" Technical Reference - ' L
' 03 05 Updates

Th|s document Iusts the pages in the DeskMate Technical Reference whrch were not reprmted for
the DeskMate Development System 03.05 Update because of the number of pages requrred and
the srgnmcance of the change.

The majority of the changes listed below are references to "DeskMate 03 03. Ox ONLY" changmg
to "DeskMate 03.03 and later". 4 . _

Database Resource
Database Resource

Page: 6-13 thru 6-59
Function Name; General Descrlptlon/Notes All database manager function caIIs

Correction: All references to "1989 DeskMate 03. 03 Ox" should be changed to "DeskMate 03 03 - ;

and later"

Database Resource.

Page: 6-10 ‘

Function Name: handle_buf structure

Correction: The utilized by should contaln SAVE_| PAGE SETUP and GET PAGE SETUP

Database Resource

Page: 6-24 '

Function Name: db_bind_ read _ ~ :
Correction: Add the following paragraph to the Special Notes sectron "db bmd read is only
avallable when runmng on DeskMate 03.03 or later.”. - , '

Database Resource

Page: 6-25

Function Name: db_end__ read : ‘ ‘ ' ’
Correction: Add the following paragraph to the Specral Notes sectlon' "db end read |s only :
available when running.on DeskMate 03.03 or Iater " .

Desk Executive

Desk Executive

Page: 7-9.

Function Name: db_bind_read :

Correction: Add the following paragraph to the Special Notes sectlon "db bmd read is onIy
avarlable when runmng on DeskMate 03. 03 or later.". : .

Desk Executive

Page: 7-10 '

Function Name: db_bind_read

Correction: All references to "1989 DeskMate 03.03. 0x" were changed to "DeskMate 03 03 and
later".". , .

~ Desk Executive
Page: 7-11 o
Function Name: db_end_read

Page1

i . H
! . .)

DeskMate Development System I . B
Technical Reference . 1' o
03 fos Updates |
Correction Add the following paragraph]to the Special Notes sectron "db bind_ read is only
available when running on DeskMate 03. 03 or later.”.

‘Desk Executive |
Page: 7-12 '
'Function Name: END_DB |

. Correction: Add: the following paragraph ito the Specral Notes section "END_DB requires the

s Vapplrcatron to. Ilnk with DeskMate 03.03 or Iater hbranes (DM.LIB or DMMED. |B).".

|
i
i
i

L uv,Desk ‘Executive : o B 1
Page: 7-17 R ' S
_Function Name: dm_bind_ resource : . o
COrrection Added the following paragraph to the Special Notes sectron "dr‘n_bindiresource is -

- only avarlable when runnmg DeskMate 03 03 and later T '

‘Desk Execu_trve»
- Page: 7-18 :
- Function Name: dm_clear_resource - ‘ o
.- Correction: Added the following paragraph to the Specral Notes section. "dm_clear_resource
_is only avarlable when runnrng DeskMate 03 03 and later S

Desk Executlve -
. Page:7-19 N , : . |
Function Name: dm_compat o f T C S T
Correction: Added the following paragraph to the‘ Specral Notes sectlon 'dm_compat isonly ' "%’.f
: avarlable when runnmg DeskMate 03.03 and later”. - : AR R =l

’ Desk Executi;ve
Page: 7-37
.. Function Name: . dm_temp. resource
. Correction: "Added the following. paragraph to the.
" is only avallable when runnmg DeskMate 03. 03 N

ecial Notes section. ‘dm_temp._resource

: Desk Executi;ve
Page: 7-39

~ Function Name: csr_access_ end ' : v
Correction: Added ‘the following paragraph to:-the Specral Notes sectlon "csr_’ac,cess_end is
only avatlable when runnmg DeskMate 03 303 a ' , : o :

‘ l;Desk Executive R
Page: 7-42. S B R

-~ Function Name ésr_ torm brnd end - R :

. Correction: -Added the following paragraph to the Specral Notes sectlon 'csr__form_bind_end. B

T jrs only available when running DeskMatelm3 03 and Iafer ' T

" Desk Executlve

Page: 7-43
. **_ Function Name; csr_form_ bind_init - ' ‘ : SR
- Correction: Added the following paragraph to the Special Notes section. "csr_form__hmd_rnrt : . ‘
X

is only available when running DeskMate 03 03 and Iater
o ‘ Page2

N b s el e, 25

;"f,gk

-~
~
-

DeskMate Development System
Technical Reference =
03.05 Updates

Desk Executive

Page: 7-46

Function Name: dmcsr_bind_end -

Correction: Added the following paragraph to the Special Notes sectnon - "dmt:sr_bind_end is
only available when mnnmg DeskMate 03.03 and later.". . - .

Desk Executive

Page: 7-52 and 7-53 :

Function Name: prguf bind_end, prgut bind mrt
Correction: prguf_bind_init requires the appllcatlon to link wnth DeskMate 03 03 or Iater.,
libraries (DM.LIB or DMMED LlB) S

Envnronment Manager

Envuronment Manager

Page: 9-6

Function Name: env_get . ' ‘

Correction: m the Input Parameters section pData should be changed to pDataInfo

File /O Manager

File I/O Manager

Page: 11-11

Function Name: digbox_| Run this T A
Correction: Added the following paragraph to the Spemal Notes sectlon "dlgbox_Run*t-his is -
only available when runnmg DeskMate 03.03 and Iater _ : S o

F|Ie /0 Managerv

Page: 11-13

Function Name: dosENDFIND h - e
Correction: Added the tollowung paragraph to the Spemal Notes sectlon "dos’E‘ND_FI‘ND. is only

“available when running DeskMate 03.03 and later.".

F|Ie I/O Manager

Page: 11-14

Function Name: dosFINDFIRST L RN
Correction: Added the following paragraph to the Specnal Notes sectlon "dosElNDFlRST"is;, ‘
only availabie when runmng DeskMate 03.03 and Iater < R
File /0 Manager

Page: 11-15

Function Name: dosFINDNEXT

‘Correction: Added the following paragraph to the Spemal Notes sectlon:' "dosFINDNEXT is only)
~ available when running DeskMate 03.03 and later.".

DeskMate Development System
Techmcal Reference
03. 05 Updates =

~ File IO Manager
Page: 11-16 - -
Function Name: dosSTARTFIND
Correction: Added the following paragraph to the Specral Notes section.
only available when runnmg DeskMate 03. 03 and later.".

“File /O Manager
Page: 11-46 :
'Function Name: fil_read_far
Correction: Added the following paragraph to the- Specral Notes sectron.
avallable when runnlng leskMate 03.03 and later.". - .

_-‘Flle I/O Manager
Page: 11-51 P

- Function Name: fil_ write_far _ : o '
Correction: Added the following paragraph o lhe Specral Notes seclron.
-available when runnlng DeskMate 03.03 and Ialer ' .

File /O Manager

Page: 11-62 and 11-63 -
Function Name: prguf_bind_end, prgut | bnnd' i
Correction: prguf bind_end and prguf
‘DeskMate 03. 03 or later libraries (DM. LIBl or. D

init “requites the appl
B

File /O Mana_ger
Page: 11-64
~ Function Name: gfn ‘ :
' Correction: Added the following paragraph to lhe Specnal Notes section.
, appllcatlon to hnk with DeskMate 03. 03 or |ater Ilbrarles (DM. LIB or DMMED:
i !
__File /O Manager ’
- Page: 11-72° '
" Function Name- valld filename. wnld ‘
 Correction: Added.the following paragraph to) Specral Notes secnon
+ isonly available when running DeskMate 03:03 and

Intelli-gent l-:lel:p'Manager -

h Intellrgent Help Manager
Page: 13-1 1

Function Name General Descnptlon/Notes

. Correction: Changes the second paragrap ’to ready "All ol the calls in
. the application lo link with’ DeskMale 03 03 or. laler lrbrarles

‘ .

‘lntellrgent Help Manager

Page: 13- 3thru,13 12 -
* Function Name: All of the function calls . ' .
Correction: Add a paragraph to each call whrch reads "This call requires {
with DeskMate 03 03 or later libraries (DM LlB o‘ DM \AED'.L:IB)‘.". -

Page 4 -

i
'dosSTARTFIND is

‘lll_read“_f'ar is only
fil_write_l‘ar is only
ication to. link ~with
"qfn requires the :

LiB).".

valid_filename_wild

this section require

he application to link

DeskMate Development’s 'stem S g
‘Technical Reference -~ -
- 03.05 Updates

Library‘Func‘:tion’s

Library Functions

Page: 16-4
Function Name: about_versions

_ Correction: Add a paragraph to in Special Notes section Wthh reads "about. verslons requu'es
‘the apphcatlon to link with DeskMate 03.03 or later hbranes (DM.LIB or DMMED LIB) e

Menu Bar Manager

Menu Bar Manager
Page: 17-12
Function Name: mb_get_status

Correction: The follownng paragraph should be added to the Special Notes section

mb_get_status requires the apphcatlon to lmk with DeskMate 03. 03 or later Itbranes (OM. LIB or -
DMMED.LIB).

Video Manager

Video Manager
Page: 25-8
Function Name: csr_{oad_: vndeo _driver

. Correction: Remove the first line -which reads "1989. DeskMate 03 03 Ox ONLY" Add the

following line to the Special Notes section. "csr_load_video_driver is only available when
running DeskMate 03.03 and later.". - : T,

Video Manager

Page: 25-43

Function Name: vid_get_ far_screen ' o
Correction: Remove the first line which reads "1989 DeskMate 03. 03. 0Ox ONLY" Add .the
following line to the Special Notes section. vnd _get. | far -gcreen is only. avallable when mnmng ’

" DeskMate 03.03 and later.".

Video Manager

- Page: 25-54

Function Name: vid_loadable_drivers ’ " B
Correction: Remove the first line which reads "1989. DeskMate -03. 03:0x ONLY" Add the
following line to the Special Notes section. . "vid_| Ioadable drivers is only ava||able when
running DeskMate 03.03 and later.".

Video Manager |

. Page: 25-55

Function Name: vid_memory._ free ' ’ g .
Correction: Remove the first line which reads "1989 DeskMate 03. 03 0x ONLY" Add the
following line to the Special Notes section. "vid_memory_free is only avanlable_ when running
DeskMate 03.03 and later.". : : _ e

Page 5

DeskMate Development System
Technical Reference
03 05 Updates

Video Manager o .
Page: 25-56 S i
Function Name: vid _memory._| info : -

Correction: Remove the first line which reads "1989 DeskMate 03.03.0x ONLY". Add the

DeskMate 03.03 and later.".

Video Manager

Page: 25-57 = .
Function Name: vid_memory_inuse .- . :
Correction: -Remove the first line whlcrp read

_ followmg line to the Specua! Notes sectlo -_" ,
~DeskMate 03. 03 and later.”. R

ne ory Inuse is only a

Video Manager

Page: 25-69°

‘Function Name; vid_put_far_screen
Correction: Remove the first line whlch r
following line to the Speclal Notes sectlon “vid
DeskMate 03. 03 and later.".

'1’989' DeskMate 03.03.(
ar_ screen is only av

Page6

B fellewmg line to:the- Special Notes section. . vid_memory_mfo is only available when running

“1989 DeskMate 03.03.0x ONLY". Add the

vailable when running

Yo

)x ONLY". . Add the
sailable when running - -

i

DeskMate Technical Reference
Version 03.03.00

DeskMate Development System:
Copyright© 1988, 1989 Tandy Corporation
All Rights Reserved

DeskMate Development System
03.03.00
About This Kit
DeskMate Style Guide
DeskMate Development Guide
Copyright© 1989 Tandy Corporation
All Rights Reserved

DeskMate Technical Reference

Copyright© 1988, 1989 Tandy Corporation
All Rights Reserved

Reproduction or use of any portion of these manuals, without express written permission from
Tandy Corporation and/or its licensor, is prohibited. While reasonable efforts have been made in
the preparation of these manuals to assure their accuracy, Tandy Corporation assumes no
liability resulting from any errors in or omissions from these manuals, or from the use of the
information contained herein.

DeskMate, DeskMate Getting Started, Radio Shack, and Tandy are registered trademarks of
Tandy Corporation.

Hayes is a registered trademark of Hayes Microcomputer Products, Inc.

Hercules is a registered trademark of Hercules Computer Technology.

HP LaserJet is a registered trademark of Hewlett-Packard Corporation.

IBM, IBM PC, PS/2, Video Graphics Array, Multi Color Graphics Array, Enhanced Graphics
Adapter, and Color Graphics Adapter are registered trademarks of International Business

Machines Corporation.

Microsoft, MS-DOS, and CodeView, are registered trademarks of Microsoft Corporation. QuickC
is a trademark of Microsoft Corporation.

PC-Link is a registered service mark of Quantum Computer Services, Inc. PC-Link Connect
Guide is a registered trademark of Quantum Computer Services, Inc.

Periscope is a trademark of The Periscope Company, Inc.

Turbo C, Turbo Assembler, Turbo Debugger and the other Borland tools mentioned herein are
trademarks or registered trademark of Borland International, Inc.

10987654321

Table of Contents

AUL010ad RESOULCE tiviiitreneteeattnensassssesnensseeeenssnanns 1
General Description/NoLesiiiiiin it iiinneestienneanneenns 1-1
Structures/Defines ...ttt e i e e 1- 2
autoload bind end ...Release the autoload resource............. 1- 4
autoload bind init ..Initializes autoload resource............. 1-5
autoload set Register and Delete autoload resource..... 1- 6
Clipboard Manager «.vivueeveneeeneenaeeeeeeaneeeeaesonneaonnenns 2
General Description/Notesiiieiniiniiinieiietienneannnnnnn 2-1
10 8 8 0= - S 2= 2
dm clear clipboard Clears data from Clipboard............ 2- 3
dm clipboard size Returns size of Clipboard memory...... 2- 4
dm_free clip buffer Returns memory to Clipboard........... 2- 5
dm get clip buffer Gets unused space in Clipboard memory. 2- 6
dm get clipboard info ...Gets type, length, & pointer.......... 2= 1
dm set clipboard info ...Sets type, length..................... 2- 8
Communication MAaNAgervvvuerneeioeeeneeeeeeeneeennseonaeeas 3

" General DeSCription/NOteSvveiiriiieiiiereenerannssonneenns 3-1
StruUCturesS/Defines . ivuiiiii ittt ittt it e 3-2
com call Calls the specified number.............. 3- 4
com close Closes the current device............... 3-5
com disCvunnn., Disconnects the terminal session........ 3-6
com get _buffer info ...Gets com structure information.......... 3-17
com get lines_states ..Gets the com port status................ 3-8
com get parms Gets the communication parameters....... 3-9
COM OPeN ..uvnrnrnnnsnn. Opens the communication device.......... 3-10
com put_char Writes a character to the com device.... 3-11
com put_string Writes a string to the com device....... 3-12
com send break Sends break sequence to com device...... 3-13
com set parms Sets the communications parameters...... 3-14
com test carrier Check com port for carrier signal....... 3-15

Component MaNagert iirvr it useertssoseansonsoaeaneenss 4
General DescCription/NOLeS ..iiviiinrevnenersennnneanrnnnnennns 4- 1
SErUCtUres/DefinesS i itiiiiit ittt i ittt e it e e 4- 2

Application Defined Components

General DeSCription/NOLeS t.vviiireierirneeenneennnnrnnnseennns 4-15
SErUCEULES/DEEiNMES vttt ettt ittt in et i it e 4-16
cmp_add Adds an application defined component........ 4-17
cmp _close Closes an application defined component...... 4-19
cmp delete Deletes an application defined component..... 4-20
cmp draw Draws an application defined component....... 4-21
CMp OPen Opens an application defined component....... 4-22
CNP run Runs an application defined component........ 4-23

Pre-Defined Components

General DesCription/NOteS «ivvvintvnnenreneneeneneenennnnnnnss 4-25
Check DOX .o i i it ittt et e 4-25
Edit field ..ttt ittt et et it iee e 4-25
Icon button ..ttt e et 4-26
T8 o o T) 4-26
Menu bar i e ettt i e 4-26
Push button it i i it eanan. 4-26
Radio buttonsoeiiii ittt ittt it i eiee e eiaennnnn, 4-27
Edit field examples

Single line editfieldciiiiiiiiiiiiiinnnnnnnn, 4-28
Formatted editfieldcvviiiiiiiniiiiiiennnnnnnn. 4-29
Multi line editfieldccivriiniiniinnininnnvnn.. 4-30

cmp _close Closes a Pre-Defined component............... 4-31

cmp draw Draws a Pre-Defined component................ 4-32

CMp Open Opens a Pre-Defined component................ 4-33

CMP TUN ...vnwnnnn Runs a Pre-Defined component................. 4-34

Component Utilities

edt clear Clears selected edit field text.............. 4-36
edt copy Copies edit field text to clipboard.......... 4-37
edt cut Cuts edit field text to clipboard............ 4-38
edt format multi .Formats edit field string for wordwrap....... 4-39
edt form drawAdds edit field lines to form................ 4-40
edt paste Pastes clipboard to edit field............... 4-41
edt replace Replaces edit field text w/specified text.... 4-42
1lb sort list Sorts the items within a list box............ 4-43
Configuration MABNAageroeeiiiieieeronnneeensnnseseeenenonns 5

General Description/Notesiiiiit it iinnnnneeeernnnnnns 5-1
Structures/Defines ...iveii ittt iiiii it ittt i e 5- 2
cfg get com data Gets port and modem settings............. 5- 5
cfg get com parmsGets communication parameters............ 5- 6
cfg _get moreaccs Gets "More" menu option status........... 5- 1
cfg get ms data Gets mouse configuration data............ 5- 8
cfg get prt data Gets current printer data................ 5- 9
cfg get vid colorGets palette information................. 5-10
cfg get vid driver ...Gets the video driver name............... 5-12
cfg reset_temp config Restores temp configuration settings..... 5-13
cfg_restore cpi Replaces printer CPI settings 5-14
cfg set com data Sets port and modem settings............. 5-15
cfg set com parmsSets communication parameters............ 5-16
cfg set dbl clickSets the mouse double click speed........ 5-17
cfg_set moreaccs Sets the "More" acCeSSOIYcevvveenn 5-18
cfg set ms _data Sets mouse configuration data............ 5-19
cfg set prt_data Sets current printer data................ 5-20
cfg_set_temp config ..Saves temp configuration settings........ 5-21
cfg set_temp cpi Temporarily replaces CPI................. 5-22
cfg set vid colorSets palette information................. 5-23

cfg write Writes configuration info................ 5-24

Database Resource

General Description/Notes

Structures/Defines
ADD ROW NO FLUSH .
ALTER TABLE
CLOSE_FILE
CLOSE_TABLE

COUNT RECORDS
COPY_LAYOUTS
CREATE FILE

CREATE_TABLE
db bind end

db bind init
db _bind read
db_end read

DEFINE INDEX
DELETE_MULTI_ROWS
DELETE ROW
DROP_ INDEX

“ e s .
.....
......
.....
......
.....
.....
......

DROP TABLE

END_TEMP SORT
FETCH_RECORD
FIRST RECORD
GET COL_INFO
GET COLUMN NAMES
GET INDEX INFO ...

GET MIN
GET PAGE_SETUP ...

GET TABLE_NAMES
INIT BD

... 6
..................................... 6- 1
.. 6- 3
.Adds a row of data to specified table....... 6-13
.Adds a row to specified table w/no write.... 6-14
.Alters the definition of a table............ 6-15
.Closes a file....cvviiiiiiiiiieiiinnnnnnnn. 6-16
.Closes a table.....ciiiiiiiiiiiiiii i, 6-17
.Counts the number of records................ 6-18
.Copies selected tables to new file.......... 6-19
.Creates a new file......c.iiiiiiniiiin, 6-20
.Creates a new table within a file........... 6-21
.Terminates the bindings to DB manager....... 6-22
.Loads the DB manager into memory............ 6-23
.Binds to 1989 Database Read Resource........ 6-24
.Terminate bind to 1989 DB Read Resource..... 6-25
.Defines the sort order............oiivevn 6-26
.Deletes all rows in a specified table....... 6-27
.Deletes a specified row......cvvviiiiiinnnn 6-28
.Drops an index from a table................. 6-29
.Drops a table and data from file............ 6-30
.Unbinds 1989 DB resources from Manager...... 6-31
.Ends the temporary sort order............... 6-32
.Fetch a record by record number............. 6-33
.Fetches a single record at a time........... 6-34
.Gets column information...........eiuveiuan. 6-35
..Gets the column names in a table............ 6-36
.Gets the index information for a table...... 6-37
.Gets the highest value for column name...... 6-38
.Gets the lowest value for column name....... 6-39
.Gets the page setup information............. 6-40
GET RECORD LOCATION .Gets previous and next record numbers..... 6-41
...Gets the table names in a file............ 6-42
...Binds 1989 DB resources to Manager........ 6-43
...Fetches a single record at a time......... 6-44

LAST RECORD

MERGE Merges two tables together................
MORE_RECORDS Gets more records which match query.......
NEXT RECORD Fetches a single record at a time.........
OPEN FILE Opens a file.....ooviiiiiiiiiiiinnenen.n,
OPEN TABLE Opens a table.........coiiiiiiiiiiiinnn,
PACK TABLE Packs a table/Removes deleted records.....
PREV_RECORD Fetches a single record at a time.........
SAVE PAGE SETUP Saves the page setup information..........
SETUP_QUERY Sets up query constraints.........cooiiuunn
TEMP SORT Defines a temporary sort order............
UPDATE ROW Updates the row specified.................
Error Code List .ivuuiiiittiiinni i iiinetionnnnsesoannanennenanns
Desk EXeCULIVE ..t iiiii i it ittt se et inennananesss
General DesCription/NOteS i ueeeireeeeeennareenennnneneennnss

Autoload Resource Initialization Calls
autoload bind end ...Release the autoload resource.........
autoload bind init ..Initializes autoload resource..........

Database Resource Initialization Calls

Database Definesiuiiiiiiiiiiiiiiriiiiiiiiiiiiaiinenneanas
db bind end ...Terminates bindings to database resource....
db bind init ..Initializes all database resources..........
db bind read ..Binds to 1989 Database Read Resource........
db _end read ...Terminates bind to 1989 DB Read Resource....
END DB Unbinds 1989 DB resources...................
INITDB Binds 1989 DB resources

Desk ExXeCULive DefinesS. . ittt itne et eteaneeneeosonnenenns 7-14

dm acc run RUns an accessory.......ceueeneennnnnn 7-15
dm bind resource Determines if resource is in memory... 7-17
dm clear resource Removes resource from memory.......... 7-18
dm compat Compatibility for 1988 DM 03.02.0x.... 7-19
dm dir isithere Checks existance of file.............. 1-21
dm _exec dont shed Prevents code shedding................ 1-22
dm file search Searches entire for file.............. 1-23
dm get mem Attempts to allocate DOS memory....... 7-24
dm inquire critical err .Gets the last critical error.......... 7-25
dm inquire desk ver Returns version number of DESK.EXE.... 7-26
dm inquire dmconfig Gets the contents of DMCONFIG......... 1-217
dm inquire floppy Determines if a drive can be read..... 7-28
dm inquire product Gets the product information.......... 7-29
dm_inquire program Returns current application names..... 7-30
dm _inquire res Returns resource names................ 7-31
dm_inquire res ver Returns version number of a resource.. 7-32
dm inquire taskid Returns task information.............. 7-33
dm SetNextApp Sets name and parameter string........ 7-34
dm SetOtherTask Sets name of task for switch.......... 7-35
dm task count Tells number of tasks in mem.......... 71-36
dm temp resource Loads resource in temporary mode...... 7-37
dm yield Allow another task to run............. 7-38
Core Services Resource(CSR) Initialization Calls

csr_access_end Terminates current active access...... 7-39
csr_access_init Initializes CSR for new user access... 7-40
csrendiiieiinn.. Terminates application bindings to CSR 7-41
csr_form bind end Terminates bind to near form resource 7-42
csr_form bind init Bind to near form resource............ 7-43
csr_get version Gets the version number of the CSR.... 7-44
csr_initl Initialize application bindings to CSR 7-45
dmcsr_bind end Terminates use of CSR routines........ 7-46
dmcsr_bind init Used to bind to the CSR............... 7-47
fform bind end........... Terminates far form resource.......... 7-48

fform bind int........... Bind to far form resource............. 7-49

/.

guf bind end Terminates application bindings to GUF 7-50

guf bind init Initialize application bindings to GUF 7-51
prguf bind end Terminates low-level GUF bindings..... 7-52
prguf bind init Sets up low-level GUF bindings........ 7-53
Spell Resource Initialization Calls

spell bind end........... Terminates interface to spell checker. 7-54
spell bind init.......... Initializes a spell checker session... 7-55

Thesaurus Resource Initialization Calls

thes bind end............ Terminates interface to thesaurus..... 71-56
thes bind init........... Initializes a thesaurus session....... 7-57
D1a1l0g BOX MANAGeT . vuiiitetieennereenneessnnasosoananassesnnns 8

General Description/NOLeS ..uiieineiineiiiiennnennerenanennns 8- 1
(S o DU s VB =Y=/ 1= s o U= P 8- 2
dlg draw Displays a dialog box.......covviiiniinnnnnn 8- 7
dlg draw frameDraws a dialog box frame.................... 8~ 8
dlg run Runs a dialog DOX...vvueeiiinianennrnnnnnnns 8- 9
Environment Managerceeeeeeneetinnnseeenenansroenannanns 9

General Description/Notesiiiiiniiiiiinnrnnnnrennennancnns 9- 1
Structures/Defines ...ttt ittt i ettt i e 9- 2
env add Appends specified to existing data......... 9- 3
env _close Removes configuration data from memory..... 9- 4
env_delete Removes all configuration data............. 9- 5
envget .. .ioieiennn Setup configuration data for use........... 9- 6
NV _OPeNnovevs Opens and loads configuration data......... 9- 7
env_replace Replaces configuration data on disk........ 9- 8
env_write Writes configuration data to disk.......... 9- 9

Event Manager

General Description/Notes
Structures/Defines ..

event add edriver ...

event add interp

event delete edriver

event delete_interp ..

event get uninterp ...

event purge
event read
event scan

event_write

File I/0 Manager

General Description/Notes

Structures/Defines ..

Current Disk
Delete File

dlgbox Generic
dlgbox Run
dlgbox Run_this
dlgbox_SaveAs

dosFINDNEXT..........
dosSTARTFIND.........
file already_exists ..

FillwithDir
fil access

fil close

fil close_error msg ..

fil commit

fil create

fil create_error msg ..

.. 10
..................................... 10- 1
.. 10- 3
.Adds a user defined event driver......... 10- 6
Adds a user defined interpreter.......... 10- 7
.Deletes a user defined event driver...... 10- 8
Deletes a user defined interpreter....... 10- 9
Gets an uninterpreted event.............. 10-10
Purges event from event queue............ 10-11
Returns an event.......c.ooiiiiiieneeneanns 10-12
Scans for anevent........ooiiiiiiaan. 10-13
Writes an event to the event queue....... 10-14

.. 11
..................................... 11- 1
.. 11- 3
..Returns the current active disk......... 11- 7
..Deletes a file...civvriiiiiiiiniienaann 11- 8
..Displays OPEN/MERGE/LOAD dialog box..... 11- 9
..Displays the RUN dialog boxX............. 11-10
..Display RUN DB, prompts filled......... 11-11
..Displays the SAVE AS dialog box......... 11-12
. .Restores old Disk Transfer Area to DTA..11-13
. .Attempts to locate a file name match....11-14
..Locates next file or directory match....11-15
..Establishes a new Disk Transfer Area....1l1-16
.Determines if a file exists............. 11-17
..Fills a list box with a set of files. 11-18
. .Returns file attributes................. 11-19
..Closes a file... i iiiiiiiiinan e, 11-20
.Displays close error messageS........... 11-21
..Writes buffered file data to disk....... 11-22
..Creates a file......civiiiimnaennnnnenns 11-23
Displays create error messagesS.......... 11-24
..Duplicates a file handle................ 11-25

fil force close
fil lock bytes
fil 1seekil.L.
fil lseek error msg ..
fil menu merge
fil menu new
fil menu open
fil menu page
fil menu quit
fil menu run
fil menu save
fil menu saveas
fil open
fil open error msg ...
fil read
fil read error msg ...
fil read far
fil unlock bytes
fil write
fil write error msg ..
fil write far
Get Directory
get drive map
get_free space
guf bind end...........
guf bind init..........
is floppy ..oevvvennnn.
msgbox SaveChanges ...
Path Expand
prguf bind end.........
prguf bind init........

Rename File
Select Disk
Set CPU Speed
Set Directory

Forces DOS to close a file.............. 11-26
Locks specified portion of file......... 11-27
Seeks to an offset in a file............ 11-28
.Displays lseek error messages........... 11-29
Merges a file....vviiiini .. 11-30
Takes the application to a "new" state..11-32
Prompts the user for file to open....... 11-34
Runs the page setup acCesSSOIY..::ievosss 11-36

Sets up the datafile so app may exit....11-37
Prompts user to run of alternate app....11-38
Saves applications data in memory....... 11-39
Prompts user for filename to save data..l11-40

Opens a file..vo'iiiiiininnrnnneneanns 11-41
.Displays open error meSSageS.....ceeeeas 11-43
Reads from a file....ccovviiiiiiiiinnnn. 11-44
.Displays read error mesSageS............ 11-45
Reads a file from far memory............ 11-46
Unlocks specified portion of a file..... 11-48
Writes to a file....ooviiiiiiiiininnnnn. 11-49
.Displays write error messageS........... 11-50
Writes a file from far memory........... 11-51
Gets the current directory.............. 11-53
Gets bitmap of all drives in system..... 11-54
Gets the amount of disk free space...... 11-55
Terminates bindings to GUF resources....11-56

Initializes bindings to GUF resources...11-57
Determines if a drive is removable...... 11-58

.Displays the SAVE CHANGES message box...11-59

Expands a partial path.................. 11-60
Terminate bindings to low-level GUF..... 11-62
Initializes bindings to low-level GUF...11-63
Qualifies a path as existing in drive...11-64

Renames a file.. .o iiiiiiiiininennnnnnns 11-66
Selects the specified drive............. 11-67
Sets the CPU speed.....coiiivreeeeanrnnn 11-68

Sets the current directory as specified.11-69

valid drive Determines if specified drive is wvalid..11-70
valid filename Verifies correctness of filename chars..11-71

valid filename wild ...Verifies filename using wildcard char...11l-72

FOIM MANAGET .+ .t vvvvvueronernonaossossonssessnasannnsssessansns 12

Near Form Resource General Description/Notes................... 12-1
StruCtUresS/Defines v.vvveerieeeeree et tenastsrrenaaraacsnaens 12- 4
form add element ..Adds the specified element to the form...... 12-13
form add stroke ...Adds a stroke definition to the form........ 12-14
form break_object .Reduces one object to constituent objects...12-15
form clear Clears the form's display and stroke lists..12-16
form compress Compress free space from the form........... 12-17
form copy_element .Copies element to the clipboard............. 12-18
form copy group ...Copies group of elements to clipboard....... 12-19
form cut_element ..Cuts the form element to the clipboard...... 12-20
form cut_groupCuts a group of elements to clipboard....... 12-21
form define group ...Defines a group of elements for the form..12-22
form delete element .Deletes element definition from form...... 12-23
form delete group ...Deletes all group elements from form...... 12-24
form delete stroke ..Deletes stroke character from form........ 12-25
form delete unused_strokes ...Deletes non-required strokes..... 12-26
form display region .Displays form elements in a region........ 12-217
form dup elementCreates a scaled copy of an element....... 12-28
form dup group Creates a scaled copy of a group.......... 12-29
form element to bottom Moves element to bottom of defs....12-30
form element to top Moves element to top of defs....... 12-31
form expand Expands the form display list............. 12-32
form find element ...Finds an element in a rectangle........... 12-33
form find strokeFinds a stroke character.................. 12-34
form get pointerGets a pointer to element definition...... 12-35

form get xy extents .Gets maximum x,y values for all elements..12-36

form group to_bottom Moves group to bottom of defs...... 12-37
form group _to top Moves group to top of defs......... 12-38
form make objectMakes an object from elements in group....12-39
form mod attr Modifies element attributes............... 12-40

form mod grp_attr ...Modifies element attributes in the group..12-41

form move_element ...Moves and resizes an element.............. 12-42

form move group Moves and resizes a group of elements..... 12-43
form open Initializes the form buffer............... 12-44
form paste Adds the clipboard display to the form....12-45
form region empty ...Determines if the form contains elements..12-46
form replace element Replaces an element definition..... 12-47
form scroll downScrolls the form down..................... 12-48
form scroll leftScrolls the form to the left.............. 12-49
form scroll right ...Scrolls the form to the right............. 12-50
form scroll up Scrolls the form up..........ooieiiiinnn, 12-51
form specify group...Makes a list of element tags into a group.12-52
form update Draws/redraws the current form............ 12-53
Far Form Resource General Description/Notes 12-55
fform add element ..Adds a specified element to the form....... 12-56
fform add stroke ...Adds a stroke definition to the form....... 12-57
fform bind end Terminates forms resource loaded........... 12-58
fform bind initBinds to far forms resource................ 12-59

fform break object .Reduces one object to constituent objects..12-60

fform clear Clears the form's display and stroke lists.12-61
fform compress Compress free space from the form.......... 12-62
fform copy element .Copies element to the clipboard............ 12-63
fform copy group ...Copies group of elements to clipboard...... 12-64
fform cut element ..Cuts the form element to the clipboard..... 12-65
fform cut_groupCuts a group of elements to clipboard...... 12-66
fform define group .Defines a group of elements for the form...12-67
fform delete element .Deletes element definition from form..... 12-68
fform delete group ...Deletes all group elements from form..... 12-69
fform delete_stroke ..Deletes stroke character from form....... 12-70
fform delete unused strokes .Deletes non-required strokes...... 12-71
fform display region .Displays form elements in a region....... 12-72
fform dup elementCreates a scaled copy of an element...... 12-73
fform dup group Creates a scaled copy of a group........ .12-74
fform element_to bottomMoves element to bottom of defs....12-75
fform element_to top Moves element to top of defs....... 12-76
fform expand Expands the form display list.............. 12-77

fform find element .Finds an element in a rectangle............ 12-78

fform find stroke ..Finds a stroke character................... 12-79

fform get_extents ..Gets maximum x,y values for all elements...12-81

fform get pointer ..Gets a pointer to element definition....... 12-80
fform group to bottom Moves group to bottom of defs...... 12-82
fform group to top Moves group to top of defs......... 12-83
fform make object ..Makes an object from elements in group..... 12-84
fform mod attr Modifies element attributes................ 12-85
fform mod grp attr .Modifies element attributes in the group...12-86
fform move_element .Moves and resizes an element............... 12-87
fform move group ...Moves and resizes a group of elements...... 12-88
fform open Initializes the form buffer................ 12-89
fform paste Adds the clipboard display to the form..... 12-90
fform region empty .Determines if the form contains elements...12-91
fform replace element Replaces an element definition..... 12-92
fform scroll down ..Scrolls the formdown...................... 12-93
fform scroll left ..Scrolls the form to the left............... 12-94
fform scroll right .Scrolls the form to the right.............. 12-95
fform scroll upScrolls the formup........................ 12-96
fform specify group.Makes list of element tags into a group....12-97
fform update Draws/redraws the current form............. 12-98
Help Managercoiiiinieeiinnneecetsnssonnnnaoeenanannnns 13

General Description/Notesciiiiiiiiiiinrinennneennnnns 13- 1
Defines ... it i ittt ittt e e 13- 2
help disable high ..Disables high and low level help........... 13- 3
help enable_high ...Enables high and low level help............ 13- 4
hlp notify Registers application notify routines...... 13- 5
hlp stop notifyTurns off the low level help............... 13- 7
ihm add state Adds an application help state............. 13- 8
ihm delete state ...Deletes an application help state.......... 13- 9
ihm new entry Adds a new entry to the help queue......... 13-10

ihm status Returns the type of component user is in...13-12

Information BOX MANAGEL ... eueiueeenrnennenenennenenennenennns 14

General Description/Notes e et ea e, 14- 1
Structures/Defines ...ttt i i e e e e e 14- 2
info draw Displays the information box on the screen...l4- 5
info draw icon ...Displays a draw list icon..............uuun.. 14- 6
info put string ..Displays a word wrapped string............... 14~ 7
Keyboard Manager eeea et et 15

General DesCription/NOLES ..vvvnur et ereeneiete et eeaaaannnnnn. 15- 1
= T o (=T S P 15- 3
kbd flush Clears the keyboard buffer................... 15- 8
kbd read Reads a single CSR extended key code......... 15- 9
kbd scan Scans the keyboard for an extended key code..15-10
Library FUNCLIONS ..ttt ittt ittt iiniintensenraneencannns 16

General Description/Notes S 16- 1
Structures/Defines . ..iitiiiiiiiiiit it it et et i e e 16~ 2
about_versions Displays the About dialog box.............. 16- 4
cnvrt_to_julianConverts standard to julian format......... 16- 5
cnvrt_to std Converts julian to standard format......... 16— 6
compare chars Compares specified characters.............. 16- 7
'compare_chars_ins .:Compares case insensitive characters....... 16- 8
dmmore add accessory .Adds an accessory to the More accessory..l16- 9
dmmore delete accessory .Deletes an acc from the More acc...... 16-11
get dsGets the current data segment value...16-12
get intl Gets international structure information...16-13
get month strings ..Gets the month abbreviations............... 16-14
PageSetupDialogDisplay DeskMate's Page Setup dialog box...16-15
str upper Converts a string to upper case............ 16-16
to upper Converts a character to upper case......... 16-17

waitloop ...vvvunn.. Waits for a specified period of time....... 16-18

Menu Bar Managerceeeeririeenrsecnncnscnssassssnonnnens 17

General Description/NOtesviuiiiiiinnereeneeacascesnennsnns 17- 1
SErUCEULEeS/DEefinNeS uvieeeernernreeeensanesneroasaasaosanscons 17- 2
mb_add alarmAdds an alarm to the main menu bar............ 17- 6
mb _delete alarm .Deletes an alarm from the menu bar............ 17- 1
mb disable Disables auto processing of the menu bar...... 17- 8
mb draw Draws the menu bar/registers menu accels...... 17- 9
mb_enable Enables auto processing of the menu bar....... 17-10
mb erase Deactivates the menu bar...............ovnenn 17-11
mb_get_status ...Gets the number of the selected menu 17-12
Message BOX MANAgerceeeeeecooscsocsssacessnosnsanansns 18

General Description/NOotesoiieivererinennrneenraesnrnnens 18- 1
Structures/Definesciiiiiiiiiiiiitriotantiitacnassanuas 18- 2
msg draw Displays a message boX.......coveeeiinannnnn 18- 3
MSG FUN ..vvenneons Displays and processes a message box........ 18- 4
MOUSE MANAGEL +vvvterietnuenenronrosannssssastansstsnssasssnsanns 19

General DesScription/NOtesSeevererreonnaoeaanonsaansonnns 19- 1
Structures/Definesuiiiieeiiie ittt itieettiasiaarianaenen 19- 2
ms_add region Defines mouse pointer to a region...... 19- 3
ms_default pointer Specifies default arrow pointer........ 19- 4
ms_define pointer Define a custom mouse pointer.......... 19- 5
ms_delete region Deletes a mouse pointer region......... 19- 7
ms_disable driver Disables the mouse driver.............. 19- 8
ms_disable regions Deletes all mouse pointer regioms...... 19- 9
ms_draw _pointer Turn on the mouse pointer.............. 19-10
ms_enable driver Initializes the mouse driver........... 19-11
ms_enable_regions Enables all mouse pointer regions...... 19-12
ms_erase _pointer Turns off the mouse pointer............ 19-13

ms_get status Gets the current mouse status.......... 19-14

Information Box Managereevevvnnnnnnnnnns e 14

General DescCription/Notesiiiiiiiiinniieneennneennneennnnns 14- 1
Structures/Defines ...ttt i i i i i it e e 14- 2
info draw Displays the information box on the screen...14- 5
info draw icon ...Displays a draw list icon.............cuuan.. 14- 6
info put string ..Displays a word wrapped string............... 14- 7
Keyboard Manager e ettt s e it 15

General DesCription/Noteseeiiiiiiirennieevennnnenernnnnnns 15- 1
Defines it it it et et e et e e 15- 3
kbd flush Clears the keyboard buffer................... 15- 8
kbd read Reads a single CSR extended key code......... 15- 9
kbd scan Scans the keyboard for an extended key code..15-10
Library FUnCtionsiiuiiiiiiii it ietiieeeeneaneanannnnns 16

General Description/Notesceiiiiitiiiiiieeinnnnnenrnnnnnns 16- 1
Structures/Defines . .iveiiiiiint ittt tiet i, 16- 2
about_versions Displays the About dialog box.............. 16- 4
cnvrt to julianConverts standard to julian format......... 16- 5
cnvrt_to std Converts julian to standard format......... 16- 6
compare chars Compares specified characters.............. 16- 7
compare_chars ins ..Compares case insensitive characters...:...16- 8
dmmore_add accessory .Adds an accessory to the More accessory..l6- 9
dmmore delete accessory .Deletes an acc from the More acc...... 16-11
get ds Gets the current data segment value...16-12
get intl Gets international structure information...16-13
get month strings ..Gets the month abbreviations............. ..16-14
PageSetupDialogDisplay DeskMate's Page Setup dialog box...16-15
str_upper Converts a string to upper case............ 16-16
to upper Converts a character to upper case......... 16-17

waitloop Waits for a specified period of time....... 16-18

Menu Bar Mana@gervceeencreenscaasesassacsesacaasosnssnsnssnn 17

General DesCription/NOLES ...ciiiiiieieennrnnnsesnaessanesnnnns 17- 1
Structures/Defineseciieiiiineeneoneeeennrtnrenacensennenns 17- 2
mb add alarmAdds an alarm to the main menu bar............ 17- 6
mb_delete alarm .Deletes an alarm from the menu bar............ 17- 17
mb disable Disables auto processing of the menu bar...... 17- 8
mb draw Draws the menu bar/registers menu accels...... 17- 9
mb enable Enables auto processing of the menu bar....... 17-10
mb erase Deactivates the menu bar...................... 17-11
mb_get_status ...Gets the number of the selected menu 17-12
Message BOX Manageriieiiceereaeonseneesssnnansnnensnoss 18

General DesCription/NOLeS .iviieieeernintrennrneeernosnnnnsnnes 18- 1
Structures/Definesuiiiiit i iiiiiine ittt aaertaennan 18- 2
msg draw Displays a message boX......vviieeriennnnnnn 18- 3
MSG FUN ...vnvnnnnns Displays and processes a message box........ 18- 4
MOUSE MANAGET . ivvivinuetonneroereanssseasssonneenossosananesas 19

General Description/Notesiieeeireiinnnronenreeeononnnnnns 19- 1
Structures/Defines ...veieii ittt iiiintieeestiiattanttaneanens 19- 2
ms_add region Defines mouse pointer to a region...... 19- 3
ms_default pointer Specifies default arrow pointer........ 19- 4
ms_define pointer Define a custom mouse pointer.......... 19- 5
ms_delete region Deletes a mouse pointer region......... 18- 7
ms_disable driver Disables the mouse driver.............. 19- 8
ms_disable regions Deletes all mouse pointer regions...... 19- 9
ms_draw pointer Turn on the mouse pointer.............. 19-10
ms_enable driver Initializes the mouse driver........... 19-11
nms_enable regions Enables all mouse pointer regions...... 19-12
ms_erase_pointer Turns off the mouse pointer............ 19-13

ms_get status Gets the current mouse status.......... 19-14

Print Managers f ettt et e e e 20
General DesCription/NOLES ..vvveerrreeennoeesroneseossccacannns 20- 1
SErUCtUreS/DefinesS .t i iinerinneivesveeesonseonossansssnnssans 20- 3
Device Printing

ptd close Closes the output device................... 20- 6
ptd draw list Adds a form to the page list............... 20- 7
ptd get page Gets the page setup and page mode.......... 20- 8
ptd new line Adds a new (blank) line to the page list...20- 9
ptd open Prompts the user for a device to print to..20-10
ptd preload Loads the configuration printer driver..... 20-12
ptd print far page .Prints text strings from a far segment..... 20-13
ptd print page Prints the contents of the page list....... 20-14
ptd put nchars Adds a string to the page list............. 20-15
ptd put nchars x ...ptd put nchars at a specified margin....... 20-16
ptd selectSelects the print device to be used........ 20~-17
ptd set page Sets the page setup and page mode.......... 20-18
ptd start page Initializes a new page......ovieeeeneceanns 20-19
Direct Printing
prt close Closes the raw print device................ 20-20
prt_get printerGets printer driver information............ 20-21
prt_open Opens and initializes raw print device..... 20-22
prt put charPuts character to print device............. 20-23
prt_put_nchafs e Puts string to print device............. ... 20-24
prt put tty Puts non-filtered char to print device..... 20-25
SOUNA Library v iiiiiiii ittt isntttntteet ittt 21
Introduction and OVeIVIieW. vvie i rennernneennneeennennnnnn 21- 1
Hardwareccovvvuen.. et s e et e s 21-1
oo o 7= o = 21- 3
SEruUCtUres/Defines v ivritinir it ittt ittt i e 21-'5
snd_addbuf Adds memory for the player to use......... 21- 9
snd amplify Generates function table to amplify sound.21-10
snd apply func Applies a function table to a sound....... 21-11
snd_compensate Creates a recording translation table..... 21-12

snd_compress_part ...Performs data compression on a sound...... 21-13

snd cue Puts hardware in standby for play/record..21-14

snd_decompress part .Performs data decompression on a sound....21-15
snd exit Turns the sound chip off........... 21-16
snd flush Starts playing queued sounds.............. 21-17
snd init Initializes the sound chip................ 21-18
snd playc....n Plays sound(s) in memory.........eeeeeeeus 21-20
snd_record Records a sound into memory............... 21-22
snd stopnn Stops the sound output or stops recording.21-24
snd version Returns the version number................ 21-25
snd_volume Sets the output level for play............ 21-26
snd wait Waits for sound(s) to finish.............. 21-27
Appendix A Compression/Decompression......cceveeeeean. 21-28
DeskMate 88DeskMate Sound 1988 compression........... 21-29
Appendix B Bios Digital Sound Support................ 21-33
Appendix C DeskMate Sound 1988 File Format........... 21-35
Appendix D DeskMate Environment ISSU€S.......ccvuuen. 21-37
SPELL RESOUICE it evineantnosesoaasssssssasssasssanssnsosenoesns 22
General Description/Notesciiiiiiiiiiiiiiininennn e 22-1
SErUCLULES/DEfiNeS . .viutiiiieieneionessennssennseesonsecnnnens 22- 2
spell_bind;eﬁd Unloads spell reSOUrCe.......ceevveanen 22- 3
spell bind init Loads spell resourCe..........eeeveeuse 22- 4
spl_add cache word Adds a word to cache ram............... 22- 5
spl add user word Adds a word to the user dictionary..... 22- 6
spl check edit Spell checks an editfield.............. 22- 1
spl check text Spell checks the TEXT application...... 22- 8
spl_check word Spell checks a word.........couvnunnnn 22- 9
spl delete user word ...Deletes a word from user dictionary....22-10
spl get alternates Returns similarly spelled words........ 22-11
spl init cache Re-initializes temporary word list..... 22-12
spl init user dict Clears user dictionary memory.......... 22-13

spl update user dict ...Saves user dictionary to disk.......... 22-14

TheSaUTrUS RESOUICE ittt it ittt et eeee ettt nnnnenesnnannnneens 23

General Description/Notesveiiiniinininnnnennnnnnnn L...23-
Structures/Definesoiuiiiiii it i e 23-
thes bind end Terminates interface to the thesaurus....... 23-.
thes bind initInitializes a thesaurus session............. 23-
thes get syn Gets synonyms for specified word............ 23-
thes get text syn .Gets synonyms for DeskMate Text application.23-
Titleline Manéger ... 24

General Description/NOtesS ...iiiiiirerneinninnennennnnnennennns 24-
3= o 1T AU 24-
ttl disable update ...Disables date/time updates............... 24-
ttl enable updateEnables date/time updates................ 24-
ttl put app name Displays the application's name.......... 24-
ttl put data nameDisplays. the application's data name..... 24-
Video MaNager & ivut ittt tinenaennenesnsssssosensonsansoneannnns 25

General Description/Notes e e 25~
SEruCtUres/Defines tiviit ittt iiieiint ittt 25-
csr_load video driver .Loads a specified video driver.......... 25-
fvid draw _form Draws a form from far memory............ 25-

~ oy O bW e

Y oW N

fvid draw_form element Draws a form element from far memory....25-10

fvid get_bounding box .Gets a bounding box for a far form...... 25-11
vid busy disable Disables busy icon processing........... 25-12
vid busy enable. Enables busy icon processing............ 25-13
vid clear block Clears specified block.................. 25-14
vid clear screen Clears current clip region.............. 25-15
vid clear to bot Clears to end of clip region............ 25-16
vid clear to eol Clears to end of current line........... 25-17
vid decx to wex Converts device coordinate X............ 25-18
vid dcy to wey Converts device coordinate y............ 25-19
vid delete line Deletes current line.................... 25-20
vid delete nchars Deletes specified number of characters..25-21
vid draw_arc Draws an arc graphic.................... 25-22

vid draw bev_rect Draws a beveled edge rectangle.......... 25-23

vid draw_busy iconDraws the busy icon immediately......... 25-24

vid draw_cursor Draws the video cursor.................. 25-25
vid draw ellipse Draws an ellipse.........cocevvunnnennnn 25-26
vid draw form Draws a form..........coovvienninininnnn, 25-217
vid draw _form element .Draws a form element.................... 25-28
vid draw frame Draws a frame...........covviiniiiiann., 25-29
vid draw_line Draws a line............oiiiuiiiinan., 25-30
vid draw point Draws a single pixel...........cvvvnnn. 25-31
vid draw polygon DrawsS @ POLYgON. ..o vt tveneanecenennenses 25-32
vid draw _polyline Draws a series of connected line segs...25-33
vid draw rect Draws a rectangle..................eL, 25-34
vid draw stroke Draws a stroke character................ 25-35
vid erase _cursor Turns off the text cursor............... 25-36
vid fill block Fills a rectangle area with pattern..... 25-37
vid get attrs Gets the current video attributes....... 25-38
vid get bounding box ..Gets a bounding box for a form element..25-39
vid get buffer size ...Gets the minimum screen buffer size..... 25-40
vid get clip Gets the current clip region............ 25-42
vid get_far screenGets screen contents into a far buffer..25-43
vid get palette Gets current RGB value for palette...... 25-44
vid get screen Gets the screen contents into a buffer..25-45
vid get viewport Gets the current viewport............... 25-47
vid get world Gets current world boundaries........... 25-48
vid inquire colorsFills VID COLOR structure............... 25-49
vid inquire deviceFills VID DEVICE structure.............. 25-50
vid insert char Inserts a character onto the screen..... 25-51
vid insert line Inserts a line onto the screen.......... 25-52
vid invert block Inverts fg and bg colors for a block....25-53
vid_loadable_drivers ..Returns the available video drivers..... 25-54
vid memory free Releases unused video memory............ 25-55
vid memory info Returns info about unused vid memory....25-56
vid memory inuse Checks for unused video memory.......... 25-57
vid move cursor Moves cursor to specified location...... 25-58
vid next nwcx Returns next device pixel X............. 25-59
vid next nwey Returns next device pixel y....vvvvvnn.. 25~60

vid nextn nwcx Returns next n device pixel X........... 25-61

vid nextn nwey Returns next n device pixel y.....vvu... 25-62
vid prev nwex Returns. prev device pixel x............. 25-63
vid prev nwey Returns prev device pixel y.....cvvvunn. 25-64
vid prevn nwex Returns prev n device pixel x........... 25-65
vid prevn nwcy Returns prev n device pixel y........... 25-66
vid put attr nchars ...Displays attribute character pairs...... 25-67
vid put char Displays character and advances cursor..25-68
vid put far screenPuts far buffer contents to screen...... 25-69
vid put image Displays bitmap.......oiiiuiiiiinnnnan.. 25-70
vid put nchars Displays string of specified length..... 25-172
vid put screen Puts buffer contents to screen.......... 25-173
vid put_string Displays null terminated string......... 25-74
vid put tty Puts non-filtered string to screen...... 25-75
vid read cursor Reads current cursor location........... 25-76
vid restore_screenRestores a portion of the screen........ 25-71
vid save screen Saves a portion of the screen........... 25-78
vid scroll down Scrolls screen doWn......oeeeenenens 25-79
vid scroll down no clear ..Scrolls screen down w/o clearing ...25-80
vid scroll left Scrolls screen to the left.......... 25-81
vid scroll left no clear ..Scrolls screen left w/o clearing....25-82
vid scroll right Scrolls the screen to the right..... 25-83
vid scroll right no clear .Scrolls screen right w/o clearing...25-84
vid scroll up Scrolls the screen up............... 25-85
vid_scroll up no_clearScrolls screen up w/o clearing...... 25-86
vid set attrs Fills VID ATTRS structure........... 25-87
vid set char attr Sets current attribute.............. 25-88
vid set char size Sets size of system font............ 25-89
vid set clip Sets the clip region................ 25-90
vid set clip to_window .Sets clip region to current window..... 25-91
vid set colors Sets fg and bg colors.............. ..., 25-92
vid set cursor typeSets current cursor type............... 25-93
vid set line attr Sets current line attributes........... 25-95
vid_set palette Sets the palette colors................ 25-96
vid set pattern Sets current pattern................... 25-98
vid set viewport Sets current viewport.................. 25-99

.......... Sets current world boundaries.........25-100

vid set world

vid wex to dex Converts world coordinate X........... 25-101

vid wex to nwex Converts world coordinate x to n...... 25-102
vid wey to dcy ... Converts world coordinate y........... 25-103
vid wey to nwex Converts world coordinate y to n...... 25-104
WinAOW MABNAGEL . vestveeesnoosnnonensonsasassasssssaassocncanss 26

General DesCription/NOtEsS ...vviuvieieienenrarneaennoaaneansonas 26- 1
5] o o Lot o o = S R R R RE 26- 2
win_activate Makes a specified window active............ 26- 3
win close Removes a window from the system........... 26- 4
win get_active Gets the currently active window........... 26- 5
win group end Deletes base window and current group...... 26- 6
win group init Initiates a new window group........ EREEEEE 26— 17
win open Creates and initializes a new window....... 26- 8

About the DeskMate Technical Reference 03.03.00

The DeskMate Technical Reference is designed to assist programmers in the development of
DeskMate applications. The manual is divided into twenty-six sections, listed in alphabetical
order. The specific calls within the sections are also alphabetized making it easier to find specific
call information. There are two types of sections, Resources and Managers. When a section
name ends with the word "Resource”, for example the Database Resource, an initialization call
needs to be made before the functions may be used. When the section name ends with the word
"Manager", for example the Video Manager, the section is part of a resource.

Managers listed as being part of the CSR (Core Services Resource) require the csr_init call be
made before making any call in that manager. Managers listed as being part of the GUF
(General User Functions) resource require the guf_bind_init or the prguf_bind_init call be
made before making any call in that manager. The initialization calls need to be called only once
and are described in detail in the Desk Executive section. If an application has called an
initialization call it must call the corresponding terminate call before exiting, for example csr_end
must be called if csr_init was called.

The csr_init initialization call must be made prior to calling any CSR routine. The guf_bind_init
routine must be made prior to calling any GUF routine. The prguf_bind_init routine must be
made prior to calling any PRGUF routine. The other initialization routines required by the
separate resources, AUTOLOAD, DATABASE, FORM, SPELL, and THESAURUS, are
described in their respective sections.

Autoload Resource

The Autoload Resource gives the applications the ability to pre-load required resources. The
autoload resource has its own set of initialization and termination calls, autoload_bind_init and
autoload_bind_end respectively. An example of the autoload resource's use is an application
that needs to allocate space for a printer driver before it actually begins processing.

Clipboard Manager
The Clipboard Manager is a part of the Desk Executive and therefore requires no binding calls. it
allows applications access to the DeskMate clipboard, so data may be transferred between the
different applications.

Communication Manager ,

The Communication Manager, part of the CSR, requires the csr_init initialization call. The
communication manager provides the applications with support for the different communication
ports, COM1 and COM2.

Component Manager

The Component Manager, part of the CSR, requires the csr_init initialization call. The functions
for all of the DeskMate components are described in the component manager. The components
currently supported are: application defined components, check boxes, edit fields, icon buttons,
list boxes, menu bars, push buttons, and radio buttons. Utilities for the different components can
also be found in this section.

Configuration Manager

The Configuration Manager, part of the CSR, requires the csr_init initialization call. The
configuration manager allows the programmer to retrieve, modify, and save the DeskMate
configuration data stored in the DMCSR.CFG configuration data file.

Database Resources

The Database Resources contains the calls necessary to develop DeskMate database
applications. The database resources provide indexed record level access into files both locally
and on the network for applications. It will service one request at a time and will handle multiple
users. The DeskMate database has several initialization calls, db_bind_init is used to bind to all
pieces of the database. The db_bind_read initialization call binds to the database read
resource. The INIT_DB initialization call binds to the update and build resources as requested by
the application.

Desk Executive

The Desk Executive is neither a resource nor a manager, it is a small resident module which
provides operating system services for DeskMate. It is responsible for the loading and releasing
of resources. For this reason all of the Resource Initialization calls are listed in this section. The
desk executive is also responsible for loading applications and accessories, managing the
clipboard, and providing a communication system for task switching, and provides for some
file/path searching routines.

Dialog Box Manager

The Dialog Box Manager, part of the CSR, requires the ¢sr_init initialization call. The dialog box
manager allows the application to prompt the user for several pieces of information
simultaneously via a dialog box.

Environment Manager

The Environment Manager, part of the GUF, requires the guf_bind_init initialization call. The
environment manager provides applications with a way to store application specific configuration
information. The information may be used to retumn the application to a previous state since the
information is saved to disk and retrieved whenever the application is subsequently run. The
environment manager is similar in concept to the MS-DOS environment specified with "set”
commands by the computer user.

Event Manager

The Event Manager, part of the CSR, requires the csr_init initialization call. The event manager
returns events from both the keyboard and the pointing device. All events returned have a
message type, a parameter, and a set of coordinates for mouse events. This is the preferable
way to provide input into the application, so the application does not have to have separate
processing for keyboard and the pointing device.

File /0 Manager

There are two different levels of file I/O support. The high level support is contained in the GUF
resource requiring the guf_bind_init initialization call. The low level file /O functions are
contained in the PRGUF resource requiring the prguf_bind_init initialization call. High level file
I/O provides block oriented support including user interface management. Low level file I/O
provides the application direct file access.

Form Resources

The Form Resources are used to create pictures which can be printed, manipulated, or stored for
later use. Each "form" is a list of the graphic and text primitives which make up a picture. The
Form Resources have their own set of initialization and termination calls. To use the form
resource as a NEAR resource the application should bind to the resource using
csr_form_bind_init and terminate with csr_form_bind_end. If the application wishes to use
the form resource as a FAR resource, the initialization calls are fform_bind_init and the
termination call is fform_bind_end.

Help Manager
The Intelligent Help Manager contains all of the functions necessary for an application to provide

context sensitive help for the user. The calls contained in this section are for use in the
DeskMate 03.03.00 system only.

Information Box Manager

The Information Box Manager, part of the CSR, requires the csr_init initialization call. The
information box manager supports the displaying of non-interactive messages on the screen.
The information boxes support text strings, bitmaps, stroke fonts, and static boxes. Information
boxes are very useful in demos and tutorials.

Keyboard Manager

The Keyboard Manager, part of the CSR, requires the csr_init initialization call. The keyboard
manager makes direct CSR keyboard access available to the application and performs internal
keyboard functions for the event manager.

Library Functions

The Library Functions section of the manual provides the application with many functions which
are helpful to the developer but were not general enough to warrant their own sections. Most of
these routines are contained in the two DeskMate libraries DM.LIB and DMMED.LIB and are
linked in with the application that calls them. However some of these routines are contained in
the GUF resource requiring the guf_bind_init initialization call, please make special note of
these functions. The functions contained in this section of the manual include; the about dialog
box, date conversion functions, international support functions, page setup dialog box, more
accessory functions, and an application pausing function.

Menu Bar Manager

The Menu Bar Manager, part of the CSR, requires the csr_init initialization call. This section of
the manual refers to the main application menu bar. Menu bars may also be run as components,
refer to the component manager section for details on how to run the menu bar as a component.

Message Box Manager
The Message Box Manager, part of the CSR, requires the csr_init initialization call. A message
box is a simplified dialog box, it contains a title, a static string message, and push buttons.

Mouse Manager

The Mouse Manager, part of the CSR, requires the csr_init initialization call. The mouse
manager maintains and updates the mouse pointer for the application, as well as performing
internal functions for the event manager. The application can control instaliation of the mouse
drivers, the usage of the mouse pointer, definition of the mouse pointer, and mouse pointer
regions on the display.

Print Managers

Most of the calls in the Print Managers section are a part of the CSR requiring the csr_init
initialization call. The ptd_open call which prompts the user for the device to use, is part of the
GUF resource requiring the guf_bind_init initialization call. There are two different types of
printing support. The direct print support which prints directly to the printer port and the device
printing support prints to any device; file, screen or printer.

Sound Library

The Tandy Digital Sound Library provides an APl used to generate high quality sound for
applications. The sound library makes use of the Digital to Analog Converter DAC in many
Tandy computers.

Spell Resource

The Spell Resource is used by the spell checker accessory and by applications which wish to
proof selected text. The spell engine resource is the actual engine and dictionary. The engine is
loaded by the spell resource when the spell_bind_init initialization call is made.

Thesaurus Resource

The Thesaurus Resource is available to applications to provide a consistent user interface with
an on-line synonym dictionary. The thesaurus resource provides the ability to locate synonyms
for a word and optionally replace the word with a selected synonym to compose more readable
documents. The thesaurus resource requires the thes_bind_init initialization call.

Titleline Manager

The Titleline Manager, part of the CSR, requires the csr_init initialization call. The titleline
utilities manage the top line of the screen. These routines automatically display the date and
time, the application name and application data file name.

Video Manager
The Video Manager, part of the CSR, requires the ¢sr_init initialization call. The video manager
provides the application all necessary direct video routines needed.

Window Manager
The Window Manager, part of the CSR, requires the esr_init initialization call. The window
manager manages the creation, deletion, and activation of application defined windows.

Autoload Resource

A/u%lb/oao((ezoura?“

Table of Contents

General Description/NOoLeS ..viiiiiitrinnnnneenenennenaenesonns
SErUCLUILES/Defines ..ttt iiiii i ittt it iinneeeaananaanaansos

autoload bind end ...Release the autoload resource.............
autoload bind init ..Initializes autoload resource.............
autoload set Register and Delete autoload resource.....

1- 1
1- 2
1- 4
1- 5
1- 6

DeskMate Technical Reference
Autoload Resource

General Description/Notes

The autoloader enables an application to have the desk executive pre-load a resource it will need
before it is executed.

The Autoload resource is not part of the DeskMate Runtime System, if you need this resource
please contact Tandy DeskMate Development Services.

The application calls the autoload passing it needed information such as the name of the
resource to load, initialization information, and the resource load priority. Autoloader stores this
information in a file and the desk executive uses autoloader to load requested resources when
desk is run. When loaded, the resource is called with the stored initialization information in order
to start or just set up the resource. After loaded the DESK executive uses the load priority
defines to decide when the resource is loaded and unloaded.

The Spell Accessory uses the autoloader for auto-proofing.

Page 1-1

DeskMate Technical Reference
Autoload Resource

Structures/Defines . ‘

The following structure must be initialized and passed to autoloader to register a resource to be
%toloaded: '

___ */
/* AUTOLOAD.H - defines and structures used by */
;: applications calling the autoload resource. :;

?truct autoload struct
char Callerld; /* define code for application that */
/* requested autoload for resource */
char ResourceName[9]; /* ASCIIZ string containing the */
/* name of the resource load (all */
/* capitals) */
char FunctionId; /* number of function to call in */
/* resource for it to initialize or */
/* start running */

char LoadPriority; /* define code for the resource load */
/* priority */
char FunctionParams{5]; /* a list of parameters the */

/* initialization function needs */

}
typdef struct autoload struct AUTOLOAD;

CallerlId is a code assigned to an application that requests the autoload resource. Each
current application receives a unique CallerID.

ResourceName is a 9-byte ASCIIZ string which contains the name of a resource requested by
an application.

FunctionId identifies the particular function within a given resource. The FunctionID value is

used to initialize or start the function.
/* define for FunctionId */

NO FUNCTION -1 /* define for Functionld if there is no */
- /* initialization function */

AUTO SPELL 1 /* spell checker CallerId */

When the function is called for initialization the FunctionId is put in AX and the
FunctionParams list is pointed to by ES:BX. The parameters can contain any information as
long as it is 5 bytes long. If the application does not need to be initialized then the FunctionId
should equal NO_FUNCTION.

LoadPriority establishes the load priority of one resource with respect to all other resources
requested. The values defined for LoadPriority are described below. When the desk
executive needs more memory, no one application can be using the resource for it to be

unloaded. L
/* defines for LoadPriority */ . _ _
LOAD PRIORITYO 0 /* resource is loaded at applications */
- /* request and freed when application is */

*
* exited (removes resource from autoload) */
LOAD PRIORITY1 1 * resource is loaded at when the desk */
- /* executive starts and unloaded for */
* non-DeskMate applications and reloaded */
* after non-DeskMate applications exit and */
* freed upon exit from the desk executive */ ‘

/
/

Page 1-2

DeskMate Technical Reference
Autoload Resource

LOAD PRIORITY?2 2 /* resource is loaded when the desk executive */
- /* starts and stays in until exit from */
/* the desk executive */
LOAD PRIORITY3 3 /* resource is loaded before the DESK */
- /* executive and remains after the DESK */
/* executive is exited (preload resource) */

FunctionParams is a 5-byte list of parameters needed by the initialization function; the format

of the parameter string is determined by the resource and function that will use the parameter
information.

Page 1-3

DeskMate Technical Reference
Autoload Resource

autoload_bind_end ()

autoload_bind_end enables applications to release the autoload resource.

Input Parameters

None.

Return Value

None.

Special Notes

If an application calls autoload_bind_init, it must call autoload_bind_end when finished with
the autoload resource.

Page 1-4

DeskMate Technical Reference
Autoload Resource

autoload_bind_init ()

autoload_bind_init sets up the bindings for the autoload resource, enabling the application to
use functions in the autoloader.

Input Parameters
None.

Returp Value

<int>
DM _ERROR if autoload_bind_init was unsuccessful.

Special Notes

autoload_bind_init should be made before calling any autoloader calls.

Page 1-5

DeskMate Technical Reference
Autoload Resource

autoload_set (pAUTOLOAD)
AUTOLOAD *pAUTOLOAD;

autoload_set maintains the file containing the resources load priority settings. autoload_set is
used to register new entries in the file or to delete existing entries from the file.

Input Parameters

PAUTOLOAD is a pointer to an AUTOLOAD structure that contains the resource information.
Return Val

<int> c
DM _ERROR if autoload_set was not able to find or create the autoload configuration file.

ial

In order to delete an entry in the autoload file the application should send a structure which
contains LOAD PRIORITYO in the LoadPriority element. There can be multiple entries for
the same resource as long as the CallerId elements are different in the AUTOLOAD structure.
The highest priority found for a resource will be the one stored by the desk executive. If no
initialization call is needed then the Funct ionId should equal NO_FUNCTION.

Page 1-6

Clipboard Manager

/,(\///éoaro(Naaajef)

Table of Contents

General DesCription/NoOteS i iiieernrrreeeeeeseeeennnenneenns 2-
I I ¢ U= S 2-
dm clear clipboard Clears data from Clipboard............ 2-
dm clipboard size Returns size of Clipboard memory...... 2-
dm free clip buffer Returns memory to Clipboard........... 2-
dm get clip buffer Gets unused space in Clipboard memory. 2-
dm get clipboard info ...Gets type, length, & pointer.......... 2=

dm_set_clipboard info ...Sets type, length..................... 2-

DeskMate Technical Reference
Clipboard Manager

General Description/Notes

The clipboard manager is a part of the Desk Executive.

Refer to the DeskMate Development Guide Programming Examples Special Topics for examples
of how to read from and write to the clipboard.

Page 2-1

DeskMate Technical Reference
Clipboard Manager

Defines
K e o et o e e ki e S S e e e e A e e e e i G 0 e e e 0 *
/* » *
;: DMEXEC.H contains the Clipboard defines */
' . *
/* ___ */
DM OK 1 /* value returned when executive request */
/* was succesful */
DM _ERROR -1 /* value returned when an error in */

/* executive request occured */

/* These are the different clipboard type */
/* available to the applications. */

CLIP EMPTY
CLIP TEXT
CLIP " BITMAP
CLIP WORKSHEET
CLIP"FILER
CLIP PAINT
CLIP DRAW

CLIP DRAW TEXT
CLIP MUSIT

CLIP__ CALENDAR

OO WNRFO

Page 2-2

o

DeskMate Technical Reference
Clipboard Manager

dm_clear_clipboard ()

dm_clear_clipboard clears the clipboard of any data, and sets the clipboard type to
CLIP_EMPTY and the clipboard length to zero.

- Input Parameters

None.

Return Value

None.

Page 2-3

DeskMate Technical Reference
Clipboard Manager

dm_clipboard_size () -
dm_clipboard_size returns the size of the ¢clipboard memory in bytes.
In rameter
None.
Return Value
The size of the clipboard in bytes.
ial
dm_clipboard_size is only available when running DeskMate versions 03.03 and later.

The return value is the maximum size that can be stored in the clipboard. If the clipboard buffer
is in use its size is not included in the size retumed by dm_clipboard_size.

Page 2-4

DeskMate Technical Reference -
Clipboard Manager

dm_free_clip_buffer ()

dm_free_clip_buffer returns the memory to the clipboard which was received from
dm_get_clip_buffer.

Input Parameters

None.

Return Value

None.

Special Notes

dm_free_clip_buffer is only available when running DeskMate 03.03 and later.

Page 2-5

L O~ L S

DeskMate Technical Reference
Clipboard Manager

dm_get_clip__ buffer(IpLength IplpBuffer) ‘
int far *IpLength; : : A
char far **IplpBuffer;

dm _get_ciip_buffer gets the length of and pointer to unused space in the clipboard memory.

Input Parameters

IpLength is a far pointer to the integer in which to store the length of the clipboard data.
IplpBuffer is a far pointer to the application's long pointer variable.

Return Value

NULL if no room is left on the clipboard, or the buffer is already in use.
DM_OK if the buffer is returned.

Special Notes

dm_get_clip_buffer is only available when running DeskMate 03.03 and later.

While the clipboard buffer is in use (until dm_free_clip_buftfer is called), the size of the clipboard
is reduced to the size of its contents at the time dm_get_clip_buffer was called. The desk

executive does not automatically free the clipboard buffer when a task exits, but will free it
whenever there are no tasks running. .
S

See Also

dm_free_clip_buffer()

!

Page 2-6

DeskMate Technical Reference
Clipboard Manager

dm_get_clipboard_info (IpType, IpLength, IplpBuffer)

int far *IpType;

int far *IpLength; . : .

char far **lplpBuffer; <75 /5 wrong. Shold be.: char hr K for ¥ /f//ﬁu#cr

dm_get_clipboard_info returns information about the current clipboard contents (the type and
length of the data, and a far pointer to the clipboard buffer).

In ram

IpType is a far pointer to the integer in which to store the clipboard data type.
IpLength is a far pointer to the integer in which to store the length of the clipboard data.
IplpButffer is a far pointer to the application's long pointer variable.

Return Value

The information is returned in the parameters.
ial

See Chapter 7 of the MicroSoft "C" manual for more help on far pointers to far pointers.
The following are the current clipboard data types:
CLIP_EMPTY 0
CLIP_TEXT 1
CLIP_BITMAP 2
CLIP_WORKSHEET 3
CLIP_FILER 4
CLIP_PAINT 5
CLIP_DRAW 6
CLIP_DRAW_TEXT 7
CLIP_MUSIC 8
CLIP_CALENDAR 9

Example

Check Clipboard()

{
int Type, Length;
char far *1lpBuffer;

- dm_get_clipboard info((int far *)&Type, (int far *)&Length,
(char far **)glpBuffer);

Shovld be :
(char for ¥ far %)

Page 2-7

DeskMate Technical Reference
Clipboard Manager

dm_set_clipboard_info (Type, Length)
int Type;
int Length;

dm_set_clipboard_info sets the clipboard data type and length.
n ram L

Type is the data type of the data to be put into the clipboard buffer.
Length is the number of bytes to be put into the clipboard buffer.

Return Value

<int> :
DM_OK if clipboard buffer is large enough for the requested size.
DM _ERROR if requested size is too large.

Page 2-8

[3

Communications Manager

ZOmmum&’ ton M‘l"“j” ’

Table of Contents

General Description/Notesciviiitiiiiiineeeeernennananeens 3-1
Structures/Defines . ..viiiiit it i i i e ettt 3- 2
com call Calls the specified number.............. 3- 4
com closen Closes the current device............... 3-5
com disSC ..vvvnvnnnnnn. Disconnects the terminal session........ 3-6
com get buffer info ...Gets com structure information.......... 3- 7
com get lines states ..Gets the com port status................ 3-8
com get parms Gets the communication parameters....... 3-9
COM OPEN «vvvvsvoennnns Opens the communication device.......... 3-10
com put char Writes a character to the com device.... 3-11
com put string Writes a string to the com device....... 3-12
com send break Sends break sequence to com device...... 3-13
com set parms Sets the communications parameters...... 3-14

com test carrier Check com port for carrier signal....... 3-15

DeskMate Technical Reference
Communications Manager

General Description/Notes

The functions in the Communications Manager provide the ability to perform communications.
These routines allow the application to set up communications parameters, open and close the
communications ports and dial and hang up the phone. The application can either send one
character at a time or an ASCIIZ string to the communications port. Functions are also provided
for detecting the carrier and sending a break sequence. The com_open call allocates a buffer
for a serial interrupt information about this buffer can be obtained with the com_get_buf_info
call.

The user must use the Setup Accessory to initialize the COM ports before calling com_open; if
not, com_open will notify the application.

Page 3-1

DeskMate Technical Reference
Communications Manager

Structures/Defines
K e e e e e et o e e e e e e e e e e e e e e o e e */
/* *
* CSRCFG.H contains the Communications structures and defines */
: *
/ K o e o i o e o ot e e e e 0 S B B e S T o * /
/* Communications */
struct cparms_defn
char bXon; /* Xon/Xoff enable flag */
char bASCfilter; /* ASCII filter enable flag */
char bLFfilter; /* line filter enable flag */
char bStatus; /* com port status flag (OPEN or CLOSED) */
char bCarrier; * carrier det stat flag (CARRY/NO CARRY) */
int baud rate; /* line speed setting */ -
char word size; /* 7 or 8 */
char parity; * EVEN PARITY, ODD PARITY or NO PARITY */
char stop_bits; /* 1 or 2 */ - -

}i
typedef struct cparms_defn CPARMS;

CPARMS.bXon:
Xor/Xoff enable flag (ENABLED or DISABLED).

CPARMS.bASCfilter:
ASCII filter enable flag (ENABLED or DISABLED).

CPARMS.bLFfilter:
Line filter enable flag (ENABLED or DISABLED).

CPARMS.bStatus:

Com port status flag.
/* Port status */

PORT OPEN 1 /* terminal active - dtr and rts */
PORT_CLOSED 0 /* terminal not ready - no dtr or rts */
CPARMS.bCarrier:

Carrier detect status flag.

/* Carrier state ¥/

CARRY 1

NO CARRY 0

CPARMS.baud rate:

Line speed setting.]
* int value of 300, 1200, 2400, 4800, 9600 */

CPARMS.word size:

7 or 8.

CPARMS.parity:

/* Parity settings */
NO PARITY

ODD PARITY 1
EVEN PARITY 2

Page 3-2

@

DeskMate Technical Reference
Communications Manager

CPARMS.stop_bits:
1or2.

struct com buffer info defn

{
char far *rs232 start_ptr;
char far *rs232_end ptr;
char far *input_ptr;
char far *output_ptr;

int rs232 buf size;
int count_num;
char xon_xoff flag;

}:
typedef struct com buffer info_defn COM_BUFFER_INFO;

struct com state_defn
{

char com_port; /* COM1 or COM2 */

char line typel; /* DIRECT or MODEM */
char modeml ; /* modem name index */
char line_type2; /* DIRECT or MODEM */
char modem?2 ; /* modem name index */
char line type3; /* DIRECT or MODEM */
char modem3; /* modem name index */
char line_type4; /* DIRECT or MODEM */
char modem4 ; /* modem name index */

}i
typedef struct com_state_defn COM STATE;

/* Port addresses */

COoM1 0

COM2 1

COM3 2

CcOM4 3

/* Line types */

MODEM 1 /* modem is attached to line */
DIRECT 0 /* direct connect line */

The currently supported modems are:
HAYES, PLUS 1200, INTERNAL 1200, PLUS 300 HAYES, DCM 212 HAYES, DCM 7 HAYES,

DCM 5, DC 2212, DC 1200, INTERNAL 300, and MODEM Il.

Page 3-3

DeskMate Technical Reference
Communications Manager

com_call (pString, Type)
char *pString;
int Type;

com_call dials the specified phone number.

Input Parameters

pString is a pointer to a null terminated ascii string containing the phone number to call.
Type describes how to dial the number. 0 = auto-execution, 1 = dial only.

Return Value

<int>

One (1) if the call was successful.

CSR_NULL if there is no carrier.

CSR_ERROR if an error occurs during the call. '
ESC_KEY if the ESC key was pressed during the call.

An error can occur under any of the following conditions:
The device is in the PORT_OPEN state and the call cannot open the device.
There is no RS232 installed.
The communication lines are direct-connect.
The communication timeout delay is reached.
The user may press the escape key to cancel the calling process.

If the type is defined to be auto-execution then full processing of the defined autolog file occurs.

If the type is defined to be dial only then the only processing which takes place is the dialing of
the phone, this is normally used when voice connection is desired.

- Page 3-4

L

DeskMate Technical Reference
Communications Manager

com_close (pCPARMS)
CPARMS *pCPARMS;

com_close closes and disconnects the current communications device, resets the device status,
and drops ditr (data terminal ready) and rts (request to send).

Input Parameters

pCPARMS is a pointer to a communications parameters structure.

Return Value

<int>
CSR_NULL if successful.
CSR_ERROR if the com port was not open.

Special Notes
The bytesize may be 7 or 8.

The parity may be NO_PARITY, ODD_PARITY, or EVEN_PARITY.
The stopbits may be 1 or 2.

Xon_Xoff may be ENABLED or DISABLED.

The ascii filter may be ENABLED or DISABLED.

The line feed filter may be ENABLED or DISABLED.

The carrier detect may be CARRY or NO_CARRY.

S¢e Also

The CPARMS structure defined at the beginning of this chapter.

Page 3-5

DeskMate Technical Reference
Communications Manager

com_disc ()

com_disc disconnects the terminal connection.

Input Parameters

None.

Return Value

None.

Page 3-6

C

DeskMate Technical Reference
Communications Manager

com_get buffer_info (plpCOM_BUFFER_INFO)
COM_BUF_INFOR far **plpCOM_BUFFER_INFO;

com_get_buffer_info returns the far address of the COM_BUF_INFOR structure. This is the
serial interrupt structure which was initialized by com_open.

Input Parameters

plpCOM_BUF_INFOR is a far pointer to a far COM_BUFFER_INFO pointer.
Return Value

The buffer is modified with the far COM_BUFFER_INFO pointer.

Special Notes

The buffer information structure is included in CSRCFG.H.

Example
COM BUF_INFOR far *1lpComBuf;

com_get:._buf fer info(&lpComBuf);

See Also

com_open()

Page 3-7

DeskMate Technical Reference
Communications Manager

com_get_line_states ()

com_get_line_states returns the status of the communications ports.

Input Parameters

None.

Return Value

<int>

CSR_NULL if no lines are being used.

The low 4 bits of this value are used to indicate which ports are in use. The least significant bit
corresponds to the COM1 state, the next, COM2, etc. A 0 indicates an inactive port, a 1, active.
No more than two bits will be on at one time.

Page 3-8

DeskMate Technical Reference
Communications Manager

com_get_parms (pCPARMS)
CPARMS *pCPARMS;

com_get_parms returns the current communications parameters.

Input Parameters

pCPARMS is a pointer to a communications parameters structure.
R n Val

The current parameters are returned in the structure.
The bytesize may be 7 or 8.

The parity may be NO PARITY, ODD PARITY, or EVEN_PARITY.

The stopbits may be 1 or 2.

Xon_Xoff may be ENABLED or DISABLED.

The ascii filter may be ENABLED or DISABLED.

The line feed filter may be ENABLED or DISABLED.

The device status may be PORT_OPEN or PORT_CLOSED.
The carrier detect may be CARRY or NO_CARRY.

Page 3-9

DeskMate Technical Reference
Communications Manager

com_open (pCPARMS)
CPARMS * pCPARMS;

com_open opens a communications device, sets the device status, and invokes dtr (data
terminal ready) and rts (request to send).

Input Parameters

pCPARMS is a pointer to a communications parameters structure.

Return Value

<int>

CSR_NULL if the device was opened.

CSR_ERROR if there was an error opening the device.

CSR_DEFAULT if the communications accessory has not yet been run, to allow access to the
COM ports.

Special Notes

com_open allocates 4K (or as much as possible if 4K is not available) for an RS232 serial
interrupt buffer. It then sets the buffer information so that it may be accessed with
com_get_buf_info.

The bytesize may be 7 or 8.
The parity may be NO_PARITY, ODD PARITY, or EVEN PARITY.

The stopbits may be 1 or 2.

Xon_Xoff may be ENABLED or DISABLED.

The ascii filter may be ENABLED or DISABLED.
The line feed filter may be ENABLED or DISABLED.
The device status must be PORT CLOSED.

The carrier detect may be CARRY or NO_CARRY.

Page 3-10

DeskMate Technical Reference
Communications Manager

com_put_char (Character)

char Character;

com_put_char writes a character to the communications device.
Input Parameters

Character is the character to write to the device.

Return Value

<int>
CSR_NULL if the write was successful.
CSR_ERROR if an error occurred while writing to the device.

Page 3-11

DeskMate Technical Reference
Communications Manager

com_put_string (pString)
char *pString;

com_put_string sends a null terminated string to the I/O pont.

Input Parameters

pString is a pointer to a null terminated string.

Return Value

<int>

CSR_ERROR if an error occurred.

ESC_KEY if the user pressed the ESC_KEY to cancel the function.
CSR_NULL if the string is sent successfully.

Page 3-12

DeskMate Technical Reference
Communications Manager

com_send_break ()

com_send_break sends a break sequence to the communication port.

Input Parameters

None.

Return Value

None.

Page 3-13

DeskMate Technical Reference
Communications Manager

com_set_parms (pCPARMS)
CPARMS *pCPARMS;

com_set_parms sets the current communications parameters.

Input Parameters

pCPARMS is a pointer to a communications parameters structure.

Return Value

None.
Special Notes

The bytesize may be 7 or 8.

The parity may be NO_PARITY, ODD_PARITY, or EVEN_PARITY.
The stopbits may be 1 or 2.

Xon_Xoff may be ENABLED or DISABLED.

The ascii filter may be ENABLED or DISABLED.

The line feed filter may be ENABLED or DISABLED.

Page 3-14

DeskMate Technical Reference
Communications Manager

com_test_carrier ()

com_test_carrier checks the communications port for a carrier signal.

Input Parameters
None.

Retur 1

<int>

CARRY if there is a carrier detected.
CSR_NULL if no carrier is detected.

Page 3-15

Component Manager

IJCOM/‘)OMJ;TI Maﬂmjerm

Table of Contents

General DesCription/Notes ...ieviiiiiniirnerrnnernnneennnennns 4- 1
SErUCtUres/DefinesS .t iiinnine ittt intnnaneeeanennanneeenn 4- 2

Application Defined Components

General Description/NOoteS .iiiiriiiiiiiirisensanersanannonness 4-15
SErUCtULES/DefiNesS .+ vttt ittt ittt ittt attntte e 4-16
cop add ...l Adds an application defined component........ 4-17
cmp close Closes an application defined component...... 4-19
cmp_delete Deletes an application defined component..... 4-20
cmp draw Draws an application defined component....... 4-21
CIMP_OPeN ..uvausnn Opens an application defined component....... 4-22
CMP TUNuwnn. Runs an application defined component........ 4-23

Pre-Defined Components

General DesCription/NOLES .vvvivirtiiriineerrennnnreneeeannnnns 4-25
00 9 1=T o Q0 T > S 4-25
e T o = o P 4-25
o703 4 R o5 ok o o N 4-26
5= o o Yo <P 4-26
23 oL o T e 4-26
PUSh DULEON ittt ittt ittt ittt ittt ittt et nans 4-26
Radio DULLONS v ittt ettt ittt ettt i ennnneeanss 4-27

Edit field examples

Single line editfieldiiieiiiiiiiirrrnanannnns 4-28
Formatted editfieldciiiiiiiiinieiiinnnnnaennnns 4-29
Multi line editfieldoviiiiiiiiiiniinnneennnns 4-30
cmp _close Closes a Pre-Defined component............... 4-31
cmp drawe..n Draws a Pre-Defined component................ 4-32
CIMp OPeNn Opens a Pre-Defined component................ 4-33

CMp TUN «.onvnennn Runs a Pre-Defined component................. 4-34

Component Utilities

edt clear Clears selected edit field text.............. 4-36
edt copy Copies edit field text to clipboard.......... 4-37
edt cut Cuts edit field text to clipboard............ 4-38
edt format multi .Formats edit field string for wordwrap....... 4-39
edt _form drawAdds edit field lines to form................ 4-40
edt _paste Pastes clipboard to edit field............... 4-41
edt replace Replaces edit field text w/specified text.... 4-42

1b_sort_list Sorts the items within a list box............ 4-43

o
4

L

DeskMate Technical Reference
Component Manager

General DeScription/Notes

The component manager is a common interface to all components, CSR and application defined.
All components must be processed through the component manager.

The component manager processes components for the application. This also allows an
application to define a component and use it consistently with CSR-defined components.

Because all components are processed by the component manager, each component structure
must begin with a common header. Refer to "Structures/Defines" for a description of the
CMP_HEADER structure that is represented by the ‘header’ element of each component structure.

The CSR supports the following components:

application defined components
check boxes

edit fields

icon buttons

list boxes

menu bars

push buttons

radio buttons

scroll bars

The scroll bar is a user-defined component which may be linked with the calling application. To
use the scroll bar, first, include DMSCROLL.H or DMSCROLL.INC and define a SCROLL_BAR
structure tailored for your needs. Use the default values provided in the include file when defining
your structure. Then, call add_scroll_bar_cmp and store the return value, if not CSR_ERROR, in
the type element of the CMP_HEADER in the SCROLL_BAR structure. Link with the appropriate
DeskMate fibrary. To delete the scroll bar, call cmp_delete with the return value from the
previously calied add_scroll_bar_cmp, if not CSR_ERROR.

The edit field provides for selection of data within the edit window. The application must decide it
it wishes to allow this selected data to be “cut” or "copy-ed” to the clipboard. When the edit field
returns control to the application, the select_offset and select_length will remain in the
structure as they were in the edit field. The application must decide by checking the
select_length if the "cut” and “copy” menu items should be available. The application needs
to check the select _length ANY time the edit field returns to the application. If those menu
items are available, and the user subsequently selects a clipboard menu item, the application
must call one of the following routines to allow the edit field to perform the operation.

edt_clear
edt_copy
edt_cut
edt_format_muiliti
edt_form_draw
edt_paste
edt_replace

Ib_sort_list is called when sorting of the items within a list box is desired, without running or
drawing the list box.

Page 4-1

DeskMate Technical Reference
Component Manager

Typically, the CSR will prevent all components from receiving mouse hold events except for the
window in which the button down event was detected. This is accomplished within the CSR by
recording the handle of the current window when a button down is detected. All subsequent
mouse hold events are returned only if the currently active window has that handle.

This allows two different components to receive all mouse hold events. This occurs when one
component receives a button down event, then completes running or drawing, and then another
component is run or drawn. This occurs because the handle is freed when the first component is
closed, making it available for the next created component. This problem will only occur if a
component is created, reads a button down event, is then closed prior to the termination of that
hold sequence, and a new window is then created that processes events.

Page 4-1.1

ﬂ‘

DeskMate Technical Reference
Component Manager

Structures/Defines
[*= */
* . */
;: CSRCMPS.H contains the Components structures and defines :;
/*==- --- -/

All components, whether defined by the application or by the CSR, are processed by the
component manager. The CMP_HEADER structure for a component defines its type, location,

size, accelerator, and return value.

/* General */
?truct cmp_header defn

unsigned int type; /* component type */

char bEnabled; /* enable flag for component */
MAPRECT maprect; /* origin/extent */

unsigned int accel; /* key accelerator for component */
unsigned int return_code; /* return code for component */

b
typedef struct cmp_header defn CMP_HEADER;

type:

The %ype of component as defined below, or as returned by cmp_add.
/* Types */

CMP PUSHBUTTON CMP TAG+0
CMP"RADIOBUTTONS CMPTAG+1
CMPTICONBUTTON CMP TAG+2
CMPTLISTBOX CMPTTAG+3
CMP™CHECKBOX CMP TAGt+4
CMP EDIT CMP™TAG+5
CMP”MENUBAR CMP_TAG+6
bEnabled:

The enable (grayed) flag for component (ENABLED, DISABLED or CMP_NO TAB).
/* Keep component out of tab order */ -

CMP_NO_TAB 0x02
maprect:
The location and size of the component.
MAPRECT.x0rg int ~ world coordinate x origin of the component
hot spot and working window.
MAPRECT.yorg int - world coordinate y origin of the component
hot spot and working window.
MAPRECT.xext int - world unit x extent of the component hot
spot and working window.
MAPRECT.yext int - world unit y extent of the component hot
spot and working window.
accel:
The keyboard accelerator for the component hot spot.

NO_ACCEL -1 /* no accelerator */

return code:
The refurn code for the component hot spot.
/* Return codes */
CMP NO ACTION
CMPACTION

CMP~ SCROLLED
CMPTTRUNCATED

CMP CANCEL

* no action taken within component */
* component status has changed */

/* scroll occurred */

/* edit string was truncated */

/* component was canceled */

WO

Page 4-2

DeskMate Technical Reference .
Component Manager

CMP_DISABLED 6 /* component was grayed */

CMP_GO 7 /* user invoked select and go */
CMP_SELECT CHANGE 8 /* user invoked selection change */
CMP_ACTION_IN_ EVENT 9 /* cmp action is in the event queue */
CMP_APPL 10 /* cmp received an EVENT_APPL event */
/* No handle */

CMP_NULL_HANDLE -1

/* Null states */

NO_SELECTED -1 /* no selected */

The push button structure is defined as follows:
/* Push button Component */

struct pushbutton_defn

{

CMP_HEADER header;

char type:; /* flat or raised */

char bstate; /* up/down flag */

char pattern; /* pattern number of background */
unsigned char #pString; /* pointer to button name string */

}:
typedef struct pushbutton defn PUSHBUTTON;

Pushbutton.header:

This header is a header structure that provides information to the component manager such as
where the push button is to be displayed. Refer to the cMP_HEADER documentation for a further
discussion of component headers.

/* Header maprect */
PB BASE_XEXT 2*CHAR_XEXT

PB_YEXT 345 - Used to define the y extent of all push buttons.

PB_DEFAULT_ACCEL CSR_DEFAULT
X * CHAR XEXT + PB_BASE_XEXT, Where x is the number of character in the string label.

Pushbutton.type:

Indicates whether the push button is a two dimensional (flat) or a three dimensional (raised) push
button while in the non-pressed state. It also indicates whether the push button is to be inverted
when pressed.,if it is a raised push button.

PB_FLAT 1 /* flat push button */

PB_RAISED 0 /* raised push button */

PB_INV RAISED 2 /* invert raised push button on press */

Pushbutton.bstate: :
Indicates whether the push button is selected or not.

PB_UP DESELECTED
PB_DOWN SELECTED
Pushbutton.pattern:

Defines pattern number of the background upon which the push button is drawn. This option is
used with a raised push button to restore the background of the area the push button covered

before it was pressed.

Page 4-3

®

=

DeskMate Technical Reference
Component Manager

PATTERN1 - PATTERN20.

Pushbutton.pstring:
Points to the button label string.

DeskMate Technical Reference
Component Manager

Extent constants:
PB BASE XEXT - Used to calculate the x extent of the push button. Use the following formula to

define the x extent of a push button: PB_BASE_XEXT + (n * CHAR XEXT), where'n'is the
number of characters in the label string.

/* Radio buttons Component */
Radio button groups use two kinds of structures: one for the entire radio button group, another for

each individual button in the group.
struct radiobutton dein

char bEnabled; /* enable (gra¥ed) flag */
int X0rg; /* x origin relative to group */
int yorg; /* y origin relative to group */

}i
typedef struct radiobutton_defn RADIOBUTTON;

Radiobutton.bEnabled
Enable flag for the radio button (ENABLED or DISABLED).

Radiobutton.xorg: Ka‘,)[‘,ra 5(/#0». s ue
World coordinate x origin relative to the radio buttons group origin.) ,

[isheal i ccluma=
Radiobutton.yorg:

World coordinate y origin relative to the radio buttons group origin. Ma "gr on’;&h
?truct rb_group_defn
CMP HEADER header;

chat nAcross; /* number of buttons wide */

char nDown; /* number of buttons tall */

char selected; /* ordinal id of pushed button */

char pattern; /* pattern number of background */

char nButtons; /* number of buttons in group */
RADIOBUTTON *pButtons; /* pointer to RADIO BUTTON structures */
char cursor; /* cursor button index */

}i
typedef struct rb_group _defn RB_GROUP;

Radiobutton.header:

This header is a header structure which provides information to the component manager such as
where the radio button group will be displayed. Refer to the CMP_HEADER documentation for a
further discussion of component headers.

Radiobutton.nAcross:
Number of radio buttons from left to right in the radio buttons group.

Radiobutton.nDown:
Number of radio buttons from top to bottom in the radio buttons group.

Radiobutton.selected:

Index of the currently pressed radio button. The index is zero relative and refers to the radio
buttons in the order that they are defined as pointed to by pButtons.

Radiobutton.pattern:

DeskMate Technical Reference
Component Manager

Pattern number of the background upon which the radio buttons are drawn (PATTERN1 to
PATTERN20). This option is used with raised radio button to restore the background of the area
the radio button covered before it was pressed.

Radiobutton.nButtons:
Number of radio buttons in the group.

Radiobutton.pButtons:
Pointer to the RADIOBUTTON structures.

Radiobutton.cursor:
0 to nButtons-1. CSR_DEFAULT defines where the cursor is placed when the group is run.
Use the value of the desired button in the group.

/* Radio button extents */

RB_XEXT 3*CHAR XEXT
RB_YEXT CHAR YEXT

/* Icon button Component */
struct iconbutton defn

CMP_HEADER header;

chat type; /* type of icon button */

char bState; /* on/off flag */

char pattern; /* pattern number of background */
char interior; /* interior pattern of button */
char *pUp; * icon "on" definition */

char *pDown; /* icon "off" definition */

b
typedef struct iconbutton defn ICONBUTTON;

ICONBUTTON.header:

Header is a header structure that provides information to the component manager such as where
the icon button will be displayed. Refer to the CMP_HEADER documentation for a further
discussion of component headers.

ICONBUTTON.type:

Indicates whether the icon button is a two dimensional (flat) or a three dimensional (raised) icon
button while in the deselected, non-pressed state. It also indicates whether the icon button is to
be inverted when pressed, if it is a raised icon button.

Icon button types: _

IB RAISED 0 -three dimensional, raised icon button.

IB FLAT 1 -two dimensional, flat icon button.

IB_INV RAISED 2 -three dimensional, raised icon button that is inverted when pressed.

IB NO BORDER 3 -flat button with no border drawn around the icon.

ICONBUTTON.bState:
Indicates whether the icon button is pressed or not (BUTTON_UP or BUTTON_DOWN).

ICONBUTTON.pattern:

Pattern number of the background upon which the icon button is drawn (PATTERN1 to
PATTERN20). This option is used to restore the background of the area the icon button covered
before it was pressed.

Page 4-5

DeskMate Technical Reference
Component Manager

ICONBUTTON.interior: -
Pattern number of the interior of the icon button (PATTERN1 to PATTERN20).

ICONBUTTON.pUp:

Pointer to the stroke list defining the deselected or up state of the icon button. (Refer to the form
manager section of this manual for details on the stroke list)

ICONBUTTON.pDown :
Pointer to the stroke list defining the selected or down state of the icon button. (Refer to the form
manager section of this manual for details on the stroke list)

/* Check box Component */
struct checkbox defn

CMP HEADER header;
chaTr bState; /* checked/unchecked flag */

}i
typedef struct checkbox defn CHECKBOX;

CHECKBOX.header:

This header is a header structure which provides information to the component manager such as
where the check box will be displayed. Refer to the CMP_HEADER documentation for a further
discussion of component headers.

header.maprect:
Extent constants:

CB_XEXT 2*CHAR XEXT - x extent of a check box.
CB_YEXT 1*CHAR YEXT -y extent of a check box.
CHECKBOX.bState:

Indicates whether the check box is checked or unchecked (CB CHECKED or CB. UNCHECKED).
CB CHECKED SELECTED - -
CB:UNCHECKED DESELECTED

The list box structure is as follows:
/* List box Component */
struct listbox defn

CMP HEADER header;

chaT bTitle; /* title selectable flag */
char bScroll; /* scroll direction flag */
char bAlphabetize; /* list alphabetization flag */
char bMulti; /* multi select flag */

char border; /* border type */

char bgnd color; /* background color */

char fgnd color; /* foreground color */
unsigned char top String; /* number of top item in window */
unsigned char selected; /* list box selected item */
unsigned char *pString; /* list box title */

unsigned char nlItems; /* number of strings */

char *pSelected; /* pointer to selected list */
unsigned char **pltems; /* pointer to string list */

}i
typedef struct listbox defn LISTBOX;

Listbox header:

Page 4-6

DeskMate Technical Reference
Component Manager

Header is a structure that provides information to the component manager, such as where the list
box is to be displayed. Refer to the CMP_HEADER documentation for a further discussion of

component headers.
ASE XEXT 2*CHAR XEXT
LB BASE YEXT 2*CHARYEXT
xext: -
Use the following formula for defining the xext.

Vertical list box:
LB BASE_XEXT + (n * CHAR_XEXT)

Horizontal list box:
2 * (LB BASE_XEXT + (n * CHAR XEXT))

Where 'n' is the number of characters in the longest string.
yext:

Use the following formula for defining the yext.
LB BASE YEXT + (n * CHAR YEXT)

Where 'n’ is the number of lines to display in the window at any one time.

Listbox bTitle:
Indicates whether the cursor may be positioned on the title. This flag should be set to ENABLED
or DISABLED. lf bTitle is enabled, the bMulti flag must be disabled.

Listbox bScroll:

Defines whether the list box should scroll horizontally (two column format) or vertically (single

column format). SetbScroll to LB VERT SCROLL or LB HORZ SCROLL.
LB VERT SCROLL 0 A smgle column verfical scrolling */
LB_HORZ_SCROLL 1 /* 2 column horizontal scrolling */

Listbox bAlphabetize:

Indicates whether the list box items should be sorted before they are displayed. Set
bAlphabetize to ENABLED or DISABLED.

Listbox bMulti:
Indicates whether the user can select multiple items. Set bMulti to ENABLED or DISABLED. If

bMulti is enabled, the flags pointed to gl pSelected reflect the items that are selected.
/* List box in multi-select mode mask for */

/* turning flashlng underline on or off */

LB_IN MULTI 2

Listbox border:

Enables a border to be draw around the list box. The border types allowed are those supported
by vid_draw_frame (FLAT BOX, RAISED BOX, PYRAMID, DEST FLAT BOX, and
LISTBOX BOX. Set border to LB NO FRAME if no frame is desired. Set "border to

LB NO BORDER if neither a frame nor an inside border is desired.
LB™NO FRAME -1 /* no frame around list box */
LB_NO_BORDER -2 /* no border or frame around list box */

Listbox bgnd_color
Specifies the background color for the list box. If bgnd_color and fgnd_color are the same,

the current foreground and back% round colors are used.
LB NO_COLOR CSR_DEFAUL

Listbox fgnd_color

Specifies the foreground color for the list box. To use the default colors define this as
LB NO COLOR.

Page 4-7

DeskMate Technical Reference
Component Manager

LB NO COLOR CSR_DEFAULT

Listbox top string
Specifies the item to be displayed at the top of the list box. If the selected item is outside the list

box window, top string will be adjusted to make it visible.
/* y extent from top of list box to top of list */
LB TITLE YEXT CHAR YEXT*3/2

Listbox selected

Specifies the item on which the cursor is positioned. If bMulti is disabled, selected is also the
currently selected item. If bMulti is enabled, the application must check pSelected to
determine which items are selected. More than one item in the list box might be selected.

Listbox pString
Points to the list box title. pString should be set to zero if a title is not desired.

Listbox nItems
Contains the number of items in the list box.

Listbox pSelected

Points to an array of one byte flags that show which items are selected. These flags should be
set to SELECTED or DESELECTED. The array should contain one byte for each item in the list
box. The title does not have an entry in the array because the title cannot be selected.

Listbox pItems
Points to an array of string pointers. These string pointers point to the item strings.

/* Edit field Component */

An edit field structure specifies the type of data that will be accepted in the edit field, defines the
appearance and location of the edit field, and defines how much of the field is visible on the
screen. The edit field structure is defined as follows:

?t ruct editfield defn

CMP HEADER header;

chat type; /* edit field type */

char bHighlight; /* flag to highlight field on run */
char dec places; /* num glaces to the right of . */
MAPRECT edit maprect; /* visible part */

char attr; /* char attribute to use */

int cursor offset; /* cursor offset into string */

int end offset; /* offset to end of string */

int seléct offset; /* offset to select start */

int select”length; /* length of selected area */

char terminator; /* terminating character of string */
unsigned char *pBuffer; /* pointer to edit string */
unsigned char *pFormat; /* pointer to format string */

char scroll type; /* direction of scroll */

int scroll”length; /* number of chars to scroll */

int scroll height; /* number of rows to scroll */

char bNOEdiT; /* editable field flag */

char border; /* border type for edit field */

}:
typedef struct editfield defn EDITFIELD;

Editfield header:

Page 4-8

DeskMate Technical Reference
Component Manager

Header is a structure which provides information about the edit field to the component manager.
For example, it specifies the location at which the field will be displayed. Refer to the
CMP_HEADER documentation for a further discussion of component headers.

Editfield type:

Indicates which type of edit field is to be run. The following types are available:

EF_STATIC 0x00 - static, single line edit field.

EF EXPAND 0x01 - single fine edit field that reverses the foreground and
background colors in the field. Expands the size of the
field on insent.

EF NUMBER 0x04 - right justified single line edit field which will accept
numeric data and a plus or a minus sign.

EF EXTNUM 0x06 - right justified single line edit field which will accept
only numeric data and a decimal point.

EF_WORD WRAP 0x08 - multiple line edit field which does word wrapping.

EF NO WORD WRAP 0x10 - multiple line edit field which does not word wrap.

Editfield bHighlight:

This element should be set to EF_HIGHLIGHT or EF NO_HIGHLIGHT. When it is set to
EF _HIGHLIGHT the entire edit field is displayed with the foreground and background colors

reversed.
EF HIGHLIGHT ENABLED
EF:NO_HIGHLIGHT DISABLED

Editfield dec_places:
Specify a value for this element any time the edit field type is set to EF_NUMBER. Specify 0-9 to
indicate the number of fixed decimal places in the field.

Editfield edit _maprect:

The maprect describes the size and origin of the edit field buffer. These values should be in
world coordinates. The xorg and yorg parameters are the x and y origin of the buffer relative to
edit field window. Initially, these values should be set to zero. They will become negative if text
scrolls. The xext and yext parameters describe the length and height of the edit field buffer. If
xext and yext in this structure are equal to the xext and yext values in CMP_HEADER, no
scrolling will occur. Scrolling is not allowed for EF_NUMBER, and EF_EXTNUM.

For example:

Component
MAPRECT

Editfield MAPRECT

Page 4-9

DeskMate Technical Reference
Component Manager

Editfield attr:

Allows the edit field text to be displayed with the character attributes supported by
vid_set_char_attr. The attributes supported are: NORMAL, BOLD, UNDERLINE, INVERSE,
GRAYED, and TRANSPARENT.

Editfield cursor offset:

Specifies the offset of the cursor location relative to the beginning of the text. For example, to
place the cursor on the third character, set cursor offset to 2. If cursor offset is setto
EF_SELECT_ALL, then all text in the buffer will be selected and the cursor will be set to position
zero. cursor_ offset must not exceed the number of text characters in the edit field buffer.

Upon entry to a dialog box or an edit field, set cursor offset to EF_SELECT ALL.
EF_SELECT ALL -1

Editfield end offset:

Contains the number of text characters in the edit field buffer. This value does not need to be
initialize, it is returned when an edit field is run or drawn.

Editfield select_offset:
Specifies the offset of the first selected character.

Editfield select_length:
Specifies the length of the selected text.

Editfield terminator:

Allows a terminating character to be displayed at the end of the text to show where the text ends.
If the edit field's buffer is filled, the character will not be displayed. The edit field will display the
terminating character only when the edit field type is set to EF_STATIC or EF EXPAND. If a
terminating character is not desired, set the terminator to zero.

Editfield pBuffer:

Pointer to the edit field text (buffer). The text must be null terminated. If no text is in the buffer,
the first character in the buffer must be a null. A single-line edit field's buffer size should be one
(for the null terminator) plus the number of characters that fit into the edit field. To calculate the

size of a multiple line edit field's buffer use the follownng formula:
((number of characters in a line + 2) * number of lines) +1

Editfield pFormat :

Allows the user to enter formatted data, such as a social security number or date. This option
can only be used with the EF_STATIC, EF_NUMBER, and EF_EXTNUM edit field types. pFormat
is a pointer to a null terminated string with 'the same number of characters as will fit into the edit
field. The string should contain a 0x16 wherever there is no format character. Format characters
can be valued from 0x20 to 0xff. If a format string is not desired, then pFormat should be set to
zero. See example 2. A format string is required if dec_places is not zero. The format string
must contain the decimal point at the appropriate location.

Editfield scroll type:

This should be initialized to EF_NO SCROLL or EF_SCROLL. Scroll type should be set to
EF NO SCROLL if the edit field does not scroll or if it is desired to have the edit field scroll
automatically. scroll type should be initialized to EF_SCROLL if the application desires to
handle scrolling. If EF SCROLL is set, when scrolling is required the edit field will return with a
CMP SCROLLED status and scroll type will be set to reflect the direction of the scroll as listed

Page 4-10

\.

Q

DeskMate Technical Reference
Component Manager

below. If the edit field returns with CMP_SCROLLED, scroll type must be reset to
EF_SCROLL, before rerunning the edit field.
EF_SCROLL_UP 0

EF_SCROLL_DOWN 1
EF_SCROLL_LEFT 2
EF_SCROLL_RIGHT 3
EF_NO_SCROLL 4
EF_SCROLL 5

Edit fields cannot support both horizontally and vertically scrolling edit fields simultaneously.

Editfield scroll_length:
Aids in recalculating the edit maprect's xorg when the edit field returns with a CMP_SCROLLED
status.

Editfield scroll_height:
Aids in recalculating the edit maprect's yorg when the edit field returns with a CMP_ SCROLLED
status.

Editfield bNoEdit :

This option should be set to EF_EDITABLE oOf EF NO_EDIT to indicate whether the user can
modify the text in the edit field. If EF_NO_EDIT is "specified, the user will only be able to move
the cursor and select and copy text. Keystrokes for adding or deleting text will be ignored.
EF_EDITABLE DESELECTED

EF_NO_EDIT SELECTED

Editfield border:

Allows a border to be draw around the edit field. The border types allowed are those supported
by vid_draw_frame: FLAT_BOX, RAISED_BOX, PYRAMID, DEST_FLAT_BOX, and
LISTBOX BOX. If a frame is not desired, set border to EF_NO_FRAME.

EF_NO_FRAME CSR_ERROR

/* Menu bar Component */

Three types of structures are important when creating menus: the structure for the menu bar, a
structure for each menu in the menu bar, and a structure for each item in the menu.

struct menuitem defn

{

char type; /* item type */

char bEnabled:; /* enable (grayed) flag for item */
char bChecked; /* check flag */

unsigned int accel; /* accelerator for item */
unsigned int return_code; /* return code for item */

char group; /* group number of item */

char pattern; /* pattern to use as the item */
unsigned char *pString; /* pointer to item name string */

bi
typedef struct menuitem defn MENUITEM;

MENUITEM.type:

Defines the type of menu item.

MB_STRING 0 /* item is a string */
MB PATTERN 1 /* item is a pattern */

MENUITEM.bEnabled:

DeskMate Technical Reference
Component Manager

Enable flag for the menu item (ENABLED or DISABLED).

MENUITEM.bChecked:
Indicates whether or not the menu item is checked or unchecked.

Page 4-11.1

DeskMate Technical Reference -
Component Manager

MB CHECKED SELECTED
MB"UNCHECKED DESELECTED

MENUITEM.accel: :
Keyboard accelerator for this menu item. MB_ACCEL is not an accelerator that can be equated to
a menu xtem accelerator. It is used mternally to puli down the F10 menu.

NO ACCEL -1 * no accelerator *
MB"ACCEL ALT SPACE KEY /* pulls down the F10 menu */

MENUITEM.return_code:
Return code for the menu item.

MENUITEM.group:

Group number of the menu item. The group numbers MUST be sequential and MUST begin
with MB_GROUP1 for each menu. Changing the group number automatically draws a separator
line in the menu item list.

MB GROUP1
MB™GROUP2
MB™GROUP3
MB™GROUP4
MBTGROUP5S
MB™GROUP 6
MB™GROUP7
MB™GROUPS8
MB_GROUP9Y

W-JANBLWNRRO

MENUITEM.pattern: _
Pattern number of the menu item (PATTERN1 to PATTERN20). Pattern is only valid if the type
element is MB_PATTERN.

MENUITEM.pString:
Pointer to the menu item string. pString is valid only if the type element is MB_STRING.

struct menu_defn

int Xext; /* x extent of menu */

unsigned char *pString; /* pointer to button name string */
char nltems; /* number of items in the menu */
MENUITEM *pltems; /* pointer to MENU ITEM structures */

};
typedef struct menu defn MENU;

MENU.xext :
World unit x extent of the menu. Use the formula described below to define this element.

MENU.pString:
Pointer to menu button label string.

MENU.nItems:
Number of items in the menu.

MENU.pItems:
Pointer to the MENUITEM structures for the menu.

struct menubar defn

Page 4-12

DeskMate Technical Reference
Component Manager

CMP_HEADER header;

char bFlags; /* arrow and top line flags */

char bRedraw; * visible redraw flag */

char nMenus; /* number of menus on the menu bar */
MENU *pMenus; /* pointer to MENU structures */

char attern; /* background pattern of the menubar */
char Status; /* process help only flag */

}i
typedef struct menubar defn MENUBAR;

MENUBAR.header:
This header is a header structure that provides information to the component manager. Refer to
the CMP HEADE% documentation for a further discussion of component headers.

MB XORG ~ /* default x origin of a menu bar */
MBTYORG 290 /* default y origin of a menu bar */
MB XEXT 80*CHAR XEXT /* default x extent of a menu bar */
MBTYEXT 345 - /* y extent of menu bars */

/* Menu width */

MB_BASE_XEXT 6*CHAR_XEXT /* base x extent of a menu */
MENUBAR.bFlags:

Indicates which buttons are to be available on the menu bar, as defined below. bFlags shows
what kind of icons appear at the edge of the menu bar. Icons are defined in CSRCMPS.H. For
example: MB TANDY + MB ALL ARROWS means the Tandy lcon (Accessories Menu) and all
four of the arrow Icons will show on the menu bar line. It is strongly suggested that when running
a menu bar as a component within a dialog box, the message menu and the accessory menu not
l}e displayed.

* Flag masks */
MB PLAIN 0 * no Tandy, help or arrow buttons */
MBTHELP BUTTON 1 /* help button */
MB™RIGHT ARROW 2 /* right arrow button */
MBTLEFT ZRROW 4 /* left arrow button */
MB DOWN ARROW 8 * down arrow button */
MB™UP ARROW 16 /* up arrow button */
MBTTARDY 32 /* Accessories icon button */
MBTALARM 64 /* alarm button */

MB VERT ARROWS MB UP_ARROW+MB DOWN ARROW
MB HORZ ARROWS MB LEFT ARROW+MB RIGHT ARROW
MB“ALL ARROWS MB VERT ARROWS+MB_HORZ_ARROWS

MENUBAR.bRedraw:
Indicates whether to redraw the menu buttons on cmp_draw or mb_draw (SELECTED or
DESELECTED). This element must be SELECTED the first time mb_draw is used, but may be

deselected on subsequent calls. Also, if the application only wishes to change the enable or
checked flags of the menu items, cmp_open will select this element and cmp_draw will deselect

it.
MB_REDRAW " SELECTED /* redraw menu bar */ _ .
MBNO REDRAW DESELECTED /* only redefine enabled/disabled items */

MENUBAR.nMenus: S
Number of labeled menu button on the menu bar.

MENUBAR.pMenus:
Pointer to the MENU structures for the menu bar.

MENUBAR.pattern:

Page 4-13

.

DeskMate Technical Reference
Component Manager

Background pattern number of the menu bar (PATTERN1 to PATTERN20).

MENUBAR.bStatus:

Alarm menu access mask for bstatus element of the MENUBAR structure.

/* Alarm menu access mask for bStatus element of MENU BAR */
/* structure, it is used internally by the alarm manager */
MB_ALARM ACCESS 0x01

/* World coordinate of the last default main menu bar pixel */
MB BOTTOM YORG MB_YORG+MB_YEXT—1

/* mb_add _alarm return codes */

MB NOT_NOTIFIED 0x01 /* alarm added but User not notified */
MB_ALARM EXISTS 0x02 /* alarm exists, not added again */
2 — */

/* SCROLL BAR COMPONENT */

/'k ______________________ */

struct scroll bar defn
{
CMP_HEADER header:;

char bType; /* type of scroll bar */
int nUnits; /* total units in scroll bar */
int elevator_size; /* size of elevator in world */
/* coordinates. *x/
int arrow_size; /* size of arrow icons in world *x/
/* coordinates. */
int page inc; /* units for page up/down */
int arrow_inc; /* units to increment for arrow */
int position; /* position of elevator in units */
int pos_change; /* position changed in units */
char fgnd color; /* foreground color of scroll bar */
char bgnd_color; /* background color of scroll bar */
char efgnd_color; /* elevator fore-ground color */
char ebgnd_color; /* elevator back-ground color x/
int (far *pHomeImage) (): /* pointer to IMAGE structure of */
/* upper left box */
int (far *pEndImage) () ; /* pointer to IMAGE structure of */

/* lower right box */
}:
typedef struct scroll bar_defn SCROLL_BAR;

CMP_HEADER.header:

The header is a component header structure which provides information to the component
manager such as where the scroll bar will be displayed. Refer to the CMP_HEADER
documentation for a further discussion of component headers.

CMP_HEADER.type:
Specifies that this component is the scroll bar. The value retumed from add_scroll_bar_cmp
should be stored here before the scroll bar can run, opened, closed, or drawn.

CMP_HEADER.bEnabled:
Specifies if the scroll bar should be disabled. If a disabled scroll bar is drawn, it will be displayed
with the grayed attribute. A disabled component cannot be run.

CMP_HEADER.xorg:
Specifies the X origin of where the scroll bar will be displayed.

Page 4-14

DeskMate Technical Reference
Component Manager

CMP_HEADER.yorg: .
Specifies the Y origin of where the scroll bar will be displayed.

CMP_HEADER.xext :
Specifies the width of a vertical scroll bar or the length of a horizontal scroll bar. If a vertical
scroll bar is to be used, SBAR_VERTICAL should be specified.

CMP_HEADER.yext :
Specifies the length of a vertical scroll bar or the height of a horizontal scroll bar. If a horizontal
scroll bar is used, SBAR_HORIZONTAL should be specified.

CMP_HEADER.accel:
Specifies the scroll bar's accelerator.

CMP_HEADER.return_code:
Specifies the scroll bar's return code.

SCROLL_BAR. bType:
Specifies the desired type of scroll bar. These values should be or'ed together:

SBAR_VERTICAL 0 bit 0 cleared vertical scroll bar
SBAR_HORIZONTAL 1 bit 0 set horizontal scroll bar
SBAR NO ARROWS 4 mask for no home and end icon box

SBAR_USER_DEFINED 8 mask for user defined icon box

CMP_HEADER.nUnits:
Total number of units in scroli bar. Q

CMP_HEADER.elevator_size:
Size of the elevator in world coordinates. bType should be set to use SBAR_ELEVATOR_FIXED.

CMP_HEADER.arrow_size:

Size of the arrow icons in world coordinates. This can be undefined if SBAR_NO_ARROWS is
used. If a verical scroll bar is used, arrow_size should be defined as
SCRL_DEFAULT_VERT ARROW. If a horizontal scroll bar is used, arrow_size should be set to
SCRL_DEFAULT_HORZ_ARROW.

CMP_HEADER.page_inc:
Number of units the elevator travels when a mouse click occurs on the scroll bar above or below

the elevator. This is analogous to scrolling up and down a page at a time, or right and left for a
horizontal scroll bar.

CMP_HEADER.arrow_inc:
Number of units the elevator travels for a single arrow event. This is typically used to travel up
and down one line at a time, or right and left for horizontal scroll bars.

CMP_HEADER.position:
Position of the elevator. This is in units.

CMP_HEADER.pos_change:
The number of units the elevator has traveled while running the scroll bar is retumed here. If a
negative value is stored here upon retuming from cmp_run, the elevator traveled upwards. If

pos_change is positive, the elevator traveled downwards. ‘

Page 4-14.1

®

DeskMate Technical Reference
Component Manager

CMP_HEADER.fgnd color:

Specifies the foreground color for the scroll bar.

CMP_HEADER.bgnd color:

Specifies the background color for the scroll bar.

CMP_HEADER.efgnd_color:

Specifies the foreground color for the scrolil bar's elevator and arrow icons. AC{WJI}//

CMP_HEADER.ebgnd color:

Specifies the background color for the scroll bar's elevator and arrow icons.

CMP_HEADER. (far *pHomeImage) () :
Far pointer to an IMAGE structure for the top/left arrow icon. This is only used when type is set to

SBAR_USER_DEFINED.

CMP_HEADER. (far *pEndImage) () :
Far pointer to an IMAGE structure for the bottom/right arrow icon. This is only used when type is

set to SBAR_USER_DEFINED.

SCRL_DEFAULT VERT WIDTH
SCRL_DEFAULT_VERT_ARROW
SCRL_DEFAULT_HORZ_HEIGHT
SCRL_DEFAULT_ HORZ_ARROW
SCRL_DEFAULT_ELEVATOR_SIZE

Example vertical scroll bar:

SCROLL BAR test_scroll bar
0,
ENABLED,
0, 0,

SCRL_DEFAULT VERT_ WIDTH,

CHAR_XEXT * 12,
SCROLL_BAR_ACCEL,
SCROLL_BAR RET_CODE,
SBAR_VERTICAL,

100,

200
220
220
200
210

{

SCRL_DEFAULT_ ELEVATOR SIZE,

SCRL_DEFAULT_VERT_ARROW,

10,

1,

0,

0,
COLOR1,COLORZ2,
COLOR3,COLOR4,
0, O

}:

/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*

/*
/*

set after adding the cmp
component will be available
origin is 0,0

use standard width

scroll bar is 12 lines high
the accel & ret code should
be defined by the app
vertical scroll bar
coverage is 100 units total
use standard size

use standard size

page increment is 10 units
arrow increment

start elevator at top

pos_change is returned
scroll bar colors

elevator & arrow colors
SBAR_USER_DEFINED not given

Page 4-14.2

@ MLca{of

ﬁ& ares U5

andl La,w(, color .

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/

arrow icon

elevator

arrow icon

DeskMate Technical Reference
Component Manager

Page 4-14.3

3
\ 4
-

DeskMate Technical Reference
Component Manager

Application Defined General Description/Notes

Application defined components are described with a structure that includes information such as
the components location and size, and the command code to return when the user selects the
component. The ability to design components gives the application the flexibility to use whatever
method of user interface best suits the immediate task.

Page 4-15

DeskMate Technical Reference
Component Manager

Application Defined Structures/Defines .

Application defined component structures are defined by the application that uses them. The
only restriction is that the user defined component structure MUST begin with a CMP_HEADER

structure. :

/* Component Manager */
struct cmp routines defn

int (far *pOpen) (); /* pointer to open routine for the
component *F

int (far *pDraw) (); /* pointer to draw routine for the
component */

int (far *pRun) (); /* pointer to run routine for the
component */

int (far *pClose) (); /* pointer to close routine for
component */

int (far *pHelp) (); /* pointer to routine to return help
string */

}i
typedef struct cmp routines _defn CMP_ROUTINES;

pOpen:
The far pointer to the open routine in the application for an application defined component.

pDraw:
The far pointer to the draw routine in the application for an application defined component.

pRun:
The far pointer to the run routine for an application defined component.

pClose:
The far pointer to the close routine for an application defined component.

pHelp:
The far pointer to the routine that returns the help string.

/* Null routine */
CMP NO ROUTINE 0 /* indicates that there is no further */
-7 /* processing for the component beyond the */
/* Component Manager processing for that */
/* routine. */

For example:

int far Cmp Open Editfield();
int far Cmp Draw Editfield();
int far Cmp Run Editfield();
int far Cmp_Close Editfield();

CMP ROUTINES EditfieldRoutines =
[

Cmp Open Editfield,

Cmp Draw Editfield,

Cmp Run Editfield,

Cmp Close Editfield,

CMP™NO ROUTINE

Yi

Page 4-16

DeskMate Technical Reference
Component Manager

Application Defined

cmp_add (pCmpRoutines)
CMP_ROUTINES *pCmpRoutines;

cmp_add registers an application defined component with the component manager.

Input Parameters

pCmpRoutines is a pointer to a CMP_ROUTINES structure, which contain the pointers to the
application's component functions.

Return Val

Component type which will be used by the application to open, draw, run and close the
components. The CMP_HEADER structure the type element's value.

CSR_ERROR if the component could not be added to the list. The maximum number of
components that can be added is eight.

Special Notes

cmp_add will copy the passed structure into the component manager's component table. Any
0L's (zero long) will be converted to a long pointer to RETF within the CSR code segment. The
component table is limited to 8 application defined entries.

Assembly language programmers should note that the added component routines must preserve
the ES, DX, and AX segment registers. These registers contain the component handle and the
window handle in your user defined routine.

The user must use the component type returned by emp_add, in CMP_HEADER when calling
cmp_open, cmp_close, cmp_draw, or cmp_run.

Example

/* Special Editfield definition */
struct my editfield defn

EDITFIELD Editfield;
int hEditfield;

}i

typedef struct my editfield defn MY EDITFIELD;
char filename buff[MAX FILE NAME SIZE+1];
I‘{’IY_EDITFIELD NewFileEF =

CMP EDIT, /* header.type */
ENABLED, /* header.bEnabled */
12*CHAR XEXT, /* header.maprect.xorg */
1*CHAR YEXT, /* header.maprect.yorg */
20*CHAR XEXT, /* header.xext */

1*CHAR YEXT, /* header.yext */

0, - /* header.accel */

Page 4-17

DeskMate Technical Reference
Component Manager

EF tag, /* header.return code */

EFSTATIC, /* type */ - '
EFNO HIGHLIGHT, /* bHighlight */

0, ~ /* dec places (places to right of decimal */
0, 0, /* MAPRECT.xorg, .yorg (editable area) */
(MAX FILE NAME SIZE+1)*CHAR XEXT,/* MAPRECT.xext */

1*CHER YEXT, ~ ~ /* MAPRECT.yext */

NORMAL, /* attr -(char attribute) */

0, 0, /* cursor offset, end offset */

0, 0, /* select offset, seléct length */
CSR NULL, /* terminator */ -

fil€name buff, /* *pBuffer (pointer to EF buffer) */
(char *)T, /* *pFormat */

EF NO SCROLL, /* scroll type */

0,70,” /* scroll length, scroll height */

EF EDITABLE, /* bNOEdit */ -

RATSED BOX, /* border */

0 - /* hEditfield */

bi

main{argc, argv)
int argc;
?har *argv[]l;

/* Bind to the Core Services Resource */

if (csr init() == CSR ERROR)
/* failure to bind to the CSR, could not find/load resource */
exit(1l);

/* Get the compohent type for this special editfield type */
NewFileEF.Editfield.header.type = cmp add(&EditfieldRoutines);

/* Rest of program... */
/* Run dialog box which has this type of editfield defined in it */
/* The application component routines will be called */

Page 4-18

DeskMate Technical Reference
Component Manager

Application Defined

cmp_close (Handle, pCmp)
int Handle; . .
APPL_DEFINED *pCmp; < - au‘uw/// Varo/ #f()m,_\

cmp_close terminates an application defined component.

Input Parameters

Handle is the handle of the component to close, as returned by cmp_open.
pCmp is a pointer to the application defined component structure, which MUST begin with a
CMP_HEADER structure.

Retur |

<int>
CSR_ERROR if the Handle is invalid.

Special Notes

cmp_close closes the hot spot for an application defined component. It creates the component's
working window and calls the application supplied close routine for the component. After
returning from the component close routine, cmp_close closes the working window of the
component. CMP_NULL_HANDLE can NOT be substituted for the handle in cmp_close.

The application should supply a close function if any special processing is required when the
application defined component is closed.

Example

The application defined component is passed two parameters for example:

int far Cmp Close Editfield(hEditfield, pEditfield)
int hEditfi€ld; ~
MY EDITFIELD *pEditfield;

{
int nmy type;

my type = pEditfield->Editfield.header.type;
pEditfield->Editfield.header.type = CMP_EDIT;
cmp close(pEditfield->hEditfield, pEditfield);

pEditfield->Editfield.header.type = my type:
}

hEditfield is the handle to the component's working window.
pEditfield is the pointer to the application defined component structure.

Page 4-19

DeskMate Technical Reference
Component Manager

Application Defined

cmp_delete (CmpType)
int CmpType;
cmp_delete removes a registered application defined component from the component manager.

In rameter

CmpType is the type for the component to delete as defined by the type returned by cmp_add
for the desired component.

Return Val

CSR_ERROR if CmpType was incorrect.

Special Notes

The application cannot delete CSR defined (predefined) components. The predefined CSR

component's are CMP_CHECKBOX, CMP_EDIT, CMP_ICONBUTTON, CMP_LISTBOX,
CMP_MENUBAR, CMP_PUSHBUTTON, and CMP_RADIOBUTTONS.

Page 4-20

DeskMate Technical Reference
Component Manager

Application Defined

cmp_draw (handle, pCmp)
int handle;
APPL_DEFINED *pCmp; = ac{jvau)«' vorll ‘RI)CMF

cmp_draw draws an application defined component.

Input Parameters

Handle is the handle of the component to draw, as returned by cmp_open.
pCmp is a pointer to the application defined component structure, which MUST begin with a
CMP_HEADER structure.

Return Value

CSR_ERROR if the component could not be drawn.
Special Notes

To draw a component which has not been opened, use CMP_NULL HANDLE as the handle. |f the
handle is CMP_NULL HANDLE then no hot spot processing is done. cmp_draw enables or
disables the hot spot of the specified component, opens its working window and calls the draw
routine of the component. After returning from the application supplied draw routine of the
component, cmp_draw closes the component’s working window.

The application must supply a routine which either draws the component or calls other
cmp_draw routines to draw the application defined component.

Example

The application defined component routine is passed two parameters for example:

int far Cmp_Draw Editfield(hEditfield, pEditfield)
int hEditfield; —
MY EDITFIELD *pEditfield;

{
int ny type;

my type = pEditfield->Editfield.header.type;
pEditfield->Editfield.header.type = CMP EDIT;
win activate(hEditfield);

cmp draw(pEditfield->hEditfield, pEditfield);
pEditfield->Editfield.header.type = my type;

1
% a,ar/m\ ;/whdlow ({083 not szem*/&

hEditfield is the handle to the component's working window. - oo .
pEditfield is the pointer to the application defined component structure. be the_co "EH’?} wibdow — wse
l(J/h_?eAacf’l'V(() lli’ml?_(m’ .

Page 4-21

DeskMate Technical Reference
Component Manager

Application Defined
cmp_open (pCmp) ,
APPL_DEFINED *pCmp; e—«a_ch/w”y s/ofo(*’PCMP

cmp_open initializes an application defined component.

Input Parameters

pCmp is a pointer to the application defined component structure, which MUST begin with a
CMP HEADER structure.

Return Val

The handle of the component.
CSR_ERROR if the component could not be opened.

Special Notes
cmp_open does not draw the component.
cmp_open creates a hot spot and window (as defined in the component header) and calls the

application's open routine for the component. After returning from the open routine of the
component, cmp_open closes the component's working window.

Example

The application defined component is passed three parameters for example:

int far Cmp Ogen Editfield (hParent, pEditfield, hChild)
int ~— hPaTrent;

MY EDITFIELD *pEditfield;
int hChild;
{

int my type;

my type = pEditfield->Editfield.header.type;

pEditfield->Editfield.header.type = CMP EDIT;
pEditfield->hEditfield = cmp open(pEditfield);
pEditfield->Editfield.header type = my type;

| _

hParent is the handle to the parent window.
pEditfield is the pointer to the application defined component structure.
hChild is the handle to the component's working window.

Page 4-22

DeskMate Technical Reference
Component Manager

Application Defined

cmp_run (Handle, pCmp)
int Handle;

APPL_DEFINED *pCmp; «— sohally vod #,ofm/)

cmp_run runs an application defined component.
Input Parameters

Handle is the handle of the component to close, as returned by cmp_open.
pCmp is a pointer to the user defined component structure, which MUST begin with a
CMP_ HEADER structure.

Return Value

CMP NO ACTION if no action was taken on the component. Exit was forced by the TAB key, the
BACKTAB key or an unused arrow key.

CMP_ACTION if the status of the component has changed.

CMP_SCROLLED if scroll has occurred. This return code is generated by the edit field component
only.

CMP_CANCEL if no action was taken on the component. Exit was forced by ESC key.
CMP_DISABLED if the component was disabled and was not processed.

CMP_ GO if the user invoked go. In a dialog box, the application should invoke the most
affirmative action. Return key or double click with mouse.

CMP_ACTION IN EVENT if the component return code is in the event manager event queue.
This return code is generated by the menu bar component only.

CMP_SELECT CHANGE when the component selection has changed. For example:

1. An edit field has started or ended selection
2. A radio button has been chosen
3. A new list box item has been selected or de-selected

CSR_ERROR if the component could not be run.
CMP_APPL if the user executes a task switch or runs an accessory.
Special Notes

An unopened component may be processed by passing CMP NULL HANDLE as handle.
cmp_run returns CMP_DISABLED if the component is DISABLED, otherwise it creates the
components working window and calls the components run routine. After returning from the run
routine cmp_run closes the working window.

Example

The application defined component is passed two parameters for example:
int far Cmp Run Editfield (hEditfield, pEditfield)

int hEditfield;” =
MY_EDITFIELD *pEdltfleld;

Page 4-23

DeskMate Technical Reference
Component Manager

int my type, return code;
my type = pEditfield->Editfield.header.type;

pEditfield->Editfield.header.type = CMP_EDIT;

win activate(hEditfield);
retUrn code = cmp run(pEditfield->hEditfield, pEditfield);

pEditfield->Editfield.header.type = my type;

/* return to the calling routine */
return(return_code);

hEditfield is the handle to the component's working window.
pEditfield is the pointer to the application defined component structure.

Page 4-24

DeskMate Technical Reference
Component Manager

Pre-Defined Components
General Description/Notes

Check box
Check boxes allow the user to set a function on or off. Any combination of check boxes can be
checked at a time.

The state of a check box is either checked or not checked. An X appears inside a check box
when the box is checked. When the box is not checked, no character or string appears inside.

Each check box should be followed by a static string that describes the option. The string should
not end with a colon and phrases start with a capital letter.

Edit field

The edit field is a component that makes use of windows and hotspots to support text editing in
any area of the screen. Edit fields are used primarily by dialog boxes for input fields, but are also
available to applications for use in the work area.

An edit field can accept one or more lines of data. Single line edit fields can be used in dialog
boxes or in the work area. Multiple line edit fields are not supported in dialog boxes.

Multiple line edit fields, which automatically word wrap, can contain up to 18K of data. Single line
edit fields are limited to 255 characters and can contain static format characters that format data
as the user enters it.

Several options enable custom edit fields. For example edit fields can be created that only
accept a certain type of data, such as numeric data, or an edit field that only accepts data in a
specific format, such as a phone number. The values assigned to elements of the edit field
structure (described in this section) determine the type of data the edit field will accept.

Functions that open, draw, run, and close the edit field are described in this section. The
routines used to access the clipboard and format the edit field buffer are described at the end of
this section.

Any cursor motion within an edit field will deselect the text, if selected, and move the cursor.

Edit fields should be preceded by an identifying static string that ends with a colon. Edit fields in
dialog boxes should always have a raised border.

If the application does not have the standard Cut/Copy/Paste accelerators defined, the editfield

will automatically handle those operations. However, the editfield will not display error messages,
such as not enough space in the field for the pasted data.

Scrolling within editfields

Scrolling edit fields need to reset the editing maprect origin back to zero when the beginning of
the text is displayed. For example:

0;
0;

edit maprect.xorg
edit_maprect.yorg

Page 4-25

DeskMate Technical Reference
Comiponent Manager

It is suggested that edit fields do not support both horizontal and vertical scrolling simultaneously. Q/
For example: '

Not Supported —

4— Supported
<

All edit fields should reset the foilowing elements:

cursor_offset
select_offset
select_length

EF_SELECT_ALL;
0;
0

For more information see the three edit field examples at the end of this General
Description/Notes section.

Icon button

Icon buttons function like push buttons but their appearance is defined by a stroke list. An icon .
button component is a stroke list image bordered by a two or three dimensional rectangular ‘
frame. An icon button may be in one of two states, selected (pressed) or deselected (raised). In

the selected state, the icon button will appear flat and can optionally be inverted. In the

deselected state, it will be optionally flat or raised.

List box
A list box enables the user to select a string or set of strings from a list of choices. The list is
displayed within a rectangular area defined by the component header in the list box structure.

A list box can scroll vertically or horizontally and can contain up to 255 items. Horizontal scrolling
automatically uses a two column format and vertical scrolling uses a single column format.

If the alphabetlze flag in the list box structure is ENABLED, the items will be alphabetized before
the list box is drawn. Once alphabetized, the original order of the items is lost and top_string
will be set to zero. If it is desired to alphabetize the list without drawing the list box, refer to
1b_sort_list at the end of this section.

A list box is the only component that allows the user to "select and go,” (select an item and
immediately terminate the dialog box). When the user presses the enter key while in a list box,
the current item is selected and the OK button is pushed. With a mouse, double clicking selects
the current item and terminates the dialog box.

Menu Bar

This section discusses menu bars as a general user interface component. The DeskMate Menu Py
Bar is a special menu bar. It is discussed in the "Menu Bar Manager” section of this manual. .

Page 4-26

DeskMate Technical Reference
Component Manager

A menu bar is a group of menu buttons. Each button activates a single menu, a list of items or
commands from which the user chooses. Every menu has a menu name which states the
purpose as clearly as possible. DeskMate automatically assigns each menu a function key
accelerator. When running the menu bar as a component do not include the FS message menu,
or the F10 accessory menu.

Push Button

Push buttons enable the user to control a dialog box or continue a process. Typically two push
buttons are used in a dialog box. One, OK, enables the user to accept the dialog box input and
continue with the function. The other, CANCEL, enables the user to cancel the dialog; no further
action is taken with CANCEL.

Push button labels should be in all capital letters. Push buttons in a dialog box should ali be the
same size, the length of the longest label plus two spaces.

The OK, or affirmative action, button's accelerator is the enter key. The application should use
the DLG_OK_KEY accelerator definition for this button. The CANCEL, or abort action, button's
accelerator is the escape key. The application should use the DLG_CANCEL_KEY accelerator
definition for this button.

Other push button accelerators may be defined by the application or defined automatically by the
CSR. When the application specified PB_DEFAULT_ACCEL, as the accelerator for push buttons,
the CSR will assign the accelerator for the push button. If the application wishes to use a
different accelerator, it should be specified in the initial setup of the push buttons. All of these
accelerators (mnemonics) are accessed via the ALT + <first letter> key sequence.

A flat push button will have a hot spot that is slightly taller than the flat push button image. The
hot spot will actually be the size of a raised push button image.

Radio Buttons

Radio buttons allow the user to select a single option from a set of options. Radio buttons appear
in groups, and the user can select only one button at a time. Radio button groups should be
surrounded by static boxes to denote their grouping. Radio button group labels (static strings)
should not end with a colon but should start with a capital letter. The cursor should always be
displayed on the "pressed” button when the user tabs or arrows into the radio button group.
Radio buttons are a mutually exclusive group (only one of the buttons may be pressed at a time).

When positioning individual radio buttons within a radio button group in a row/column format, the
columns must be completed from left to right in order for arrow movements within the group to
work properly. For example, if the application defines a radio button group of seven radio buttons
in a 3 by 3 row/column format, the radio buttons must be arranged as follows:

X X X
X X
X X

These arrangments will not process arrow movements properly:

X X X X X X X X X
X X X X X X X X
X X X X

Page 4-27

DeskMate Technical Reference
Component Manager

The point here is that radio buttons must be arranged in such a way that any possible
combination of enabled and disabled radio buttons will contain a direct vertical or horizontal path
to each enabled radio button. If an enabled radio button does not have another enabled radio
button directly above or below or to the right or left and it does not have focus, the user will not
be able to move focus to it using the arrow keys.

Scroll Bar

The scroll bar provides the ability to conveniently page through text or other information using the
mouse. The position of the elevator in the scroll bar reflects the position of the cursor in the edit
field or whatever information being inspected. By moving the elevator within the scroll bar, the
information on the screen will scroll to match the elevator's position. The elevator may be moved
in three ways. First, a click on the top or bottom arrow icon will cause the elevator to move, in
the specified direction, a line at a time. Secondly, by clicking the mouse on the scroll bar above
or below the elevator (for a vertical bar), but not on the arrow icons, will cause the elevator to
move a page at a time. Thirdly, the elevator may be positioned by placing the mouse pointer on
the elevator and holding the mouse button down while positioning the elevator to desired place on
the scroll bar. When the mouse button is released, the viewed information will scroll to match the
position of the scroll bar's elevator.

Page 4-27.1

e

®

DeskMate Technical Reference

Edit field Examples:

Example 1:
This example creates a single-line edit field that is centered on the screen. The edit field is 40
characters across and does not scroll because the buffer length and the length of the window are
the same.

unsi

{

}i

CMP EDIT,
ENABLED,

19 * CHAR XEXT,
12 * CHARYEXT,
40 * CHAR XEXT,
CHAR YEXT,

APP TAG + CTRL A,
APPTTAG + CTRLTA,

EF_STATIC,

EF_NO_HIGHLIGHT,
14

0, 0,

40 * CHAR XEXT,

CHAR YEXT;

NORMAL,

0,

0,

0,

0,

0,

samplel text,
EF _NO_SCROLL,
0,

EF EDITABLE,
EF NO_FRAME

Component Manager

gned char samplel text[41] = {"sample one's text"};
EDITFIELD samplel editfield[] =

/* component type */

/* bEnabled */

/* xorg */

/* yorg */

/* xext (window is 40 chars across) */
/* yext (window is 1 char high) */

/* accelerator */

/* return code */

/* edit type */

/* bHighlight is disabled */

/* no dec places, for # fields only */
/* originTof buffer */

/* 40 characters in buffer */

/* single-line edit field */

/* character attribute */

/* position cursor at first char */

/* end offset */

/* select offset */

/* select”length (nothing selected) */
/* no terminating character x/

/* pBuffer */

/* no format string */

/* does not need scrolling */

/* scroll height */

/* scroll length */

/* text can be modified */

/* no border */

Page 4-28

Py

Example 2:

This example creates and draws an edit field which is formatted for numeric input. The structure

DeskMate Technical Reference

Component Manager

is set up to draw the edit field in the top left corner like:

$,195.99

unsigned char sample2 text[11] = {"19599" }
unsigned char sample2 format str[] = { '$',
0x16, 0x1%, 0x16, 0x16, 0x16, 0} /* 10 chars

EDITFIELD sample2 editfield({] =

{

CMP_EDIT,

ENABLED,

0,

0,

10 * CHAR XEXT,

CHAR YEXT

APP TAG + CTRL B,

APPTTAG + CTRL B,

EF NUMBER,

EF_NO_HIGHLIGHT,
14

0, 0,

10 * CHAR XEXT,

CHAR YEXT,

0,

sample2 text,
sample2 format str,
EF NO STROLL ~—
0,7 ~

0,

EF EDITABLE,

FLAT BOX

beo T

/*
/*

/
/
/
/
/
/
/
/

*
*
*
*
*
*
*
*
*
*
*
*
/*
*
*
*
*
*
*
*
*
*
*
*
*

/
/

component type */

bEnabled */

xorg */

yorg */

xext (window is 10 chars across) */
yext (window is 1 char high) */
accelerator */

return code */

edit type */

bHighlight is disabled */

allow 2 places for cents */

origin of buffer */

10 characters in buffer */
single-line edit field (1 line high)
character attribute */

position cursor at first character
end offset */

select offset */

select”length (nothing selected) */
no terfminating character */
pBuffer */

format string 10 chars long */

does not need scrolling *x/
scroll height

scroll length */

text can be modified */

plain border, nothing fancy */

Page 4-29

"0x16, 0x16, ',', 0x16,
+ null */

*/
x/

AL
\,/i

o

DeskMate Technical Reference
Component Manager

Example 3:

This example creates a 3 line edit field. Each line contains 25 characters. The buffer holds 5
lines of 50 characters each, so the edit field must scroll. Scrolling in this edit field is done
automatically by setting scroll type to EF_NO SCROLL.

unsigned char sample3 text (50+2)*5+1] = { 0 };

EDITFIELD sample3 edit field[] =

{
CMP EDIT, /* component type */
ENABLED, /* bEnabled */
0, * xorg */
0, * yorg */
25 * CHAR XEXT, * xext (window is 25 chars across) */
3 * CHAR YEXT, * yext (window is 3 lines high) */
APP TAG ¥ CTRL C, * ‘accelerator */
APP"TAG + CTRLC, /* return code */
EF WORD WRAP, ~— * edit type */
EF NO HIGHLIGHT, * bHighlight is disabled */
0,7 ~ /* no dec places, for # fields only */
0, 0, . /* originTof buffer */
50 * CHAR XEXT, /* buffer width is 50 characters */
5 * CHAR YEXT, * puffer is 5 lines high */
NORMAL, ~ * character attribute */
0, * position cursor at first character */
0, /* end offset */
0, /* seléct offset */
0, /* select”length (nothing selected) */
0, * no terminating character */
sample3 text, /* pBuffer */
, - /* no format string */
EF NO SCROLL, /* i don't scroll, edit field does */
T /* scroll height */
0, * scroll length */
EF EDITABLE, /* text can be modified */
EF_NO_BORDER, /* no border */

}:

Page 4-30

DeskMate Technical Reference
Component Manager

Pre-Defined Components

add_scroll__bar_crhp ()

add_scroll_bar_cmp registers the scroll bar component with the Core Services Resource
(CSR).

Input Parameters

None.

Return Value
The component type which will be used by the application to open, draw, run, and close the scroll

bar component.
CSR_ERROR if scroll bar could not be added to list.

Special Notes

add_scroll_bar_cmp must be called prior to opening, drawing, running or closing the scroll bar
component. The type returned must be placed into the cMP_HEADER of the scroll bar structure.

To delete the scroll bar, call cmp_delete with the return value from the previously called
add_scroll_bar_cmp, if not CSR_ERROR.

Page 4-30.1

@

: .
e

.r

DeskMate Technical Reference
Component Manager

Pre-Defined Components

cmp_close (Handle, pPCMP_HEADER)
int Handle;
CMP_HEADER *pCMP_HEADER,;

cmp_close deactivates the specified component.

Input Parameters

Handle is the handle to the component that was assigned when the component was opened.
pCMP_HEADER is a pointer to the component structure, which begins with a CMP_HEADER.

Return Value

CSR_ERROR if the component could not be closed, or the Handle is incorrect.

Special Notes

After emp_close, event_read will no longer detect events on the component.
application's responsibility to remove the component image from the screen.

Page 4-31

It is the

DeskMate Technical Reference
Component Manager

Pre-Defined Components

®

cmp_draw (Handle, pPCMP_HEADER)
int Handle;
CMP_HEADER *pCMP_HEADER;

cmp_draw draws the specified component as defined by the bstate and/or bEnabled flags in
the component structure.

Input Parameters

Handle is the handle that was assigned to the component when it was opened.
pCMP_HEADER is a pointer to the component structure.

Return Value

<int> .
CSR_ERROR if the component could not be drawn.

Edit fields always returns CMP_NO_ACTION.

ial
After cmp_open is called, any action on the component will be reported through the event .
manager. b

The component will be drawn as defined by bstate and bEnabled.

LIST BOX specific:
The items in the list box will be drawn as shaded or not shaded as defined by bEnabled.

PUSH BUTTON specific:

The push button will appear flat (PB_FLAT) or raised (PB_INV_RAISED) button as specified by
the type parameter. A flat push button will have a hot spot that is slightly taller than the flat push
button image. The hot spot will actually be the size of a raised push button image.

RADIO BUTTON specific:
The group will be drawn in the positions defined by selected and each button will be drawn
shaded or not shaded as defined by bEnabled in each individual radio button definition.

SCROLL BAR specific:

add_scroli_bar_cmp must be called prior to opening, drawing, running or closing the scroll bar
component.

Page 4-32

—

S s Ao e © e R T A i e e BRI - . P ST e i e R

DeskMate Technical Reference/
Component Manager

Pre-Defined Components

cmp_open (pCMP_HEADER)
CMP_HEADER *pCMP_HEADER;

cmp_open draws the component and registers the area of the screen on which the component is
drawn with the event manager as a hot spot.

In meter

pCMP_HEADER is a pointer to a component structure.

Return Value

<int>
The handle assigned to the component.
CSR_ERROR if the component could not be opened.

ial
After cmp_open is called, any action (mouse or joystick included) on the component will be

reported through the event managers event_read call.

CHECK BOX specific:
The check box will be drawn as checked or unchecked as defined by bstate (CB_CHECKED oOf
CB_UNCHECKED).

MENU BAR specific:
It is strongly suggested that when running a menu bar as a component within a dialog box, the
message menu and the accessory menu not be displayed.

RADIO BUTTON specific:

The radio button group is defined relative to the frame and the individual buttons are defined
relative to the group origin. The shading of the currently pressed radio button will result in an
error when the button group is run. The purpose of the x and y dimension definitions is to allow
cmp_run to intelligently process the arrow keys.

If selected for a radio button group is set to NO_SELECTED, then none of the buttons will be
pressed.

See Also

cmp_draw()

Page 4-33

DeskMate Technical Reference
Component Manager

Pre-Defined Components .

cmp_run (Handle, pCMP_HEADER)
int Handle;
CMP_HEADER *pCMP_HEADER,;

cmp_run processes the specified component.

In r

Handle is the handle assigned to the component when it was opened. The Handle may be
CSR_ERROR if the component has not been opened.
pCMP_HEADER is a pointer to a component structure.

Return Value

<int>

CHECK BOX, ICON BUTTON, MENU BAR and PUSH BUTTON return:

cMP_ACTION if either the space bar, a mouse click or pressing the components accelerator
caused the component to change state.

CMP_NO_ACTION if TAB, BACKTAB, or an event outside the component caused the return.

EDIT FIELD return: ,

CMP_ACTION if the buffer was changed. ‘
cMp_Go if the mouse was double-clicked or the ENTER_KEY was pressed in single line edit field. _
CMP_NO_ACTION if the buffer was not changed.

CMP_SCROLLED indicates the cursor has reached the edge of window and scrolling is needed.
CMP_SELECT_CHANGE indicates when selection changes so the application may update its

clipboard items. - '

LIST BOX return:

CMP_NO_ACTION indicates that either TAB, BACKTAB, an unused arrow, or an event outside the
list box caused the routine to return.

CMP_SELECT_CHANGE indicates when the space bar, an arrow key or a mouse click caused a list

box state to change.
CMP_GO is returned when the enter key was pressed or there was a double click on an item.

RADIO BUTTON return:

CcMP_SELECT_CHANGE indicates when the space bar or the mouse click caused a button to be
pushed.

CMP_NO_ACTION indicates that either TAB, BACKTAB, or an event outside the radio button group
caused the routine to return.

SCROLL BAR return:

CMP_NO_ACTION if no action taken within the scroll bar.
CMP_SELECT_CHANGE if scroll has occurred.

CMP_APPL if the component received an EVENT_APPL event.

All components return: B
cMP_DISABLED if the component could not be run because the bEnabled flag in the component .

Page 4-34

DeskMate Technical Reference
Component Manager

header was DISABLED.
CSR_ERROR if the component could not be run, or an illegal parameter was passed to cmp_run.

Special Notes

Events outside of the component TAB, BACKTAB, a mouse click, striking the space bar or
pressing the components accelerator will cause the routine to return to the application. These
events are retumed the event manager. After the component returns to the application, the
application should call event_read to determine what event caused it to return, and then take
appropriate action.

EDIT FIELD specmc

If the return value is CMP_ACTION or CMP_NO_ACTION, the event queue will contain the event
that caused the edit field to exit (such as an outside event), call event_read to process that
event.

A select change may occur when a cMP_GO event is processed. If edit field returns cMP_GO,
check select_length to update the clipboard items.

MENU BAR specific:
The menu bar component must NOT be in the tab order.

PUSH BUTTON specific:

cmp_run presses the push button but does not raise the button back up.

A push button which is run in the application's base screen must have it's background color
match the background color of the main menu bar. This is because of the foreground and
background colors of each individual component is determined by the current foreground and
background colors of the window rather than a part of the component's structure. The current
background color can only be set to a single color, so if the button component is on a different
color background than the main menu bar one will be the wrong color. A way to work around this
is to create a sub-window and run the button component in that sub-window. In doing so, the
sub-window and the base window may have correspondingly different background colors to allow
for proper pressing of the buttons. The event manager will automatically switch windows to
process the main menu bar if the user accesses it.

A flat push button will have a hot spot that is slightly taller than the flat push button image. The
hot spot will actually be the size of a raised push button image.

RADIO BUTTON specific:

The initial cursor blink position is normally the the selected (the pressed) radio button.
However, if the selected radio button is disabled (grayed), then the next enabled radio button
becomes the initial cursor blink position.

The cursor blink can be moved by either a mouse click or the arrow keys. Note that in
multidimensional arrays of buttons there are cases where the keyboard cannot arrow to other
enabled radio buttons.

For example:
Enabled Disabled Enabled
Disabled Enabled Disabled
Both enabled buttons on the top row can be arrow-ed to, but the bottom enabled button cannot.

SCROLL BAR specific:

add_scroll_bar_cmp must be called prior to opening , drawing, running or closing the scroll bar
component.

Page 4-35

DeskMate Technical Reference
Component Manager

edt_clear (pEditfield)
EDITFIELD *pEditfield;

edt_clear is used to "clear” the currently selected text in the edit field.

Input Parameters

pEditfield is a pointer to an EDITFIELD structure.
Return Valye

None.

Special Notes

edt_clear does not place the selected text on the clipboard. The clipboard is unaffected.

Page 4-36

DeskMate Technical Reference
Component Manager

*%.% edt_copy (pEditfield)
' EDITFIELD *pEditfield;

edt_copy is used to "copy" the currently selected text in the edit field to the clipboard.
Input Parameters

pEditfield is a pointer to an EDITFIELD structure.

If the edit field contains format characters, the format characters are not copied to the clipboard.

TN
i B
i
&

Page 4-37

)

DeskMate Technical Reference
Component Manager

edt_cut (pEditfield)
EDITFIELD *pEditfield;

edt_cut is used to "cut” the currently selected portion of the edit field text and place it onto the
clipboard.

Input Parameters

pEditfield is a pointer to an EDITFIELD structure.

Retur]
None.
Special Notes

If the edit field contains format characters, these characters are not "cut" to the clipboard and
they are not removed from the edit field.

Page 4-38

DeskMate Technical Reference
Component Manager

edt_format_multi (pEditfield)
EDITFIELD *pEditfield;

edt_format_multi formats the edit field string (for wordwrap) by placing soft carriage returns
(0AR) at the end of each word-wrapped line.

Input Parameters

pEditfield is a pclainfer to an EDITFIELD structure.
Retur 1

None.

Special Notes

edt_format_multti is only for use with multiple line edit fields.

Page 4-39

DeskMate Technical Reference
Component Manager

edt_form_draw (pForm, pEditfield, char_xext, char_yext)
FORM_HDR *pForm;

EDITFIELD *pEditfield;

char char_xext;

char char_yext;

edt_form_draw adds each line of the edit field's text to the form as an element.
Input Parameters

pForm is a pointer to a FORM_HDR structure.

pEditfield is a pointer to an EDITFIELD structure.

char_xext is the world coordinate width of the characters to be placed on the form.
char_yext is the world coordinate height of the characters to be placed on the form.

edt_form_draw assumes the segment registers ds and ss are equal.

See Also

form_add_element() in the Form Manager section.

Page 4-40

®

DeskMate Technical Reference
Component Manager

edt_paste (pEditfield)
EDITFIELD *pEditfield;

edt_paste is used to paste the ASCII text that is on the clipboard into the edit field at the current
cursor location.

Input Parameters

pEditfield is a pointer to an EDITFIELD structure.

Return Value

CSR_ERROR if the clipboard does not contain data of type CLIP_TEXT, or if the cllpboard
contains non-numeric data with EF _NUMBER Of EF_EXTNUM edit type set. CSR_ERROR is also
returned if the edit field's buffer (single and multiple line) is exceeded.

CSR_NULL is returned if successful.

ial

If edt_paste is called when text in the edit field is selected, the clipboard text will replace the
selected text. If there is selected text, an application should disable their clipboard items before
or after edt_paste is called. If the clipboard text is too large to fit into the single-line edit field's
buffer, the text is truncated. It the multiple line edit field's buffer is exceeded, CSR_ERROR is
returned. {f pasting to a numeric edit field, the data currently in the edit field buffer will be
replaced with the pasted text.

edt_paste uses the format character field to determine the max size to be pasted.

Bugs

if the single line edit field is a formatted, right justified, numeric edit field, CSR_ERROR will NOT be
returned if the pasted data is too large.

Page 4-41

DeskMate Technical Reference
Component Manager

edt_replace (pEditfield, IpText, Length) ./
EDITFIELD *pEditfield;

char far ‘IpText;

unsigned int Length;

edt_replace replaces the selected portion of a specified edit field with a specified replacement
text string.

n ragmeter,
pEdittield is a pointer to an EDITFIELD structure.

IpText is a far pointer to a replacement text string.
Length is the length of the replacement string.

Return Value

CSR_ERRCR if replacement text does not fit into the specified edit field.

Special Notes

If CSR_ERROR is returned, the edit field will be unmodified.

Page 4-42

DeskMate Technical Reference
Component Manager

Ib_sort_list (pListbox)
LISTBOX *pListbox;

Ib_sort_list sorts a list box's items without running or drawing the list box.

Input Parameters

pListbox is a pointer to a LISTBOX structure.

Retur 1

None.

Page 4-43

Configuration Manager

//Con#l‘ ‘3uch’7"0n ﬂﬁﬁjﬁ M

Table of Contents

General Descriptlon/NoLeS ... iiiieeiiineteoennesnenoseseannns 5- 1
Structures/Definesuiiiiuirnonnrereeneansosaneacannsns 5- 2
cfg_get com data Gets port and modem settings............. 5- 6
cfg get com interrupt_ flag ..Gets the comm and mouse int flags. 5- 7
cfg get_com parmsGets communication parameters............ 5- 8
cfg get com superhayes flag .Gets the hayes logical flag....... 5- 9
cfg get com timeout delay ...Gets the communication timeout.... 5-10
cfg_get_moreaccs Gets "More" menu option status........... 5-11
cfg _get _ms_data Gets mouse configuration data............ 5-12
cfg_get prt data Gets current printer data................ 5-13
cfg_get vid _color Gets palette infofmation 5-14
cfg get_vid driver ...Gets the video driver name............... 5-16
cfg_get_screen saver delay ..Gets the screen saver delay....... 5-17
cfg_reset temp config Restores temp configuration settings..... 5-18
cfg_restore_cpi Replaces printer CPI settings 5-19
cfg_set_com _data Sets port and modem settings............. 5-20

cfg _set_com interrupt flag

cfg_set com parmsSets

. .Sets the comm and mouse int flags. 5-21

communication parameters............ 5-22

cfg_set com superhayes flag .Sets the fast hayes logial flag... 5-23

cfg_set com timeout _delay ...Sets the communication timeout.... 5-24
cfg_set_dbl_clickSets the mouse double click speed........ 5-25
cfg_set moreaccs Sets the "More" acCeSSOrYy ...c.ceeeceenas 5-26
cfg set_ms_data Sets mouse configuration data............ 5-27
cfg_set_prt_data Sets current printer data................ 5-28
cfg_set_temp_config ..Saves temp configuration settings........ 5-29
cfg set_temp cpi Temporarily replaces‘CPI 5-30
cfg_set_vid colorSets palette information................. 5-31
cfg set vid screen_saver delay ...Sets screen saver delay...... 5-32
cfg write Writes configuration info................ 5-33

General Description/Notes

The configuration routines allow the programmer to get, modify, and save the DeskMate
configuration data stored in the DMCSR.CFG configuration data file. The CSR's configuration
data is read once during initialization, expanded, and kept in memory during the DeskMate
session. The configuration manager will read and write either from EEPROM or disk. Only six (6)
colors can be saved to eeprom, but all data can be saved to disk. The majority of the save calls
will automatically save the current configuration data to the DMCSR.CFG file, with the exception
of the ctg_set_vid_palette call which must be followed by a call to ctg_write if the colors are to
be saved.

Page 5-1

DeskMate Technical Reference
Configuration Manager

Structures/Defines .
/* ___ */ =
/* */
/* CSRCFG.H contains the Configuration structures and defines */
/* */
/K e e e e o e e o e e e o e e */

DRIVER_NAME SIZE 13 /* size of driver names in bytes */

/* Printer configuration */

struct printer cfg_defn

{
/* bAutoLF determines what mode */
/* the printer is currently in */

char bAutoLF; /* CR_ONLY or CR_WITH LF */
char port; /* selected port */

char driver ([DRIVER NAME_SIZE]; /* driver filename */

char id; /* driver sub-id */

char cpi; /* characters per inch */
char bPause; /* pause between pages flag */

}i
typedef struct printer_ cfg defn PRINTER CFG;

port:

PRT LPT1 O \
PRT LPT2 1 .
PRT_LPT3 2 -
driver:

The name of the printer driver file name, includes extension.

id:
Internal to DeskMate.

cpi:

PRT_10 CPI O
PRT 12 CPI 1
PRT_16 CPI 2

bPause:
ENABLED/DISABLED

/* Mouse */
struct mouse_cfg defn

{

char bSelected: /* indicates if user wants a mouse */
char click_speed; /* double click timeout value */
char port; /* mouse driver port */

char driver[DRIVER NAME SIZE]; /* filename of */

/* the mouse driver */
}i _
typedef struct mouse_cfg defn MOUSE_CFG; '
-

Page 5-2

DeskMate Technical Reference
Configuration Manager

bSelected:
SELECTED/DESELECTED

click_speed:
MS_MAX CLICK SPEED 4

port:
MS_COMPORT1 0
MS_COMPORT2 1

driver:
The name of the mouse driver including extension. For example DMMDSERI . RES.

/* Communications */
struct cparms_defn
{

char bXon; /* Xon/Xoff enable flag */

char bAsSCfilter; /* ASCII filter enable flag */

char bLFfilter; /* line filter enable flag */

char bStatus; /* com port status flag (OPEN or CLOSED) */
char bCarrier; /* carrier det stat flag (CARRY/NO_CARRY) */
int baud rate; /* line speed setting */

char word size; /* 7 or 8 */

char parity: /* EVEN_PARITY, ODD_PARITY or NO_ PARITY */
char stop_bits; /* 1 or 2 */

}:
typedef struct cparms_defn CPARMS;

struct com_buffer info_defn

{
char far *rs232_start_ptr;
char far *rs232_end ptr;
char far *input_ptr;
char far *output_ptr;

int rs232_buf_size;
int count_num;
char xon_xoff flag;

}i
typedef struct com buffer info_defn COM _BUFFER_INFO;
struct com state defn

{

char com_port; /* COM1 or COM2 */
char line_typel; /* DIRECT or MODEM */
char modeml; /* modem name index */
char line_type2; /* DIRECT or MODEM */
char modem2; /* modem name index */
char line_type3; /* DIRECT or MODEM */
char modem3; /* modem name index */
char line_type4; /* DIRECT or MODEM */
char modemnm4 ; /* modem name index */

bi
typedef struct com state_defn COM _STATE:

Page 5-3

N

SRR i

DeskMate Technical Reference
Configuration Manager

/* Parity settings */ ;

NO_PARITY 0 0
ODD_PARITY 1
EVEN_PARITY 2

/* Port addresses */

COM1 0
CcoM2 1
COM3 2
CoM4 3

/* Line types */
MODEM 1 /* modem is attached to line */
DIRECT 0 /* direct connect line */

/* Port status */
PORT_OPEN 1 /* terminal active - dtr and rts */
PORT_CLOSED 0 /* terminal not ready - no dtr or rts */

/* Carrier state */
CARRY 1
NO_CARRY 0

/* Help Level values */
CFG_NEW_USER 0
CFG_BEGINNING_USER 1
CFG_INTERMEDIATE USER 2

®

CFG_EXPERT_USER 3

/K e e e e e e e e e o e e e */
/* */
/* CSRVID.H contains the VID_PALETTE structure */
/* */
. —————————— e e */

The VID_PALETTE structure is defined as follows:

struct vid palette_defn

{
char palette; /* This element is the index
of the CSR configuration palette to get. This
index should be 0-15 as only sixteen palette
settings are maintained within the csr
configuration. */
char red; /* This element is the red gun
setting within the virtual range of 0-192. All
DeskMate video drivers will interpret this value
relative to the intensity resolution for each
color gun of that particular video device. 0 is
the lowest intensity setting across all devices
and 192 is the highest intensity setting across
all devices. See vid_set_palette for some
example color settings. */

char green; /* This element is the green gun setting. */ ’f
e

Page 5-4

'\

DeskMate Technical Reference
Configuration Manager

char blue; /* This element is the blue gun setting. */
}:
typedef struct vid palette_defn VID_ PALETTE;

palette: N
The index of the color palette to be selected from the current CSR configuration. The CSR
configuration maintains 16 settings. Us a value from 0 to 15 to access the desired palette.

red:

The value assigned controls the intensity of the red video gun. Any value in the range 0 to 192 is
acceptable; 0 produces minimum intensity, 192 produces maximum intensity. DeskMate video
drivers interpret this value relative to the intensity resolution for each color gun of that particular
video device.

green:
The value assigned to this element controls the intensity of the green video gun. See Red
(above) for more information.

blue:

The value assigned to this element controls the intensity of the blue video gun. See Red (above)
for more information.

Page 5-5

DeskMate Technical Reference
Configuration Manager

cfg_get_com_data (pPCOM_STATE)
COM_STATE *pCOM_STATE;

cfg_get_com_data gets the current port and modem communication configuration settings.

In rameter

pCOM_STATE is a pointer to a COM_STATE structure in which to store the communication
settings.

Return Value

None.

See Also

COM_STATE structure.

Page 5-6

DeskMate Technical Reference
Configuration Manager

cfg_get_com_interrupt_flag ()

cfg_get_com_interrupt_flag retrieves the communication and mouse port interrupt flags.
These flags indicate whether the high or low interrupts are being used.

Input Parameters

None.

Return Value

<int>

Comm interrupt flags. The least significant bit of the flag corresponds to the communications
port, while the next bit corresponds to the mouse port. A bit value of zero (0) indicates the low
interrupt is to be used, while a one (1) indicates the high interrupt is to be used.

Special Notes

cfg_get_com_interrupt_flag is only available when running DeskMate 03.05 and later.

See Also

cfg_set_com_interrupt_flag()

Page 5-7

DeskMate Technical Reference
Configuration Manager

cfg_get_com_parms (pCPARMS)
CPARMS *pCPARMS;

cfg_get_com_parms gets the current communication parameter settings.

Input Parameters

pCpamms is a pointer to a CPARMS structure.

Return Value

None.

Special Notes

The settings are returned in the CPARMS structure.

See Also

CPARMS structure.

Page 5-8

DeskMate Technical Reference
Configuration Manager

cfg_get_com_superhayes_flag ()

cfg_get_com_superhayes_flag retrieves the fast hayes logical flag.

Input Parameters

None.

Return Value

<int>
SELECTED if the flag is set.
DESELECTED if the flag is cleared.

Special Notes

cfg_get_com_superhayes_flag is only available when running DeskMate 03.05 and later.

The fast hayes logical flag indicates a hayes modem that does not require the full Hayes stardard
timeouts and therefore, can operate faster for dialing and disconnecting.

cfg_get_com_superhayes_flag is used by an application to determine if the user has selected
this type of modem.

Page 5-9

DeskMate Technical Reference
Configuration Manager

cfg_get_com_timeout_delay ()

cfg_get_com_timeout_delay retrieves the communications timeout delay. This value is used
by com_call to determine when to terminate an unanswered call.

Input Parameters

None.

Return Value

<int>
Comm timeout delay in seconds.

cfg_get _com_timeout_delay is only available when running DeskMate 03.05 and later.

Page 5-10

DeskMate Technical Reference
Configuration Manager

cfg_get_moreaccs ()

cfg_get_moreaccs used to determine if the "More" accessory menu option exists.

Input Parameters

None.

Return Value

<int>
SELECTED if the "More" accessories exist.
DESELECTED if the "More" accessory does not exist.

Special Notes
cfg_get_moreaccs is only available when running DeskMate 03.03 and later.

The determination is made by reading a flag in the configuration file.

Page 5-11

DeskMate Technical Reference
Configuration Manager

cfg_get_ms_data (pMOUSE_CFG) | o
MOUSE_CFG *pMOUSE_CFG;

cfg_get_ms_data gets the current mouse configuration data.

| meter

PMOUSE_CFG is a pointer to a MOUSE_CFG structure in which to store the mouse configuration
data.

Return Value

None.

See Also

MOUSE_CFG structure.

Page 5-12

DeskMate Technical Reference
Contfiguration Manager

cfg_get_prt_data (pPRINTER_CFG)
PRINTER_CFG *pPRINTER_CFG;

cfg_get_prt_data gets the current printer driver configuration data.

Input Parameters

pPRINTER_CFG is a pointer to a PRINTER_CFG Sstructure in which to store the printer driver
configuration data.

Return Value

None.

Example

/* check to see if there is a printer driver */
PRINTER_CFG PrtConfig;

cfg get prt data(&PrtConfig);

if (PrtConfig.driver (0] == '/0')
/* no printer driver */

See Also

PRINTER_CFG Structure.

Page 5-13

DeskMate Technical Reference
Configuration Manager

cfg_get_vid_color (pVID_PALETTE)
VID_PALETTE *pVID_PALETTE;

cfg_get_vid_color gets the CSR configuration palette setting for the specified palette index.

Input Parameters

pVID_PALETTE is a pointer to a VID_PALETTE Structure.

Return Value

CSR_ERROR if the specified palette is greater than the maximum supported palette (0 - 15).
Zero (0) if a valid palette number.

Special Notes

cfg_get_vid_color gets the palette within the CSR configuration and is not necessarily the
current palette setting for the video device.

Example

Black (no color):
red=0;
green = 0;
blue = 0;
Medium Gray (medium intensity white):
red = 128,
green = 128;
blue = 128;
White (highest intensity):
red = 192;
green = 192;
blue = 192;
Dark Red (low intensity red):
red = 64;
green = 0;
blue = 0;
Bright Green (highest intensity green):
red = 0;
green = 192;
blue = 0;
Medium Magenta (medium intensity):
red = 127;
green = 0;
blue = 128;

Page 5-14

DeskMate Technical Reference
Configuration Manager
See Also
vid_set_palette()

vid_get_palette()
The VID_PALETTE structure as defined in CSRVID.H.

Page 5-15

DeskMate Technical Reference
Configuration Manager

cfg_get_vid_driver (pVideoDriver) ‘
char *pVideoDriver[DRIVER_NAME_SIZE];

cfg_get_vid_driver gets the string of the current video driver name.

Input Parameters

pVideoDriver is a pointer to a string of DRIVER_NAME_SIZE characters long in which to store
the video driver name string.

Return Value
None.
ial

If a null string is returned in pVideoDriver then AUTO DETECTION of the video driver is
enabled.

See Also

vid_inquire_device()

®

Page 5-16

DeskMate Technical Reference
Configuration Manager

cfg_get_vid_screen_saver_delay () d

cfg_get_screen_saver_delay retrieves the screen saver delay index.
In rameter

None.

Return Value

<int>

Screen saver delay index.

This index controls the ability of the video drivers to blank the screen after a period of keyboard
or mouse inactivity.

ial
The screen saver delay index may be interpreted as follows:

0 = No screen blanking
1 = 5 minutes

2 = 15 minutes

3= 30 minutes

4 =1 hour

5 =2 hours

6 = 4 hours

7 =8 hours.

cfg_get_vid_screen_saver_delay is only available when running DeskMate 03.05 and later.

Page 5-17

DeskMate Technical Reference
Configuration Manager

cfg_reset_temp_config () .

cfg_reset_temp_config restores the configuration settings saved through
cfg_set_temp_config thus cancelling the write protect action.

Input Parameters

None.

Return Value

None.
cfg_reset_temp_config is only available when runn_ing DeskMate 03.03 and later.

See Also

cfg_set temp_config()

Page 5-18

&

DeskMate Technical Reference
Configuration Manager

cfg_restore_cpi ()

cfg_restore_cpi replaces the printer character-per-inch setting that existed before the first
cfg_set_temp_cpi call.

Input Parameters

None.

Return Value

None.
ial
cfg_restore_cpi is only available when running DeskMate 03.03 and later.

See Also

cfg_set_temp_cpi()

Page 5-19

DeskMate Technical Reference
Configuration Manager

cfg_set_com_data (pCOM_STATE)
COM_STATE *pCOM_STATE;

cfg_set_com_data sets the port and modem communication configuration data.

n meter

pCOM_STATE is a pointer to a COM_STATE structure which contains the desired port and
modem communication configuration data.

Return Value

CSR_ERROR if the configuration was not written.

Special Notes

If the data has changed the entire configuration will be written to EEPROM or disk.

See Also

COM_STATE structure.

Page 5-20

DeskMate Technical Reference
Configuration Manager

cfg_set_com_interrupt_flag (Flags)
Int Flags;

cfg_set_com_interrupt_flag sets the communications and mouse interrupt flags.

Input Parameters

Flags contains the new comm flag values to use. The flag may be set from 0 to 3. The least
significant bit corresponds to the communications port, while the next bit corresponds to the
mouse port. A bit value of zero (0) indicates the low interrupt is to be used, while a one (1)
indicates the high interrupt is to be used. For example:

PORT LOW HIGH
COM3 IRQ2 IRQ4
COM4 IRQ3 IRQ5

0 = low IRQ; 1 = high IRQ
For the serial port: bit 0 "xxxXX XXXX XXXX XxxXC"
For the serial mouse: bit 1 "xxxx Xxxx XxXXXx xXxMx"
BITO
If COM3 selected:

0 = communication on IRQ2

1 = communication on IRQ4
if COM4 selected:

0 = communication on IRQ3

= communication on IRQ5

BIT1
If COM3 selected:

0 = mouse on IRQ2

1 = mouse on IRQ4
If COM4 selected:

0 = mouse on IRQ3

1 = mouse on IRQ5

Return Value

None.

Special Notes
cfg_set_com_interrupt_flag is only available when running DeskMate 03.05 and later.

To select COM3 and COM4 use cfg_set_com_data.

Page 5-21

DeskMate Technical Reference
Configuration Manager

cfg_set_com_parms (pCPARMS) ®
CPARMS *pCPARMS;

cfg_set_com_parms sets the communication parameter configuration data.

Input Parameters

pCPARMS is a pointer to a CPARMS structure which contains the desired parameter
configuration. '

Return Value

CSR_ERROR if the configuration was not written.

Special Notes

If the data has changed the entire configuration will be written to EEPROM or disk.

See Also

CPARMS structure.

Page 5-22

DeskMate Technical Reference
Configuration Manager

cfg_set_com_superhayes_flag (Value)
Int Value;

cfg_set_com_superhayes_flag sets the fast hayes logical flag.

Input Parameters

Value is the new flag value to use. This value should be SELECTED or DESELECTED.
Return Value

None.

Special Notes

cfg_set_com_superhayes_flag is only available when running DeskMate 03.05 and later.

The fast hayes logical flag indicates a hayes modem that does not require the full Hayes stardard
timeouts and therefore, can operate faster for dialing and disconnecting.

Page 5-23

DeskMate Technical Reference
Configuration Manager

cfg_set_com_timeout_delay (DelaySeconds)
Int DelaySeconds;

cfg_set_com_timeout_delay sets the communications timeout delay in seconds.

n rameter

DelaySeconds is the new delay value to use. This value may range from 1 thru 127 seconds.

Return Value
None.
ial
A value of 0 should not be used, as this will cause immediate termination of a call.

cfg_set_com_timeout_delay is only available when running DeskMate 03.05 and later.

Page 5-24

DeskMate Technical Reference
Configuration Manager

cfg_set_dbl_click (DoubleClickSpeed)
int DoubleClickSpeed;

cfg_set_dbl_click temporarily sets the mouse double click speed.

!nput Earamg:grs

DoubleClickSpeed is an integer value from zero (0) to four (4).

Return Value

None.
Special Notes

The click speed will NOT be written to EEPROM or disk, as this is used for a temporary setting.
Zero requires a faster click speed, four requires a slower click speed.

Page 5-25

DeskMate Technical Reference
Configuration Manager

cfg_set_moreaccs (bAction)
int bAction;

cig_set_moreaccs sets the "More" accessory flag in the configuration file, and calls cfg_write to
record that change.

n rameier

bAction is SELECTED if the "More" accessory is to be displayed; DESELECTED it the "More"
accessory is not to be displayed.

Return Value

None.
igl

cfg_set_moreaccs is only available when running DeskMate 03.03 and later.

Page 5-26

DeskMate Technical Reference
Configuration Manager

cfg_set_ms_data (pMOUSE_CFG)
MOUSE_CFG *pMMOUSE_CFG;

cfg_set_ms_data sets the mouse configuration.

Input Parameters

PMOUSE_CFG is a pointer to a MOUSE_CFG structure which contains the desired mouse
configuration.

Return Value

CSR_ERROR if the configuration could not be set.
Special Notes

If the data has not changed no action is taken. If the data has changed the mouse driver is
unloaded, (if loaded), if bselected is DISABLED the new mouse driver is not loaded, if
bSelected is ENABLED the new mouse driver is loaded with the new configuration information,
and a call is made to ¢fg_write to save the entire configuration information to EEPROM or disk.

Following a call to cfg_set_ms_data the 9th byte of the sturcture passed to it will always be
zero. This is the 6th byte of the mouse driver name. Since all mouse drivers are now in the form
of DMMDX.RES, the set routine forces a terminating zero in the 6th character of the string. This
allows old applications, which my try to load DMMDSERI.RES or DMMDJOY.RES, to load the
correct driver.

Page 5-27

DeskMate Technical Reference
Configuration Manager

cfg_set_prt_data (pPRINTER_CFG)
PRINTER_CFG *pPRINTER_CFG;

cfg_set_prt_data sets the printer data configuration.

!!!Qut Earamgtgrs

pPRINTER_CFG is a pointer to a PRINTER_CFG structure which contains the desired printer
configuration.

rn Val
CSR_ERROR if the configuration is not set.
ial
The entire configuration will be written to EEPROM or disk.

Example
PRINTER CFG PrtConfig;

int ReturnCode;

ReturnCode = cfg_set_prt_data(&PrtConfig);

/* transfer configuration data to DeskMate internals */
prt_get_printer(&PrinterData);

Page 5-28

DeskMate Technical Reference
Configuration Manager

cfg_set_temp_config ()

cfg_set_temp_config saves the current configuration settings to a buffer, and writes protects
the configuration file.

Input Parameters

None.

Return Value

None.
Special Notes

cfg_set_temp_config is only available when running DeskMate 03.03 and later.

See Also

cfg_reset_temp_config()

Page 5-29

DeskMate Technical Reference
Configuration Manager

cfg_set_temp_cpi (NewCPI)
int NewCPlI;

cfg_set_temp_cpi temporarily replaces the current printer parameter, character-per-inch, with
the supplied value.

!n put Earamgtgg:&

NewCPI the new CPI value to be used. The values should be PRT_10_CPI, PRT_12_CPI oOf
PRT_16_CPI, as defined in CSRCFG.H.

Return Value

None.

Special Notes

cfg_set _temp_cpi is only available when running DeskMate 03.03 and later.

Page 5-30

®

DeskMate Technical Reference
Configuration Manager

cfg_set_vid_color (pVID_PALETTE)
VID_PALETTE *pVID_PALETTE;

cfg_set_vid_color sets the CSR configuration palette setting for the specified palette index.

Input Parameters

pPalette is a pointer to a VID_PALETTE structure.

Return Value

CSR_ERROR if the maximum palette index is exceeded.
ial

cfg_set_vid_color sets the palette within the CSR configuration, but does not change the color
on the screen.

Example

Black (no color):
red = 0;
green = 0;
blue = 0;
Medium Gray (medium intensity white):
red = 128;
green = 128;
blue = 128;
White (highest intensity):
red = 192;
green = 192;
blue = 192;
Dark Red (low intensity red):
red = 64;
green = 0;
blue = 0;
Bright Green (highest intensity green):
red = 0;
green = 192;
blue = 0;
Medium Magenta (medium intensity):
red = 128;
green = 0;
blue = 128;

See Also

VID_PALETTE structure as defined in CSRVID.H

Page 5-31

DeskMate Technical Reference
Configuration Manager

cfg_set_vid_screen_saver_delay (Delayindex)
int Delayindex;

cfg_set_screen_saver_delay sets the screen saver delay index. This index controls the ability
of the video drivers to blank the screen after a period of keyboard or mouse inactivity.

n m L

Delayindex is the new delay index to use. The index may be set from 0 thru 7, corresponding to
the following delays:

0 = No screen blanking
1 = 5 minutes

2 = 15 minutes

3 = 30 minutes

4 =1 hour

5=2hours

6 = 4 hours

7 = 8 hours.

Return Value

None.

R/

cfg_set_vid_screen_saver_delay is only available when running DeskMate 03.05 and later.

Page 5-32

I...

DeskMate Technical Reference
Configuration Manager

cfg_write ()

cfg_write writes the entire CSR configuration to EEPROM or disk. The exception is that if
cfg_set_temp_config has been called, the CSR configuration information will NOT be written to
disk or EEPROM.

!n pul" Egramgtgrs

None.

Return Value

CSR_ERROR if the write was unsuccessful.

Special Notes

cfg_write is provided to allow all color palettes to be set before writing to EEPROM or disk.

See Also |

cfg_reset_temp_config()
cfg_set_temp_config()

Page 5-33

Database Resource

Afﬂafaja& /%uzajef ’

Table of Contents

General Description/NoteS v rieeeitenmnneereerennnneeeann 6- 1
Structures/Defines . .iuveii it ittt it it i i it s 6- 3
ADD ROW Adds a row of data to specified table....... 6-13
ADD ROW NO FLUSH ..Adds a row to specified table w/no write.... 6-14
ALTER TABLE Alters the definition of a table............ 6-15
CLOSE FILE Closes @ file.. i iiiiiiiiiiiniieiinnnnnnnns 6-16
CLOSE TABLE Closes a table.........cciiiiiiiiiiinnt. 6-17
COUNT RECORDS Counts the number of records................ 6-18
COPY_LAYOUTS Copies selected tables to new file.......... 6-19
CREATE FILE Creates anew file....oiviiiiinnnnnnnnenn. 6-20
CREATE TABLE Creates a new table within a file........... 6-21
db bind end Terminates the bindings to DB manager....... 6-22
db bind init Loads the DB manager into memory............ 6-23
db bind read Binds to 1989 Database Read Resource........ 6-24
db end read Terminate bind to 1989 DB Read Resource..... 6-25
DEFINE INDEX Defines the sort order....... ... 6-26
DELETE MULTI ROWS .Deletes all rows in a specified table....... 6-27
DELETE ROW Deletes a specified row........ccvvvvvennnn, 6-28
DROP_INDEX Drops an index from a table................. 6-29
DROP TABLE Drops a table and data from file............ 6-30
ENDDB............. Unbinds 1989 DB resources from Manager...... 6-31
END TEMP SORT Ends the temporary sort order............... 6-32
FETCH RECORD Fetch a record by record number............. 6-33
FIRST RECORD Fetches a single record at a time........... 6-34
GET COL INFO Gets column information.................. ... 6-35
GET COLUMN NAMES ..Gets the column names in a table............ 6-36
GET INDEX INFOGets the index information for a table...... 6-37
GET MAX Gets the highest value for column name...... 6-38
GET MIN Gets the lowest value for column name....... 6-39
GET_PAGE_SETUPGets the page setup information.......c.vv.. 6-40
GET RECORD LOCATION .Gets previous and next record numbers..... 6-41
GET TABLE NAMES Gets the table names in a file............ 6-42
INIT BD......covnnnnn Binds 1989 DB resources to Manager........ 6-43

MERGEcvivvunnnn Merges two tables together................ 6-45
MORE_RECORDS Gets more records which match query....... 6-46
NEXT RECORD Fetches a single record at a time......... 6-48
OPEN FILE Opens a file....... .o, 6-49
OPEN TABLE Opens a table........... oo, 6-50
PACK _TABLE Packs a table/Removes deleted records..... 6-52
PREV_RECORD Fetches a single record at a time......... 6-53
SAVE_PAGE SETUP Saves the page setup information.......... 6-54
SETUP_QUERY Sets up query constraints................. 6-55
TEMP SORT Defines a temporary sort order............ 6-58
UPDATE ROW Updates the row specified................. 6-59

Error COQe LiSt ot iv ittt ittt eesnnesseeoneoeeneseneeannan 6-60

General Description/Notes

The database manager resource provides record level access into files both on and off the
network for applications. The database will not be linked with the application, but will be a service
resource. It will service one request at a time and will handle multiple users. A database file is
made up of one or more tables. Each table describes a record layout containing one or more
fields. A column in a table refers to a field in a record. A row in a table refers to a record. A data
dictionary is maintained to store information about the tables and the columns belonging to those
tables. There are three types of data that can be defined: Character, Numeric, or Date, although
all data is stored on disk in ASCIl format. Date fields are stored in Julian format to provide for
proper sorting.

Applications provide the definition of records in a file, and the database supports functions such
as adding, deleting, sorting, and searching. The size of database files is limited to 348,160 bytes
for the DeskMate 03.02 product. The workgroup companion database which is on a server
machine in a network environment will allow a database file up to 675,840 bytes. Applications
using the database must manage all user interaction and error handling. The calls which utilize
the workgroup companion are available upon request from DeskMate Support Services.

The following interface routines will be allowed through a direct link or via desk or across a
network. Access to the database manager will be provided through a single entry point. To
utilize these routines the application will make the following call using the appropriate interface
routine name and parameter. These parameters are found in DMDB.H.

erc = db_mgr(INTERFACE ROUTINE, PARAMETER) ;
For example to open a table :

erc = db_mgr(OPEN_TABLE, pTableInfo);

The DeskMate 03.03 and later database resource is made up of three separate pieces. Below is
a list of the different resources and the calls contained in those resources.

Read Resource

CLOSE_FILE CLOSE_TABLE COUNT_RECORDS
END_DB FETCH_RECORD FIRST_RECORD
GET_COL_INFO GET_COLUMN_NAMES GET_INDEX_INFO
GET_MAX GET_MIN GET_PAGE_SETUP
GET_RECORD_LOCATION GET_TABLE_NAMES INIT_DB
LAST_RECORD MORE_RECORDS NEXT_RECORD
OPEN_FILE OPEN_TABLE PREV_RECORD

SETUP_QUERY

Update Resource

ADD_ROW ADD_ROW_NO_FLUSH DELETE_MULTI_ROWS
DELETE_ROW END_TEMP_SORT MERGE
SAVE_PAGE_SETUP TEMP_SORT UPDATE_ROW

i

DeskMate Technical Reference
Database Resource

Build Resource

ALTER_TABLE COPY_LAYOUTS CREATE_FILE
CREATE_TABLE DEFINE_INDEX DROP_INDEX
DROP_TABLE PACK_TABLE

In DeskMate 03.03 two new bindings were created to allow for the new resources. They are
db_bind_read and db_end_read. These two new binding calls only bind to the read resource.
In DeskMate 03.02.0x db_bind_init and db_bind_end calls were used to bind to all of the
Database resources If an application calls db_bind_read, it should not call db_bind_init. If an
application, which links with the 03.03 and later libraries, is running in a 03.02 environment, when
the call db_bind_read is made, all of the database resources are loaded.

For the resources DBREAD.RES, DBUPDATE.RES versions less than or equal to 100, and for
DBBUILD.RES versions less than or equal to 110, the following problem exists. On a floppy
system or in a network environment, the functions CREATE_FILE, CREATE_TABLE,
COPY_LAYOUTS, PACK_TABLE, SAVE_PAGE_SETUP, and MERGE do not flush the file
buffers. If the disk is removed, the replacement disk will be corrupted as soon as DOS flushes
it's buffers. There are two work arounds for this problem. The work around when first creating a
file is to either create and index with DEFINE_INDEX which will flush the buffers, or if no index is
desired then call DROP_INDEX which will flush the buffers. The second work around, which is
more generic, involves calling DELETE_ROW. When calling DELETE_ROW pass a valid
table_handle, Sét! num query lines tO one (num query lines = 1), and for
query_line_array pass a pointer to a pointer to an invalid string, such as **'=".
DELETE_ROW will return DB_QUERY_SYNTAX, this error can be ignored, and the buffers will be
flushed.

ﬁecorcls reburned l/>y Hhe vartous calls are of voranble {gm;w’*k fecords are reth/"w}!
s o Sequence o noll ~ferminaded strings. (%t(gme He fina) noll s an ER Tk

(2).

S NS

@

(.n

DeskMate Technical Reference
Database Resource

Structures/Defines

K i o o e e e e e e e e e e . e P S S e B S S P S P P e e e e e e e e S */
/* *
/* DMDB.H contains the Database structures and defines */

*
/* ___ *;

/* defines for domgr main case statement */

CREATE FILE 1
OPEN FILE 2
CLOSE FILE 3
CREATE TABLE 4
ALTER TABLE 5
OPEN TABLE 6
ADD ROW 7
DROP TABLE 8
CLOSE TABLE 9
COUNT RECORDS 10
FIRST RECORD 11
LAST RECORD 12
PREV RECORD 13
NEXTRECORD 14
SETUP QUERY 15

MORE RECORDS 16
FETCH RECORD 17

DELETE ROW 18

UPDATE ROW 19

GET TAELE NAMES 20

GET COLUMN NAMES 21

COPY LAYOUTS 22

PACK TABLE 23

DEFINE INDEX 24

GET PAGE SETUP 25

SAVE PAGE SETUP 26

DROPINDEX 27

DELETE MULTI ROWS 28

GET INDEX INFO 29

MERGE - 30

GET MIN 31

GET MAX 32

GET COL INFO 33

TEMP SORT 36

END TEMP SORT 37

GET RECORD LOCATION 38

ADD ROW NO FLUSH 39

DB PAUSE ~— 50

INIT DB 51

END DB 52

/* defines for DB PAUSE */

PAUSE STATUS 0~ /* Return the status */
STOP DB 1 /* Stop the DBMGR */
START DB 2 /* Start the DBMGR. */

/* defines for initialization binding and unbinding */

BIND READ ONLY 0 /* for 89 app support */

BIND ALL — 1 /* for server/88 network app support */
BIND UPDATE 2 /* bind update resource */

BIND BUILD 3 /* bind build and update resources */
BIND NETWK 4 /* bind network resource *

READ”ONLY 5 /* parameter to db bind read */

Page 6-3

DeskMate Technical Reference
Database Resource

READ WRITE 6

MAX REC_SIZE 1020
ER TKN — 0x02
KS_TKN 0x04

LOWEST VALID CHAR

MAX HIST SLOTS 10

/* parameter to db bind read */

/* PG SIZE - TOKEN OVERHEAD - RECORD OVERHEAD */
/* end of record token */ -

/* separator for pSortOrder */

0x07 /* smallest character allowed */
/* for app data */

/* maximum

/* internal databgse limits */

MTABS /* maximum
MCOLS 40 * maximum
MQLINES 12 * maximum
MSORT FLDS 5 /* maximum
MAX CUL NAME 20 * maximum
MAX TAB NAME 20 /* maximum
MAX QLINE LEN 62 /* maximum

/* error messages from db_mgr */
/* (See Appendix A - for €xplanations) */

DB OK

DB"NO TBL HIST

DB ALREADY OPEN

DB DISK WRITE

DB NO CREATE

DB DUPL TABLE

DB TBL NAME ERR

DB COL NAME ERR

DB FIRST RECORD

DB LAST RECORD

DB QUERY SYNTAX
DB™NO ROWS SELECTED
DB DISK READ

DB NO OPEN

DB DUPL COLUMN

DB "RECNUM ERR

DBTOUT OF MEMORY

DB MAX NBR FIELDS

DB INVALID FILE TYPE
DB"MULTI UNIQ

DB UNIQ NOT SORT

DB INVALID THAR

DB NO EOR —

DB UNTMPLEMENTED

DB RECORD NOT CURRENT
DR"TOO MANY OPEN FILES
DB INVALID FILE HANDLE
DB TABLE LUCKED ™

DB DUPL REY FIELD

DB TABLE SHARED

DBTINVALTD TABLE HANDLE

DB"RECORD DELETED
DB"NO DBCOULUMNS
DB™NO TEMP SORT
DB NO PACK™

DB PAGE NOT FOUND
DB NO RECORDS

DB DIR FULL

DB NO INDEX

DB ONLY RECORD

DB SAME TABLE

DB DIFFERENT TABLES

0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14
-15
-16
=17
-18
-19
=20
=21
=22
=23
-24
-25
-26
=27
-28
-29
-30
=31
-32
-33
-34
-35
-36

=37

-38
-39
-40
-41

partial update slots */

number

of tables in a database */

columns allowed in a table */

number
number
number
number
number

Page 6-4

of query lines */

of sort fields */

of chars in column name */
of chars in table name */
of chars in query line */

ﬂ‘ o ium Ja}ml;mﬂe record| size is

Ay charackers-There s Ao mokimum
clarncter ﬁefo(within s o\/emj// 4!’M1¢.

/ﬂ% MOKIMOM 51e @r a_fumertc 14’6(0’ ‘
i 31 Sarachers. | S

DeskMate Technical Reference
Database Resource

DB DISK FULL =42

DB~ STOPPED -43

DB WRITE PROTECTED -44

DB TARLE FULL =45

DB TARLE NEEDS UPDATE -46

DB MULTI AGAIN -49

DB_BUSY — -50

DB TIMOUT =51

DB SERVER BUSY - -52

DB NO SERVER] =53

DB™SERVER DIED -54

DB _NETERR ™ : -55

DB _TEMP SORT ALREADY =56 /* may be temp error */

DB GOT MINIMUM =57

DB READ ONLY -58

DB RESOURCE NOT LOADED =59

DB"NEEDS PACK -60

DB"NO_FLUSH -61

MAX ERR MSG_NUM 61

/* defines for client calls */

CL LOCAL 0 /* not a client */

CL CLIENT 1 * client on non-server */

CL™RESUME 2 * resume client on non-server */

CL REGISTER 3 * register client with server,*/
- : /* closes all files and tables */

CL SRVR -1 /* client on server */

CL_PAUSE =2 /* pause client on non-server */

/* structures for database manager calls */

typedef unsigned int UNSIGNED; /* used on all rec num */
/* elements */ -
struct db columnsx /* used internally as */
{ - /* part of db table */
char *col name /* pointer to column name */
char *new name; /* used to change col name */
int col Tength; /* column length */
char col type; /* column type 'C' = char */
- /* 'N'=numeric */
char col pattr; /* column protection attr */
char unique flag; . /* non-zero column value */

/* must be unique */
Vi
typedef struct db_columnsx db_columns;

Utilized by:
db table structure;

/* defines for col type */
CHAR87 'CrY o 7*1987 comgatible - to upper &0x5F */
CHARS8 'K' /* for DOS 3.3 & greateT uses */

/* collating sequence table for */

/* sorting & queries */

NUMERIC COL 'N?!) o
DATE COL 'D! /* stored internally in julian format */

Page 6-5

DeskMate Technical Reference
Database Resource

/* defines for setting unique_flag value */

SET UNIQUE COL 'l
UNSET_UNIQUE COL 0°
struct db tablex /* used in CREATE TABLE, */
{ - /* ALTER TABLE */~
int handle; /* handle of open file(create) */
/* or table(alter) */
char *tbl name; /* pointer to table name */
int n columns; /* number of columns in table */
char update type; /* update function number */
int n_items; /* number of items in the */
/* db column array */
db columns *cols; /* ptT to array of db column*/

} /* structures */
t§pedef struct db tablex db table;

Utilized by:
CREATE TABLE;
ALTER TABLE;

/* defines for ALTER TABLE update type */

ADD COLUMN 1
DROP COLUMN 2
CHG TOLUMN 3
COLUMN_INFO 4
struct table accessx /* used in OPEN TABLE, DROP_TABLE */
{ _ — -
int file handle; /* handle of open file */
char *tbl name; /* table name to open */
int acceSs_level; /* DEFINITION or DATA ACCESS */

}i
typedef struct table accessx table_access;

Utilized by:

OPEN TABLE;
DROP_TABLE;
/* defines for OPEN TABLE access level */
DEFINITION -2 - -
DATA ACCESS 1
struct db valuex /* used internally in db add structure*/
char *col name; /* pointer to column name */
char *col value; /* pointer to column value */

b
typedef struct db valuex db value;

Utilized by:
db_add structure;

struct db_addx /* used in ADD ROW, UPDATE ROW */
- /* single user calls */
{

int table handle; /* handle of open table */
int n columns; /* number of columns to be */
- /* added/updated */
db value *val; /* ptr to an array of db value */

/* structs */

Page 6-6

DeskMate Technical Reference
Database Resource

int prev_rec; /*

~
*

| int next_rec; /*
t&pedef struct db addx db_add;

Utilized by: .
“ADD_FOW
UPDATE_ROW

struct db_mergex

int to th; /*
int from th; /*
char ' duplicates; ;*

*

previous record, zero means */
first record */ '
next record, 0= last record */

handle of table merging to */

handle of table merging from */
DUP - Allow duplicate records */
NO DUP-Don't allow duplicates */

}:
typedef struct db mergex db merge;

/* defines for duplicates */
DUP
NO DUP 0

Utilized by:
MERGE

Notes
to th:

Must be open for DEFINITION.
from th:

May5éopenehherDEFINITIONorDATA;ACCES&

?truct db_getx

int table handle; ;*

- *
char *buffer; /*
int num columns; /*

char **col array; /*

int num query lines;
char **query line array;

UNSIGNED rec_num;

int index handle;

Yi
typedef struct db getx db get;

Utilized by:
FIRST RECORD
NEXT RECORD
PREV RECORD
LAST RECORD
FETCH RECORD
TEMP SORT

Notes
record number:

table handle returned */
from open table */
pointer to destination buffer */
number of columns being */
selected */
array of column names */

* in return order */

/* number of constraints */

* array of query */
* constraints */
* record number (used only */
/* by get logical call */
/* index handle for */
/* TEMP_SORT */

Page 6-7

DeskMate Technical Referehce
Database Resource

Used both on input to the database manager and on output from the database manager. On
input, the application indicates the record to fetch after / before. On output, the record number
is the database manager number of the record returned to the application.

Example : Application is displaying record number 15, and wishes to display the next record. On
input to NEXT_RECORD record number = 15. The database manager will locate record
number 15 and fetch the next logical record which is record number 5. On output, the
record number = 5.

See notes on db_query for query_line_array format.

The index handle should be either NULL to retrieve records in the defined sort order, or an
index handle returned by a TEMP_SORT call.

FETCH_RECORD ignores the query information in the structure and returns the requested
columns for the requested record. For FETCH_RECORD it is required that num query lines

is equal to zero, and query line array is equal to NULL.

?truct db _deletex

int table handle; /* handle of table to delete */
UNSIGNED “rec num; /* record number to delete */
int num query lines; /* num of constraints */
char **query line array; /* array of query */

/* constraints */

}s
typedef struct db deletex db delete;

Utilized by:
DELETE ROW
DELETE MULTI ROWS

Notes

When deleting a single record, the rec_num will be used for the delete. The query information
will be used to return to the application the next record after the deleted one that matches the
query constraints.

When deleting multiple rows, the rec_num will be ignored and all rows that match the query
constraints will be deleted. If num query lines==0, all rows in the table will be deleted.

?truct db queryx

int table handle; /* handle of open table */
char *pBuffer; /* pointer to destination buffer */
int num columns; /* number of cols being selected */
char **col array; /* array of column names in */
- /* return order */
int num query lines; /* number of constraints */
char **query line array; /* array of query */
- - /* constraints */
int amt memory; /* amount of memory application */
- /* has for recs */
int rec cnt; /* number of records in buffer*/
int currec num; /* current rec num to be returned*/
int diréctidn; /* direction rec are assembled in*/
int index handle; /* 0 right now */
unsigned “char q id; /* reserved */

}i
typedef struct db_queryx db query;

Page 6-8

DeskMate Technical Reference
Database Resource

table handle:
The handle returned from an open_table request.

num columns: and col array:

Allow the user to select a subset of the columns to be returned as records and to specify the
order the columns should be arranged in. If num columns equals zero, all columns will be
selected and returned in the default order.

num query lines: and query line array:

Allow the user to define subsets of the data to be returned. Currently the relational operator
between queries is AND. The maximum number of queries is twelve. If num query lines is
equal to zero, all the records will be returned.

amt_memory:

Tells the database manager how much data the application can receive. This amount of memory
will contain both the data records and an index into those records.

pbuffer:

A pointer to the buffer for the records and index to be returned in which is the size of
amt_memory.

rec_cnt:
The number of records returned in the buffer.

cur_recC num:

The number of the last record in the buffer. The data base manager will start after/before this
record if direction is DIRN NEXT or DIRN PRIOR.

direction:

Informs the database manager of the direction to fetch records in.
* directions for record searches for multi-user queries */
DIRN FIRST FIRST RECORD
DIRN LAST LAST RECORD
DIRN NEXT NEXT RECORD
DIRN PRIOR PREV RECORD

DIRN PRIOR = Prior records - use cur_rec_num to start before.

DIRN LAST = Last records - ignore cur_rec_num, start at last record.

DIRN NEXT = Next records - use cur rec_num to start after.

DIRN FIRST First records - ignore cur_rec_num, start at first record.

After using direction of DIRN FIRST or DIRN LAST, the user must change the direction to
DIRN NEXT, or DIRN PRIOR to get additional records.

index handle:
Should be NULL to retrieve records in the defined sort order, or an index _handle returned by a
TEMP_SORT call.

q_id:
Reserved for use by the database manager and should not be altered by an application.
Utilized by:

SETUP_QUERY
MORE_RECORDS

Page 6-9

DeskMate Technical Reference
Database Resource

?truct db updatex

int table handle; /* handle of open table */
int n columns; /* number of columns being */
- /* selected*/
char **col names; /* array of column names in */
- /* return order */
char **p0ld col values; /* old column values {in */
- /* order) */
char **pNew col values; /* new column values (in */
- /* order) */
UNSIGNED rec num; /* current record number */
char verify flag; /* VERIFY or NO VERIFY */
UNSIGNED int prev rec; /* previous record, zero means */
- /* this is first record */
UNSIGNED int next rec; /* next record, zero means this */
- /* is last record */

}i

typedef struct db updatex db update;

pOld col values:

A pointer to an array that contains the column vaiues as they were before the update. These
values will be verified against what is currently contained in the database to verify that the record
is current if the verify flag = VERIFY. If the columns match, then the update can take
place. .
verify flag:

/* defines f?r verify flag */

VERIFY
NO VERIFY 0

If verify flagis equalto NO VERIFY then pOld col values MUST be NULL.

pNew col values:
A pointer to an array that contains the new column values for the update.

Utilized by:
UPDATE ROW

/* general purpose struct for a */
/* handle and buffer */

handle; /*
buffer; /

b
typedef struct handle bufx handle buf;

struct handle bufx

{
handle of open table or file */
buffer to return information in */

int
char

Utilized by:
GET TABLE NAMES
GET COLUMN NAMES
GET MIN —
GET_MAX

?truct db copy_tblx

/* table name to copy */

char *tablename;
/* COPY DATA or NO_COPY DATA flag */

char data;
}i
typedef struct db copy tblx db copy tbl;

COPY DATA 1
NO COPY DATA 0

Page 6-10

DeskMate Technical Reference
Database Resource

Utilized by:
db_copy_lay structure

?truct db_copy_layx

int file_handle; /* handle of file containing tables */
/* to copy */

char *new filename; /* name of destination file to create */

int num Tables; /* number of tables in the array */

db copy tbl *table array; /* array of tables to copy */

}i
typedef struct db copy layx db copy lay;

Utilized by:
COPY_LAYOUTS

Notes

If the data flag in the db_copy tbl structure is set to COPY_DATA all data in the table will be
copied to the new file. If it is set to NO_COPY_DATA only the internal table structure will be

copied.
struct db_countx

int table handle;

int num qﬁérX lines;
char **query line array;
int num matTh; ~

} int tot3@l num;
typedef struct db_countx dbcount;

Utilized by:
COUNT_RECORDS

Notes

open table to select from */
number of constraints */

array of query constraints */
number of records that match */
total number of records */

The COUNT_RECORDS call will provide the application with the number of records that match a
query and the total number of records in a table. If num query lines equals zero then

total numand num match are equal.
struct db_locationx

int table handle;
int num qﬁer{_lines;
1

char **query line array;
unsigned int ~ rec_num;
unsigned int prev_num;
unsigned int next num;

} int = index handle;
typedef struct

Utilized by:
GET_RECORD LOCATION

db_locationx

handle of open table */

number of constraints */

array of query constraints */
rec num to get find */

record number before this one */
record number after this one */
currently un-used, = 0 */

db_location;

Page 6-11

DeskMate Technical Reference
Database Resource

struct db_indexx
{.
int table_ handle; /* open table handle */
char *index name; /* name for this index ~ can be the */
/* same as table name */
char *pSortOrder:; /* column names for sort order */

/* separated by KS_TKN's */
}
typedef struct db_indexx db_index;

Utilized by :
DEFINE_INDEX
DROP_INDEX
GET_INDEX_INFO
TEMP_SORT

pSortQrder:

A NULL terminated string that contains column names separated by the KS_TKN character. The
last column name in the order must also be terminated with the Ks_TKN character, then followed
by a NULL terminator.

KS_TKN 0x04 /* separator for pSortOrder */

struct db_end_tempx

{
int table_handle; /* table handle with TEMP_SORT defined */

int index_handle; /* index handle of TEMP_SORT to drop */
}s
typedef struct db_end tempx db_end temp;

Utilized by:
END_TEMP SORT

/* table history slot structure */
typedef struct

{
unsigned int rec_num; /* record number of transaction */

char trans_type; /* A, D, U = Add, Delete, Update */
} hist_slot;

/* the following are defines for the transaction type */
REC_ADD

REC_DELETE

REC_UPDATE

Page 6-12

DeskMate Technical Reference
Database Resource

‘ 1989 DeskMate 03.03.0x Update Resource

ADD_ROW (pAddStruct)
db_add *pAddStruct;

ADD_ROW adds a row of data to the specified table.
Input Parameters
pAddStruct is a pointer to a db_add structure.

Return Value

Record number of the record just added. A negative value indicates an error has occurred.
Special Notes

Returns the location where the record was added in prev_rec and next_rec elements in the
db_add structure. -

The previous record number is places in prev_rec. If this value is zero, then the newly added
record is the first record. The next record number is places in the next rec element. If this
value is zero, then the newly added record is the last record. If both prev_rec and next_rec
are zero, this is the only record in the table.

In a network environment, an entry will be placed in the table history, if the table history has been
initialized.

‘ Example

erc = db mgr(ADD ROW, &AddStruct);

Page 6-13

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Update Resource

ADD_ROW_NO _ FLUSH (pAddStruct)
db_add *pAddStruct;

ADD_ROW_NO_FLUSH adds a row of data to the specified table and does NOT force a write to
the disk.

Input Parameters

pAddStruct is a pointerto a db_add structure.
rn Val

Record number of the record just added. A negative value indicates an error has occurred.
Special Notes

The location where the record was added is returned via the prev_rec and next rec elements
in the db_add structure.

The previous record number is places in prev_rec. If this value is zero, then the newly added
record is the first record. The next record number is places in the next rec element. If this
value is zero, then the newly added record is the last record. If both prev_rec and next rec
are zero, this is the only record in the table.

In a network environment, an entry will be placed in the table history, if the table history has been
initialized.

ADD_ROW_NO_FLUSH should only be made in situations where multiple records are being
added and will be followed by another database call which will ensure all writes have been forced
to the disk. This is NOT recommended as a general way to add rows to a table.

An example of an appropriate use of ADD_ROW_NO_FLUSH is if the application needs to
create a table and initialize it with a certain number of records. Use ADD_ROW_NO_FLUSH for

alt but the last row, and use ADD_ROW for the last row. On floppy based systems this will
improve performance when initializing a table or file.

Example

erc = db mgr(ADD ROW NO FLUSH, &AddStruct);

Page 6-14

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Build Resource

ALTER_TABLE (pTableStruct)
db_table *pTableStruct;

ALTER_TABLE enables the user to change the definition of a table. Changes which are

supported include: change column name, delete a column, add a column, change a column's
type or length.

Input Parameters

pTableStruct is a pointer to a table definition (db_table) structure.

Return Value

<int>

DB_OK if successtul.

Possible error codes are:
DB TBL NAME _ERR,
DB TABLE SHARED

DB INVALID FILE HANDLE,
DB MULTI UNIQ,

DB DUPL KEY FIELD.
Special Notes
To alter a table, it must be open for definition modification. If the table is already open, the
application must wait to get exclusive use of the table before changing any part of the table
definition.
Inthe db_table structure, the handle will be the handle of the open table.
Only one column can be modified at a time. n_items in the db_table structure MUST be set
to 1 (one). If the column being modified is a column that defines the sort order, changing its type
from N{numeric) to C(character) or K(char88) will change the way the records are ordered.
Changing the name of a column does not affect the sort order.
Setunique_col to NULL unless the column is being changed from unique to non-unique or vice
versa. To change, set unique col to SET UNIQUE COL or UNSET UNIQUE COL. Setting
unique column will change the sort order. No other unique column may be specmed or the error
DB MULTI UNIQU is returned. The field specified as unique must not already contain duplicate
data, or the error DB DUPL KEY FIELD is returned, the column will not be changed to unique
but the sort order will be changed to the column specified as being a unigue column.
Columns that are of type N (numeric) are limited to a maximum size of 39.
Columns should not be changed from type C (character) or K (char88) to N (numeric) if data
already exists, since no validation to insure numeric only data takes place.

Example

erc = db mgr(ALTER TABLE, &TableDefn);

- Page 6-15

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

CLOSE_FILE (FileHandle)
int FileHandle;

®

CLOSE_FILE notifies the database manager that the user would like to close a particular file on
the network or locally. The database manager will verify the file is open and close it.

Input Parameters

FileHandle is the file handle received from the OPEN_FILE call.

Return Value

<int>
DB_OK if successful.
DB_INVALID FILE HANDLE if the specified file handle is invalid.

Special Notes

It the file still contains open tables, it will not be physically closed, but its use count will be

decremented.

When a file is closed, if there are no more users with open tables for that file, all the tables that

were opened during the time the file was open will be automatically packed.

When packing a table, the number of deleted rows must be greater than 10% of the number of

active rows, for a pack to actually occur. ‘

xampl

erc = db mgr(CLOSE_FILE, FileHandle);

Page 6-16

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

CLOSE_TABLE (TableHandle)
int TableHandle;

CLOSE_TABLE notifies the database manager that a user has finished using a table. If the
table was locked, it can now be unlocked and accessed by other users.

Input Parameters

TableHandle is the table handle which was returned from OPEN_TABLE.

Return Value

<int>
DB_OK if successful.

DB INVALID TABLE HANDLE if the specified table handle is invalid.

Special Notes

If a user wants to change the type of access made to a table, for example, to change definition
instead of changing data, the user must close the table and re-open it.

Internally, when a table is closed, its use count will be decremented. If the table was previously

opened for Definition Modification, the use count will be modified to indicate that table is no
longer locked.

Example

erc = db mgr(CLOSE TABLE, TableHandle);

Page 6-17

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

COUNT_RECORDS (pCountStruct)
db_count *pCountStruct;

COUNT_RECORDS allows an application to get a count of the number of records that match a
specific query.

Input Parameters

pCountStruct is a pointer to db_count structure.

Return Value

<int>
DB OK if successful.

Possible errors are:
DB INVALID TABLE__HANDLE,

DB QUERY SYNTAX,
DB_NO_RECORDS,
DB NO ROWS_SELECTED.

Special Notes

COUNT_RECORDS returns two values: the number of records that match, and the total number

.

~ of records in that table. Every record in the database must be compared to the query, so the .

time required to complete COUNT_RECORDS will vary with the number of records in the
database. If the query lines are zero, the total number of records in the file will be returned as
the number that match, without reading the records.

Example

erc = db mgr(COUNT_RECORDS, &pCountInfo);

Page 6-18

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Build Resource

COPY_LAYOUTS (pCopyLayStruct)
db_copy_lay “pCopylLayStruct;

COPY_LAYOUTS allows the application to copy selected tables from a database file to a new
file (which will be created on the copy). The tables may be copied with or without data.

n I I

pCopylLayStruct is a pointerto a db_copy lay structure.
rn Val

An integer indicating success or failure.
Special Notes
The new file will created and each table added to it. For each table added, the corresponding
index definition will be copied. If data is to be copied, it will be sorted in the current index order.
NOTE: The database manager does NOT check to see if the new filename currently exists. It
just creates the new one and would destroy any previous existence of a file with the same name.

The database manager does check its list of files currently open for its own use. If the new
filename is an existing database file which is open the error DB ALREADY OPEN will be returned.

Example

erc = db_mgr(COPY LAYOUTS, &Copylay);

Page 6-19

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Build Resource

CREATE_FILE (pPathName)
char *pPathName;

CREATE_FILE creates a database file and its structure, and opens the file for use by the
database manager.

Input Parameters

pPathName is a pointer to a path name. The pathname MUST be a full pathname in upper case
including the drive letter.

Return Value

<int>
File handle if the file can be successfully created and opened. Negative value integer error codes
if there are problems creating the file.
Possible errors are:
DB ALREADY OPEN.

Special Notes
CREATE_FILE will create the file if it doesn't already exist and open it for the database manager
use. The database manager does NOT check to see if the new filename currently exists. If the

new file is an existing database file and it is already open, the error DB ALREADY OPEN will be
returned. If the file already exists, it will be re-initialized as a database manager file and opened.

Example

erc = db_mgr(CREATE FILE, pPathName);

Page 6-20

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Build Resource

CREATE_TABLE(pTableStruct)
db_table *pTableStruct;

CREATE_TABLE creates a new table in an open and existing database manager file. The new
table can be created empty (no columns) or with columns defined at creation time.

Input Parameters

pTableStruct is a pointer to a table definition (db_table) structure.

Return Value

<int>
Table handle if successful.
An error if unsuccessful.

Special Notes

The handle in the db_table structure will be a file handle when creating a new table. When a
table is created, a default index will be created that will place records in their physical order.

The table that is created will be opened for Definition Modification. The application can then
continue to modify that table’s definition by adding columns, deleting columns, changing columns,
etc. When an application is ready to add data to the table, the table must be closed and re-
opened for data access. It is advisable to define the sort order for the index before closing the
table, since defining a sort order is not allowed when a table is open for data access.

The unique flag in the column structures is ignored. Use ALTER_TABLE with the

unique flag setto SET UNIQUE COL to specify a unique column.
Columns that are of type N (numeric) are limited to a maximum size of 39.

Example

erc = db_mgr(CREATE TABLE, &TableDefn);

Page 6-21

DeskMate Technical Reference
Database Resource

db_bind_end ()

db_bind_end terminates the bindings to the the database manager resource.

!ﬂput Earamgtgrs

None.

Return Value

None.
db_bind_end is to be used with db_bind_init for 1988 DeskMate 03.02.0x compatability.

db_bind_end should not be used with db_bind_read. db_bind_end should be called when no
more database support is required by the application, and before csr_end.

Page 6-22

DeskMate Technical Reference
Database Resource

db_bind_init ()

db_bind_init causes the Read, (DBREAD.RES), Update, (DBUPDATE.RES), and Build,
(DBBUILD.RES) resources to be loaded into memory.

!npu; Earamg]grs

None.

Return Value

DB_OK if loading was successful.
DM _ERROR if loading was unsuccessful.

Special Notes
db_bind_init is to be used with db_bind_end for 1988 DeskMate 03.02.0x compatability.

db_bind_init should be called prior to making any database manager requests, and after the
csr_init call.

Example
if (do bind init < DB_OK)

/* do not make any database calls */

Page 6-23

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x ONLY

db_bind read (ReadFlag)
int ReadFlag;

db_bind_read allows the application to utilize the 1989 Database Read Resource.
db_bind_read binds to the 1989 Database Manager Resource DMDB.R89 and the database
read resource DBREAD.RES.

Input Parameters

ReadFlag is READ ONLY if the database is to be used for read-only.

ReadFlag is READ WRITE if the database is to be used for updating/building. When specifying
READ WRITE the application must call db_mgr(INIT_DB, BIND_UPDATE) or db_mgr(
INIT_DB, BIND_BUILD) depending upon the desired functionality.

Return Value

<int>

DB_OK if successtul.

DB READ ONLY if only the read-only function is available and the application asked for
READ WRITE.

DM ERRCR if the desk executive was unable to find the resource(s) or there was not enough
memory to load the resource(s).

ial

db_bind_read should only be used with db_end_read.

If the request is made for more than read-only, and the return code is DB READ ONLY, the
application may still continue, however only the read-only functions may be called. The
application must still unbind to the resource via db_end_read. DM ERROR will cause an error
message to appear on the screen. DB_READ ONLY will not cause an error message.

/* bind to the 1989 DeskMate 03.03.0x read resource */
%f (db bind read(READ WRITE) == DB _OK)

/* tég to bind to the update resource */
1f (do_mgr(INIT DB, BIND UPDATE) == DB_OK)

/* calls to update the database */

/* unbind to the database update resource */
db mgr(END DB, BIND UPDATE);

/* unbind to the database read resource */

db end read():;
p - -

Page 6-24

DeskMate Technical Reference
Database Resource
1989 DeskMate 03.03.0x ONLY
db_end read ()

db_end_read terminates the binding to the Database Read Resource. db_end_read unbinds to

the 1989 Database Manager Resource DMDB.R89 and the database read resource
DBREAD.RES.

Input Parameters
None.
rn Yal
None.
Special Notes

db_end_read should only be used with db_bind_read. db_end_read should be called when no
more database read support is required by the application.

See Also

db_bind_read()
INIT_DB

Example

/* bind to the 1989 DeskMate 03.03.0x read resource */
if (db bind read(READ WRITE) == DB_OK)

/* try to bind to the update resource */
}f (db mgr(INIT DB, BIND UPDATE) == DB_OK)
/* calls to update the database */

/* unbind to the database update resource */
db mgr(END DB, BIND UPDATE);

/* unbind to the database read resource */
?b_end_read();

Page 6-25

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Build Resource

DEFINE_INDEX (pindexStruct)
db_index *pindexStruct;

DEFINE_INDEX defines the sort order for the disk resident index.

Input Parameters

pindexStruct is a pointer to a db_index structure.

Return value

<int>
An integer indicating success or failure.
Possible errors:

DB UNIQ NO_ SORT.

Special Notes

An index definition is a string concatenated column names separated by a KS TKN delimiter.
The last column name in the sort order string MUST ALSO be terminated by a KS_TKN, then
followed by the string-terminating NULL. To define an index, the table must be opened for
definition modification. Currently only one (1) index per table is supported, but an index name is
provided for future support of multiple indexes. When the index is defined, any previous index
will be deleted and a new index created by reading and sorting all the records in that table.

If a unique column is specified, it must be the first column in the sort order or the error
DB UNIQ NO SORT is returned.

Example

erc = db mgr(DEFINE INDEX, &Index);

Page 6-26

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Update Resource

DELETE_MULTI_ROWS (pDeleteStruct)
db_delete *pDeleteStruct;

DELETE_MULTI_ROWS deletes all rows or a specified subset of rows in a given table.
Input Parameters
pDeleteStruct is a pointerto a db_delete structure.

Return Value

<int>
The number of rows deleted if successful.
A negative error code will be returned if unsuccessful .

Special Notes

If num query lines is zero, all rows in the table will be deleted, otherwise only those records
that match the query constraints will be deleted. The rec num will be ignored.

In a network environment a table history will be updated_to indicate multiple records in a table
have been deleted, if table history has been initialized.

Example

erc = db mgr(DELETE MULTI ROWS, pDelete);

Page 6-27

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Update Resource

DELETE_ROW (pDeleteStruct)
db_delete *pDeleteStruct;

DELETE_ROW deletes a specific row from a table.

pDeleteStruct is a pointer to a db_delete structure.

Retur]

<int>

The next record number.

Possible error codes are:
DB_RECNUM_ERR,
DB OK,
DB _NO_ROWS SELECTED.

Special Notes

If a record with the specified rec_num doesn't exist, DB RECNUM ERR will be returned. The
application will determine if deleting a non-existent record is an error. When a record is deleted
the next matching record number will be returned. If the last record was deleted, the new last
record number will be returned. If there are no more records in the file after the delete DB_OK will
be returned. The query lines are used only to determine the next matching record. If no more
records match the query but there are still records in the file, the error DB NO ROWS SELECTED
will be returned. If num query lines is equal to zero then all records match and the next
record number will be returned.

In a network environment, an entry for the delete will be placed in the table history, if table history
has been initialized.

Example

erc = db mgr{(DELETE ROW, &DeleteStruct);

Page 6-28

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Build Resource

DROP_INDEX (pIndexStruct)
db_index “*plndex;

DROP_INDEX removes an index from a table so that the records are presented in physical
order.

Input Parameters

pindex is a pointer to db _index structure.

Return Value

<int>
An integer indicating success or failure.

The table must be open for definition modification.
Currently, because only one index per table is allowed, the table handle is required in the

db_index structure.
index name should be either the actual name or NULL, pSortOrder must be NULL.

Example

erc = db mgr(DROP_INDEX, &Index);

Page 6-29

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Build Resource

DROP_TABLE (pTableStruct)
table_access *pTableStruct;

DROP_TABLE deletes a table and all its data from the database file.

Input Parameters

pTableStruct is a pointer to a table structure.

Return Value

<int>

DB_OK if successful.

Possible errors are:
DB_TBL NAME ERR,
DB_TABLE_OPEN,
DB_TABLE SHARED,
DB_INVALID FILE HANDLE.

Special Notes

The file must be open. The table to be deleted must be closed. Space occupied by that table will
be marked as free for other uses by the database manager.

Example ‘

erc = db_mgr(DROP_TABLE, &pTableStruct);

Page 6-30

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x ONLY

END_DB (Resource)
int Resource;

END_DB will unbind database resources from the Database Resource Manager.

Input Parameters

Resource if BIND UPDATE the application may no longer access the database update functions.
Resource if BIND BUILD the application may no longer access the database build functions.
Resource if BIND ALL the application may no longer access any of the database functions.

END_DB must be called before db_end_read.

Example

/* unbind to the build resource */
erc = db_mgr (END DB, BIND BUILD)

Page 6-31

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Update Resource

END_TEMP_SORT (pEndSortStruct)
db_end_sort *pEndSortStruct;

END_TEMP_SORT informs the database manager that an application is finished with a
temporary sort and it may be deleted.

Input Parameters

pEndSortStruct is a pointerto adb_end _sort structure.

Return Value

<int>
DB OK if successful.

Possible error codes are:
DB_I NVAL ID_TAB LE__HAN DLE,
DB_INVALID_INDEX__HANDLE.

Page 6-32

DeskMate Technical Reference
Database Resource

‘ 1989 DeskMate 03.03.0x Read Resource

FETCH_RECORD (pGetStruct)
db_get *pGetStruct;

FETCH_RECORD retrieves a specific record by record number. The num columns and
col_array must be specified.

!nnut Earamg;gljs

pGetStruct is a pointerto a db_get structure.
rn Val

<int>

DB_OK if successful.

Possible error codes are:
DB_INVALID TABLE HANDLE,
DB_LAST RECORD,

DB_FIRST RECORD,
DB_ONLY RECORD,
DB_DISK READ,
DB_RECNUM ERR.

Special Notes

. The user sends a record number to the database manager. The database manager will fetch
that record and return it to the user. The query information in the db get structure will be
ignored. However, num query lines should be set to NULL and query line array should
be set to NULL; these are necessary for the bindings.

DB ONLY RECORD is returned if there's only 1 record in the table.

The receiving buffer must be large enough for each column requested plus a NULL terminator for
each column PLUS a 1-byte end of record token (ER _TKN).

The index handle in the db_get structure should be either NULL, to retrieve records in the
defined sort order, or an index handle returned by a TEMP_SORT call.

Example

erc = db mgr(FETCH RECORD, & db get);

This ﬁmm%/\ Aas’ /u’w%d '056'1[2//14655) smnce %,eri
/5 Ao rAyme of EAS0oN '1['0 #C recora/ Auméﬁﬁh .
T, recordl #| oy no'(‘«zkfsﬁ aud £ 1+ dees,
oy ek e o At recerd

Page 6-33

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

FIRST_RECORD (pGetStruct)
db_get *pGetStruct;

FIRST_RECORD returns a single record to the user's buffer. The record number in the db_get
structure will be utilized on output. The database manager will return the record number of the
first record.

Input Parameters

pGetStruct is a pointer to a db_get structure.

Return Value

<int>
DB_OK if successtul.
Possible error codes are:
DB_LAST RECORD,
DB INVALID TABLE | HANDLE,
DB DISK READ
DB NO ROWS SELECTED,
DB NO RECORDS
DB | RECNUM ERR.

Special Notes

FIRST_RECORD returns a single record to the users buffer. It will contain the requested
columns in the requested order. The query constraints will be upheld with each record returned.
The record number is vital to maintaining the correct order. The database manager will utilize the
on-disk index to scan through the table.

Explanation of errors returned:

DB _NO ROWS_SELECTED there are records in table, but none match.

DB NO ' RECORDS the table has NO records.

DB RECNUM ERR the record number in db_get is invalid.

DB . LAST RECORD the last record is returned from a NEXT_RECORD or FIRST_RECORD call.
The buffer the user receives the data in must be large enough for each column requested plus a
NULL terminator for each column PLUS a 1 byte ER_TKN.

The index handle in the db_get- structure should be either NULL, to retrieve records in the
defined sort order, or an index handle returned by a TEMP_SORT call.

Example

erc = db mgr(FIRST RECORD, & db get);

Page 6-34

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

GET_COL _INFO (pTableStruct)
db_table *pTableStruct;

GET_COL_INFO fills in the column information for a given array of column names.

Input Parameters

pTableStruct is a pointer to a db_table structure with the table handle field initialized to an
open table handle, the name pointing to a NULL byte, the update type set to COLUMN INFO,
and the number of items set to the number of columns you are retrieving information for. Each of
the column structures should have the column name filled in and the new name set to NULL.

Return Value

DB_OK if no errors. °
DB COL NAME ERR if any column not found in given table
DB_INVALID_TABLE_HANDLE if table is not open.

Special Notes

The application should call GET_COL_NAMES prior to GET_COL_INFO to ensure the column
names are filled in for each db_column structure passed. When zero (0) is specified for the
number of columns, no column information is returned.

Example

if(erc = db _mgr(GET_COL_INFO, &pThbl))
print err(erc):

Page 6-35

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

GET_COLUMN_NAMES (pHandleBufStruct)
handle_buf *pHandleBufStruct;

GET_COLUMN_NAMES retrieves the names of the columns in a table.

Input Parameters

pHahdIeBufStruét is a pointer to a handle buf structure. The handle MUST be a table
handle.

Return Value
<int>

The number of columns.
A negative number will indicate that the operation was unsuccessful.

Special Notes

The table must be open. The column names will be returned in the buffer separated by NULL
characters. There will be an ER_TKN after the final NULL.

Example

erc = db mgr(GET_COLUMN_NAMES, pInfo);

Page 6-36

DeskMate Technical Reference
Database Resource
1989 DeskMate 03.03.0x Read Resource

GET _INDEX_INFO (pindexStruct)
index_struct *plndexStruct;

GET_INDEX_INFO retrieves index information about a particular table. The column names that
make up the sort order will be returned.

Input Parameters
pindexStruct is a pointer to index struct.
rn Val

<int>
The number of fields in the sort order. A negative number for failure.
Possible error values are:

DB INVALID TABLE HANDLE,

DB COL NAME _ERR.

Special Notes

The sort columns names are returned to the application in a single string with the column names
separated by a KS_TKN delimiter. The file and table associated with the index must be already
open. The table handle is required in the db_index structure, the index name must be a
pointer to a valid name or NULL. pSortOrder must point to a buffer that is blg enough for the
column names and KS_TKN's. There will also be a terminating NULL and an ER_TKN.

If there are NO defined sort field the buffer will contain the NULL and ER_TKN.

Example

erc = db mgr(GET INDEX INFO, &IndexInfo);

Page 6-37

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

GET_MAX (pHandleBufStruct)
handle_buf *pHandleBufStruct;

GET_MAX returns the highest value for the given column name and the record number of the
first record with that value. To access this record, use FETCH_RECORD with the returned
record number.

Input Parameters

pHandleBufStruct is a pointer to a handle buf structure. The handle must be an open table
handle. The buffer should contain the name of a valid column in the open table.

Return Val

<int>

The record number if successful.

Possible error codes:
DB_INVALID TABLE HANDLE,

DB COL NAME ERR,
DB_NO_RECORDS,
DB DISK READ.

Special Notes

The buffer will contain on output a string of the maximum value terminated by a NULL and an ‘
ER TKN.

Example

rec num = db mgr (GET_MAX, &pInfo);

Page 6-38

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

GET_MIN (pHandleBufStruct)
handle_buf *pHandleBufStruct;

GET_MIN returns the lowest value for the given column name and the record number of the first
record with that value. To access this record, use FETCH_RECORD with the returned record
number.

Input Parameters

pHandleBufStruct is a pointer to a handle buf structure. The handle must be an open table
handle. The buffer should contain the name of a valid column in the open table.

Return Value

<int>
The record number if successful.
Possible error codes:
DB INVALID TABLE HANDLE,
DB COL NAME ERR,
DB_NO_RECORDS,
DB _DISK READ.

Special Notes

The buffer will contain on output a string of the minimum value terminated by a NULL, then the
ER TKN.

xampl

rec num = db mgr (GET MIN, é&plnfo);

Page 6-39

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

GET_PAGE_SETUP (pHandleBufStruct)
handle_buf *pHandleBufStruct;

GET_PAGE_SETUP gets the page setup information that is stored in the file.
n rameter

pHandleBufStruct is a pointer to a handle_buf structure. The handle MUST be a file handle.

Return Value

An integer indicating success or failure.
Special Notes

The application should place that address of their page setup structure in the buffer pointer
provided by the handle buf structure. Type casting should be used to prevent compiler

warning. For example:)
pInfo->buffer = (char *)&page setup_info;

Example

db mgr(GET PAGE_SETUP, &pInfo);

Page 6-40

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

GET_RECORD_LOCATION (pLocationStruct)
db_location *plLocationStruct;

GET_RECORD_LOCATION is given a table handle, record number, and any desired query
constraints. The database manager will fill in the matching previous and next record numbers.

Input Parameters

pLocationStruct is a pointer to a db_location structure. index handle must be equal to
zero.

Return Value

<int>
DB OK if successtul.
An error if unsuccessful.

Special Notes

GET_RECOIRD_LOCATION is especially useful in a network environment for an application that
is making use of the multi-query calls, and table history. When table history indicated a new
record has been added, the application can determine it's location and if it matches the current
query constraints in effect to know if the application needs to fetch this new record.

If the record being located is the first one in the file, or the first one to match the query
constraints, zero will be returned as the prev_num.

If the record being located is the last one in the file, or the last one to match the query
constraints, zero will be returned as the next _num.

The index handle is currently ignored, and record locations are returned based on the
permanent sort order only.

Example

erc = db mgr (GET_RECORD_LOCATION, &location);

Page 6-41

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

GET_TABLE_NAMES (pHandleBufStruct)
handle_buf *pHandleBufStruct;

GET_TABLE_NAMES returns the names of the tables which are in the file. The table names will
be in the buffer separated by NULL characters.

n ram I

pHandleBufStruct is a pointer to a handle buf structure. The handle MUST be a file handle.

Return Value

<int>
The number of tables in the file.
If unsuccessful, an error will be returned.

Special Notes

The table names stored in the directory for the file are retrieved and returned to the user. The
file must be open. The table names are separated by NULL characters in the buffer. There will

be an ER_TKN after the final NULL.
DBCOLS an internal database manager table will be included and returned with this request. It is
not allowed for a user application to open DBCOLS.

Example
num tables = db_mgr{ GET TABLE DIR, &pInfo);

Page 6-42

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x ONLY

INIT_DB (Resource)
int Resource;

INIT_DB will bind database resources to the Database Resource Manager.

n I L

Resource if BIND UPDATE the application may access the database update functions.
Resource if BIND BUILD the application may access the database build functions.
Resource if BIND ALL the application may access all of the database functions.

Bgmrn &a!uﬂ

DB_OK if successful.

DB _OUT_OF MEMORY if the resource requested could not be loaded.

DB READ_ONLY if an attempt was made to load a resource and db_bind_read bindings returned
aDB READ ONLY.

Special Notes

db_bind_read must return DB_OK before calling INIT_DB. A return of DB_OUT OF MEMORY will
cause an error message to appear to the user. DB READ ONLY will not display an error
message.

Example

/* call db bind read */

/* see db bind Tead */

/* bind t0 the build resource */
erc = db mgr (INIT DB, BIND_BUILD)

Page 6-43

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

LAST_RECORD (pGetStruct)
db_get *pGetStruct;

LAST_RECORD allows the application to fetch a single record at a time and returns the record to
the user's buffer. The record number in the db_get structure will be utilized both on input and
output. The database manager will return the record number of the last record.

In I
pGetStruct is a pointer to a db_get structure.

Return Val

<int>

DB _OK if successful.

Possible error codes are:
DB_FIRST_ RECORD,
DB_INVALID TABLE HANDLE,
DB DISK READ,
DB NO ROWS SELECTED,
DB NO RECORDS
DB_RECNUM ERR.

Special Notes

LAST_RECORD returns a single record to the users buffer. The buffer will contain the
requested columns in the requested order. The query constraints will be up-held with each
record returned. The record number is vital to maintaining the correct order. The database
manager will utilize the on-disk index to scan through the table.

Explanation of errors returned:

DB NO ROWS SELECTED there are records in table, but none match.

DB NO ' RECORDS the table has NO records.

DB RECNUM ERR the record number in do_get is invalid.

DB . . FIRST RECORD the first record is returned from a PREV_RECORD or LAST_RECORD call.
The buffer the user receives the data in must be large enough for each column requested plus a
NULL terminator for each column PLUS a 1 byte ER_TKN.

The index handle in the db_get structure should be either NULL, to retrieve records in the
defined sort order, or an index handle returned by a TEMP_SORT call.

Example

erc = db mgr(LAST RECORD, & db_get });

Page 6-44

,—I

DeskMate Technical Reference
Database Resource

Support for the Merge function deleted.

Page 6-45

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

MORE_RECORDS (pQueryStruct)
db_query *pQueryStruct;

MORE_RECORDS requests more records that match the query constraints. The user specifies
the beginning record number and the direction in which to search for more records (first, next,
prior, last). The index handle should be either NULL to retrieve records in the defined sor
order, or an index handle returned by a TEMP_SORT call.

!n nut E grameters

pQueryStruct is a pointer to a db_query structure.
Return Val

<int>

DB_OK if successful.

Possible errors codes are:
DB_INVALID TABLE HANDLE,
DB_QUERY_ SYNTAX,

DB NO ROWS .>ELECTED
DB . LAST RECORD

DB FIRST RECORD,

DB | NO RECORDS

DB DISK READ.

If the user sends a direction of first or last, then the record number will be ignored and the first (or
last) x records that will fit in the user's memory area will be retumed. First arranges records in
Ascending order. Last arranges records in Descending order.

The current record number will be returned automatically upon returning from MORE_RECORDS
so subsequent calls to MORE_RECORDS can normally be made without specifying a number.
The user CANNOT change query constraints or requested columns between calls:
SETUP_QUERY, MORE_RECORDS and subsequent calls to MORE_RECORDS.

Errors retumed:

DB_NO_ROWS_SELECTED if there are records in the table, but none match the query.

DB | _NO_| RECORDS if there are no physical records in the table.

DB FIRST RECORD, DB_LAST_RECORD these are returned when the FIRST or LAST record is
bemg returned. If requestmg records in FIRST or NEXT order, and both the FIRST and LAST
record is in the buffer only DB_LAST RECORD will be retumed. If requesting records in the LAST
or PREV order and both the FIRST and LAST record is in the buffer, only DB_FIRST RECORD
will be returned.

If only 1 record matches the query, rec_cnt will be set to 1, and either DB_LAST RECORD or
DB_FIRST_RECORD will be returned. This is how an application will determine that there is only
1 record matching. rec_cnt can also be equal to 1 in the case where only 1 record will fit in the
buffer, in this case DB_OK will be the return code.

Page 6-46

{

DeskMate Technical Reference
Database Resource

@

erc = db mgr(MORE RECORDS, &db query);

Page 6-47

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

NEXT_RECORD (pGetStruct)
db_get *pGetStruct;

NEXT_RECORD fetches a single record at a time and returns it to the user's bufter. The record
number in the db_get structure will be utilized both on input and output. The application will
indicate its current position in the table via the record number and the database manager will
return the record number of the requested record.

!!!nut Earamgtgrg

pGetStruct is a pointer to a db_get structure.

Return Value

<int>
DB OK if successful.
Possible error codes are:
DB_LAST RECORD,
DB INVALID TABLE HANDLE,
DB DISK READ,
DB NO ROWS_SELECTED,
DB _NO_RECORDS,
DB _RECNUM ERR.
Special Notes
NEXT_RECORD returns a single record to the user's buffer. The buffer will contain the
requested columns in the requested order. The query constraints will be up-held with each
record returned. The record number is vital to maintaining the correct order. The database
manager will utilize the record number and on-disk index to scan through the table.
Explanation of errors returned:
DB NO_ROWS_SELECTED there are records in table, but none match.
DB | NO ' RECORDS the table has NO records.
DB RECNUM ERR the record number in db_get is invalid.

DB LAST RECORD the last record is returned from a NEXT_RECORD or FIRST_RECORD call.
The buffer the user receives the data in must be large enough for each column requested plus a
NULL terminator for each column PLUS a 1 byte ER_TKN.

The index handle in the db_get structure should be either NULL, to retrieve records in the
defined sort order, or an index handle returned by a TEMP_SORT call.

Example

erc = db mgr(NEXT RECORD, & db_get);

Page 6-48

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

OPEN_FILE (pPathName)
char *pPathName;

OPEN_FILE notifies the database manager that a user wants particular local or network file. The
database manager verifies the file is of the proper type and opens it.

Input Parameters

pPathName is a pointer to a full network pathname. If the pathname does not contain network
routing information, it will be assumed to reside on the current machine. The pathname MUST
be a full pathname in upper case including the drive letter.

Return Value

The file handle if the file is successfully opened.
If the file is not successfully opened, an error value will be returned.

When a file is opened, the database manager checks to see if the file has another user. If so,

the same file handle will be returned. A use count is kept for each open file to know when it can
be physically closed.

Example

FileHandle = db mgr(OPEN FILE, pPathName);

Page 6-49

DeskMate Technical Reference
Database Resource
1989 DeskMate 03.03.0x Read Resource

OPEN_TABLE (pTableAccessStruct)
table_access “*pTableAccessStruct;

OPEN_TABLE notifies the database manager of the table name within a file that a user wishes
to utilize. This will allow the database manager to set up in memory information about the table
and keep a count of how many users are accessing that table.

Input Parameters

pTableAccessStruct is a pointer to a pointer to a table structure.

Return Value

<int>
The table handle which will be required in future query and record fetches for this table.
All error codes will be negative numbers to prevent contlict with the table handle.
Possible error conditions are:

DB TABLE LOCKED

DB_TBL NAME ERR.

Special Notes

OPEN_TABLE must be made after the user has opened a Database file with either OPEN_FILE
or CREATE_FILE. OPEN_TABLE will bring into the database manager's memory information
about the columns in that table. When a user is accessing a table for Definition Modification only
that user will be allowed access to that table. If other users attempt to open a table that is locked
due to Definition Modification, those users will receive an error indicating that table is locked.
When a user has completed the Definition of a table, it is very important that the user closes the
table and re-open it with a level of Data Access/Modification.
During the time that a user has a table open for Definition Modification, the user will be able to
perform the following operations in addition to those operations available under Data Access:

Add column to table.

Delete a column from a table.

Change the definition of a column (length, type, name).

Pack a table.

Change the sort order (involves rebuilding the index).
When a user has a table open for Data Access the following operations may be performed:

Add row of data (multi-user or single user).

Delete a row of data (multi-user or single user).

Update a row of data (multi-user or single user).

Place query constraints on data to be returned to the application.

Fetch records (1 or more at a time).

Fetch specific record by record number.

Retrieve table definition information - column in the table.

Retrieve information about the file - tables in the file.

Retrieve information about the index for a table.

Delete all rows of data from the table (or a subset of rows).
Internally, when a table is opened it's use_count will be incremented. When a table is open for
"Definition Modification" the use count will be marked with a special value to indicate that it is

locked. ’

Page 6-50

DeskMate Technical Reference
Database Resource

.Examp.l:

erc = db_mgr(OPEN_TABLE, &pTableStruct);

Page 6-51

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Build Resource

PACK_TABLE (TableHandle)
int TableHandle;

PACK_TABLE physically deletes records that have been marked as deleted in the database.
Input Parameters
TableHandle is a handle of a table open for definition modification.

Return Val

<int>
An integer indicating success or failure.

Example

erc = db mgr(PACK TABLE, tbl handle);

Page 6-52

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

PREV_RECORD (pGetStruct)
db_get *pGetStruct;

PREV_RECORD fetches a single record at a time. The record number in the db_get structure
will be utilized both on input and output. During input, the application uses this field to indicate its
current position in the database; during output, the database manager uses this field to return the
record number of the requested record.

Input Parameters

pGetStruct is a pointerto a db_get structure.

Return Value

<int>
DB OK if successtul.
Possible error codes are:
DB FIRST RECORD
DB INVALID TABRLE HANDLE
DB DISK READ,
DB NO ROWS_SELECTED,
DB NO RECORDS,
DB __ RECNUM ERR.

Special Notes

PREV_RECORD returns a single record to the user's buffer. It will contain the requested
columns in the requested order. The query constraints will be up-held with each record returned.
The record number is vital to maintaining the correct order. The database manager will utilize the
record number and on-disk index to scan through the table.

Explanation of errors returned:

DB NO ROWS_SELECTED there are records in table, but none match.

DB | NO RECORDS the table has NO records.

DB RECNUM ERR the record number in db_get is invalid.

DB FIRST RECORD the first record is returned from a PREV_RECORD or LAST_RECORD call.
The buffer the user receives the data in must be large enough for each column requested plus a
NULL terminator for each column PLUS a 1 byte ER_TKN.

The index handle in the db_get structure should be either NULL, to retrieve records in the
defined sort order, or an index handle returned by a TEMP_SORT call.

Example

erc = db mgr(PREV_RECORD, & db_get);

Page 6-53

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Update Resource

SAVE_PAGE_SETUP (pHandleBufStruct)
handle_buf *pHandleBufStruct;

SAVE_PAGE_SETUP stores the page setup information in the file.

Input Parameters

pHandleBufStruct is a pointer to a handle buf structure. The handle MUST be a file handle.

Return Value

An integer indicating success or failure.

The application should place the address of their page setup structure in the buffer pointer
provided by the handle buf structure. Type casting should be used to prevent compiler

warning. For example:
pInfo->buffer = (char *)é&page setup info;

Example

db mgr(SAVE PAGE SETUP, &pInfo);

Page 6-54

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Read Resource

SETUP_QUERY (pQueryStruct)
db_query *pQueryStruct;

SETUP_QUERY informs the database manager of the query constraints that the user would like
to place upon the records returned. The user may specify up to MQLINES query constraints each
being related with the AND operator. The user may also indicate the columns to be returned and
their respective order in a record. SETUP_QUERY will setup the query info in the database
manager and the first set of matching records will be returned to the user.

n I r

pQueryStruct is a pointer to a db_query structure.

Return Value

<int>

DB _OK if successful.

Possible errors are:
DB INVALID TABLE HANDLE,
DB QUERY SYNTAX,
DB NO_ROWS_SELECTED,
DB_LAST RECORD,
DB_FIRST RECORD,
DB_NO_ RECORDS.

Special Notes

See Notes under MORE_RECORDS for description of errors.

All records that match the query will be returned in the sort order of the specified index. The
index handle must be set to NULL to retrieve records in the default sort order, or to the index
handle retumed by a TEMP_SORT call. There is a provision in the db_query structure to allow
for multiple indexes in the future.

The format of a query is as follows:

column_name <operator> null terminated value.

column name must be a valid column name for that table.

<operator> must be one of the following

DB_EQUAL = all records equal to the specified value.

DB _GREATER > all records greater than or equal to the specified value.

DB LESS '<' all records less than or equal to the specified value.

DB NOT EQUAL 'y all records NOT equal to the specified value.
DB:SUBETRING I all records with this substring in the specified field.

REC CONTAINS N all records which contain the given text string in any column.

null terminated value can contain the following wild cards :
* - match all characters at and after this character position.
? - match this character with any character.

Page 6-55

DeskMate Technical Reference
Database Resource

Note: When the operator is DB SUBSTRING, a '?' will match any character in that position. An ™
will match only another ™ in the same position. It WILL NOT act as a wildcard in
DB_SUBSTRING only.
All records that are retumed in the user's buffer are terminated with an end of record token
(ER_TKN).
There should NOT be any extraneous white space in the query. The database manager will scan
for the operator and if one of the above is NOT present, an error will be returned. Example :
"Last Name=Cross"
Since the column Last Name contains an intermediate space, it must be included to match the
column name.
Along with the data records, an index into those data records will be returned by the database
manager. It will contain a 2 byte offset into the buffer for each record location and a 2 byte
corresponding record number.
The user will have only 1 memory area in which to receive both the data records and an index
into those records. When the user has requested records in the "next” direction, the records will
start at the beginning of memory and grow towards the end. The index will start at the end and
grow towards the beginning. When the two meet or would overlap, that determines how much
gatg[%a]n be returned to the user. This would lock something like:

u

|

| set 3| rec num 3 | offset 2 | rec num 2 | offset 1 | rec num 1 1

I __
buf [nnnnn]

If the user has requested records in the "previous” direction, the data records will be place in the
buffer in reverse order, and the index will be built in reverse order. The direction flag in the
structure will be the key to keeping track of the record order. If the application requests the last

{)ecfoE%]and there is enough data area for 5 records, they would be arranged as:
u

|
| set n-2| recnum n-2| offset n-1l|recnum n-l1joffset n | recnum n |

buf [nnnnn]

Page 6-56

DeskMate Technical Reference
Database Resource

Assuming that Relat iveRecordNum begins with zero and pbufend points to the byte past the

end of the buffer, the user can then access the index with the following formulas;

RecordNum = (unsigned short*) (pbufend - (RelativeRecNum
* TINDEX OVERHEAD + 2))

RecordOffset = (unsigned Short*) (pbfend - (RelativeRecNum
* INDEX OVERHEAD + 4))

INDEX OVERHEAD = 4. -

Examplg

erc = db_mgr(SETUP_QUERY, &pquery);
See Also

MORE_RECORDS()

Page 6-57

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Update Resource

TEMP_SORT (pindexStruct)
db_index *pIndexStruct;

TEMP_SORT defines a temporary sort order for the current records in a table. This will not
affect the permanent sort that is defined by DEFINE_INDEX. Any record additions, deletions, or
updates will not be reflected in the TEMP_SORT after the TEMP_SORT has been defined.

[npu; Earamgtg!:s

pindexStruct is a pointer to a db_index structure.
Return Val

<int>
The index handle if successful.

Special Notes

If the application is running in a multi-user environment, and a record is added, deleted or
updated in the main index, that action will not be reflected in the temporary index. This can
cause the error DB RECORD DELETED to be returned for a FETCH_RECORD call, if the record
being fetched was deleted AFTER the TEMP_SORT was called. If a deleted record is
encountered when processing FIRST,NEXT, PREV, LAST the database manager will skip that
deleted record and continue with the NEXT/PREV one.

ONLY ONE TEMP_SORT may be in effect for a table at one time. If a TEMP_SORT is already
in effect, an error of DB_TEMP_SORT ALREADY will be returned.

Example

index handle = db mgr (TEMP_SORT, pIndex);

Page 6-58

DeskMate Technical Reference
Database Resource

1989 DeskMate 03.03.0x Update Resource

UPDATE_ROW (pUpdateStruct)
db_update *pUpdateStruct;

UPDATE_ROW updates the row specified in the structure.
Input Parameters

pUpdateStruct is a pointer to a db_update structure

Return Value

<int>
DB OK if successtul.
An error if unsuccessful.

There is averify flag in the structure that should be set to TRUE in a multi-user environment.
If the verify flag is equal to TRUE, the old col values will be compared against what is

on disk and perform the update only if the record is current. If the record is not current,
DB _RECORD_NOT CURRENT will be returned.

If verify flagis equalto FALSE, pOld col values MUST be setto NULL.

The location where the record was updated is returned via the prev_rec and next rec
elements in the db_update structure.

The previous record number is places in prev_rec. If this value is zero, then the newly updated
record is the first record. The next record number is places in the next rec element. If this
value is zero, then the newly updated record is the last record. If both prev_rec and next rec
are zero, this is the only record in the table.

In a network environment, an entry will be placed in the table history.

xampl

erc = db mgr(UPDATE ROW, &AddStruct);

Page 6-59

DeskMate Technical Reference

Explanation of Error Codes returned by the Data Base Manager ‘

Code
DB_ALREADY OPEN...........

DB BUSY..ueernnenennnnnnn.

DB COL NAME ERR...........
DB_DIFFERENT TABILES.......

DB DIR FULL.«eveveuennnnn.

DB DISK FULL....veuennne..
DB DISK READ..............
DB DISK WRITE.............

DB_DUPL COLUMN............

DB DUPL KEY FIELD.........

DB DUPL TABLE.............

DB FIRST RECORD...........

DB INVALID CHAR...........

DB INVALID FILE HANDIE....
DB_INVALID FILE TYPE......
DB_INVALID TABLE HANDLE...

Database Resource

Explanation

An attempt to create a database did not succeed because the
named database is already opened.

The database manager is busy. A client on a server machine
can get this error. Try again after a delay. If the call to
beclient had TRUE for the box_flag parameter this is
returned when the user CANCEL's from a busy
RETRY/CANCEL message box.

The column name in a structure does not match any of the
column names for the given table and file handles.

The tables given to merge have differing structures in column
number, type, or length, and so cannot be merged.

Index or table could not be created because there is no
directory space left in the database. An existing table or
index will have to be deleted to make more room.

The physical disk is full, or the file has reached its maximum
size. Last request was not completed.

Low-level file I/O error. Physical read from disk returned error
code.

Low-level file /O error. Physical write to disk returned error
code.

The column name given for a column to be added is the same
as an already existing column in the same table and file.

Column names within a table must be unique. g

An attempt was made to add or update a record which ‘
resulted in non- unique data for a column specified as
unique (the add/update did not occur). Also returned
when a column newly specified as unique contains
duplicate values such as in the ALTER_TABLE call
when an attempt was made to change a column type to
unique, but data already exists for that column which is
not unique. The sort order gets changed to that column
and the records are resorted, but unique is not
maintained.

Duplicate table name. A table to be added has the same
name as an already existing table. Table names must
be unique within a file.

Condition code. The first record was found during a query or
fetch. This code is returned when the first record is in
the user's record buffer. This is returned for the calls
FETCH_RECORD, LAST_RECORD or
PREV_RECORD, or the direction in the query structure
is DIRN_ LAST or DIRN__PRIOR.

A non-ASCII character that is not a token was found in a
database record to be added. Only ascii characters and
tokens are allowed as database data.

The file handle given does not match any open file.

An attempt was made to open a non-database file.

The table handle given is not valid

Page 6-60

DeskMate Technical Reference
Database Resource

DB_LAST RECORD............ Condition code. The last record was found during a query or
fetch. This code is returned when the last record is in
the user's record buffer returned by the database and
either the call using the get structure is
FIRST_RECORD or NEXT_RECORD, or the direction in
the query structure is DIRN_FIRST or DIRN_NEXT. ltis
also returned when a record fetched by record number is
the last record.

DB MAX NBR FIELDS......... An attempt to add a column failed because the table has the
maximum number of columns allowed already.

DB MULTI AGAIN............ Internal.

DB MULTI UNIQ.....covuuvunn An attempt was made to specify another unique column when
one already exists.

DB NETERR................. Network error.

DB NO CREATE.............. Low-level file /0 error. Error code returned on create file call.
The file could not be created.

DB NO DBCOLUMNS........... The directory entry for DB_COL was not found so no columns

could be added. Your database file is corrupted and
cannot be used. Fatal error.

DB NO EOR.....covvunvnnnn. A database record to be added has no end-of-record token.
An end-of- record token is required to distinguish valid
record data from left-over random buffer trash. This can
also happen if a record is bigger than MAX REC SIZE.

DB NO INDEX............... No index exists for a file being queried. This error should not
occur, since a default physical-order index is maintained
for files with no index. Also returned when NO_DUP is
specified on a merge but the destination table has no

sort order.

DB NO OPEN................ Low-level file I/O error. Error code returned an open file call.
The file could not be opened.

DB NO PACK........cvuunnnn Condition code. The number of deleted rows in a table should

equal at least 10% of the total number of rows to justify
the packing overhead. This error means no packing was

done.
DB NO RECORDS............. Record(s) were requested from a table with no records.
DB NO ROWS SELECTED....... On a valid query to a database with records, no records met

the query constraints. Or, after deleting a row with
query constraints there are none left that match.

DB NO SERVER.............. The server is not running.

DB OK.'vvrennnennnnnnanns Normal return code - no error.

DB ONLY RECORD........un.. Returned when a record retrieved from the database with

I FETCH_RECORD is the only record in the table.

DB OUT OF MEMORY.......... An attempt to allocate memory on a file or table open failed.
Close unneeded files and tables, then try again.

DB_PAGE_NOT FOUND......... An internal database error has occurred. Close all files and
tables and exit. Fatal error.

DB QUERY SYNTAX........... The query syntax requirements were not met on a query call.

Check to be sure that there are no spaces within the
’ query line and that the query operator is valid.
DB RECNUM ERR....covvvunnn The record number given in a query, get or delete structure
- B was not the number of a valid record in the database.

Page 6-61

DeskMate Technical Reference
Database Resource

DB_RECORD DELETED......... Temporary sort order error. ‘
DB RECORD NOT CURRENT..... On an UPDATE_ROW call with the verify flag setto p
VERIFY, the old column values did not exactly match
the data in the database. Fetch the new data, update
the old column values in the structure, then try again.

—

DB SAME TABLE............. The same table handle was given in a MERGE call for both
the source and destination tables.
DB SERVER BUSY............ The database server is busy. Try again after a delay. If the

call to beclient had TRUE for the box flag parameter
this is returned when the user CANCEL's from a busy
RETRY/CANCEL message box.

DB SERVER DIED............ The database server is up, but has been rebooted since the
client's last request. The client's session is no longer
valid. The client must close everything, invoke
not_client and start over with a new be_client call.

DB TABLE FULL............. The maximum record number has been reached for the
current table. The application must delete records and
pack the table before adding more records.

DB TABLE LOCKED........... A data access/modification call was made for a table that is
currently opened for a data definition. The table must be
closed and re-opened for data access before the call will
succeed.

DB TABLE NEEDS UPDATE..... The table has been updated too much to return all changes in
a table history structure. Redo any out-of-date-queries.

DB TABLE SHARED........... An attempt was made 10 access a table for data definition that
is opened for data access/modification. You will have to
wait until all user's have closed the table, then re-open it ‘
for data definition.

DB TBL NAME ERR........... The table name in a table access structure does not match

: any of the table names in the directory for the given file
handle.

DB TIMEOUT.........vonnunn The database server timed out.

DB TOO MANY OPEN FILES....A requestto open a data base file was made when the
maximum number were already open. You will have to
wait until a file is closed before opening another one.

DB UNIMPLEMENTED An undefined function code was given.

DB_UNIQ NOT SORT.......... An attempt was made to define a new sort order which did not
have the column currently specified as unique as it's first
element.

DB WRITE PROTECTED........ An updated database cannot have changes saved because it

is on a write protected disk.

Page 6-62

Desk Executive

Jesk Exeeotive”

Table of Contents

General DesCription/NOoteS ..iiiviiirvinnieerireennnneenennnnnn

Autoload Resource Initialization Calls

autoload bind end ...Release the autoload resource.........
autoload bind init ..Initializes autoload resource.........

Database Resource Initialization Calls

Database Definesiiiiiuiiiiiin ittt
db bind end ...Terminates bindings to database resource....
db bind init ..Initializes all database resources..........
db bind read ..Binds to 1989 Database Read Resource........
db_end read ...Terminates bind to 1989 DB Read Resource....

END DB Unbinds 1989 DB resources..........coeueve..
INIT DB Binds 1989 DB resOUrCeSeveveenenens

Desk Executive DefinesS .. vt eieiereeneenrioereseeeacensoneeeans

dm acc runeeea..n RUNS AN 8CCESSOYY. i ienvrenasansannoeenn
dm bind resource Determines if resource is in memory...
dm clear_ resource Removes resource from memory..........
dm compat Compatibility for 1988 DM 03.02.0x....
dm dir isithere Checks existance of file..............
dm exec dont shed Prevents code shedding................
dm file search Searches entire for file..............
dm get mem Attempts to allocate DOS memory.......
dm inquire critical err .Gets the last critical error..........
dm inquire desk ver Returns version number of DESK.EXE....
dm inquire dmconfig Gets the contents of DMCONFIG.........
dm_inquire floppy Determines if a drive can be read.....
dm inquire product Gets the product information..........
dm_inquire program Returns current application names.....
dm inquire res Returns resource names................
dm inquire res_ver Returns version number of a resource..
dm inquire taskid Returns task information..............

7- 1
7- 4
7- 5

dm SetNextApp Sets name and parameter string........ 7-34

dm SetOtherTask Sets name of task for switch.......... 7-35
dm task count Tells number of tasks in mem.......... 71-36
dm temp resource Loads resource in temporary mode...... 7-37
dm yield Allow another task to run............. 7-38

Core Services Resource(CSR) Initialization Calls

csr_access end Terminates current active access...... 7-39
csr_access_init Initializes CSR for new user access... 7-40
csrendceiiiiiinnnn Terminates>application bindings to CSR 7-41
csr_form bind end Terminates bind to near form resource 7-42
csr_form bind init Bind to near form resource............ 7-43
csr_get version Gets the version number of the CSR.... 7-44
csr init ...l Initialize application bindings to CSR 7-45
dmcsr bind end Terminates use of CSR routines........ 7-46
dmesr bind init Used to bind to the CSR............... 7-47
fform bind end........... Terminates far form resource.......... 7-48
fform bind int........... Bind to far form resource............. 7-49
guf bind end Terminates application bindings to GUF 7-50
guf bind init Initialize application bindings to GUF 7—51
prguf bind end Terminates low-level GUF bindings..... 7-52
prguf _bind init Sets up low-level GUF bindings........ 7-53

Spell Resource Initialization Calls
spell bind end........... Terminates interface to spell checker. 7-54

spell bind init........ --Initializes a spell checker session... 7-55

Thesaurus Resource Initialization Calls
thes bind end............ Terminates interface to thesaurus..... 7-56

thes bind init........... Initializes a thesaurus session....... 7-57

'I«,

fl
i

DeskMate Technical Reference
Desk Executive

General Description/Notes
Executive Specification

The executive is a small, resident module which provides the operating system services for
DeskMate. It is responsible for the loading and releasing of resources, applications and
accessories, managing the clipboard, and providing a communication system for task switching.

The executive dynamically links resources to applications, allowing multiple applications to share
a resource.

Since the desk executive is responsible for loading and unloading all of the DeskMate resources,
all of DeskMate's initialization calls are included in this section. See below for a more complete
description.

Method of Operation

When loaded, the executive will setup the machine state to allow DeskMate to run efficiently. It
will then load the core services resource. If the load was successful, the executive will proceed to
load the default application and then pause.

While in its paused state the executive can be called via int EOh. It will handle the interrupt and
then resume the paused state. After the current application exits, control is returned to the
executive which then evaluates the next application to be run, and based on the information,
either loads another application, or resets the machine to it's pre-DeskMate state, and exits to
DOS.

The executive is also able to start a new task, activating task switching between two applications.
It will keep track of which task is which and handle coordination of DeskMate where multiple
tasks are loaded.

Summary of changes to DESK.EXE for 1989

Applications may check for the 1989 version DESK.EXE through dm_inquire_product. If the
DM VERSION bit is set in the return value, then DESK.EXE is version 1989 or later. To get the
specific version number call dm_inquire_desk_ver.

dm_load_resource and dm_free_resource are now available to applications.

The calls for the intelligent help manager are as specified in the intelligent help manager section
of this manual.

dm_get_mem may be used to force desk to remove all unused resources, by asking for FFFF
paragraphs of memory. The desk executive will remove all unused resources, allocate no
memory, and return error.

If a call to dm_load_resource finds a resource that was loaded with dm_temp_resource that is
in code shed space or in the other task's area, it will not bind to it. If the temp resource is
unused, it will remove it from memory and try to load it again in a different area. If the temp
resource is in use, a not enough memory message box will be displayed and an error returned to
the calling application.

Page 7-1

DeskMate Technical Reference
Desk Executive

Initialization ‘

Initialization of the CSR (Core Resource Services) involves setting up an interface between the
application and the CSR and initializing the CSR for use by the application. The bindings for the
CSR are included in the DM.LIB and DMMED.LIB libraries. Within the binding for the esr_init
routine is the process that sets up the interface between the application and the CSR. Therefore,
the esr_init routine MUST be called prior to calling any other CSR routine.

The GUF (General User Functions) resource contains many functions of DeskMate. Initialization
of the GUF resource involves setting up an interface between the application and GUF. The
bindings for GUF are included in the DM.LIB and DMMED.LIB libraries. The guf_bind_init
routine MUST be called prior to calling any other GUF routine. A list of the calls contained in the
GUF resource are listed in the special notes section of the guf_bind_init call.

The other initialization routines which are required by the separate resources, AUTOLOAD,
DATABASE, SPELL, and THESAURUS, are described here as well as in their respective
sections.

Assembly language interface to the Desk Executive
For the following calls, the arguments are passed on the stack with bp pointing to the first

argument, [bp+2] points to the second argument, etc. The ES register must be set to the
segment which contains the arguments.

Library Call Value for AX

_dm_SetNextApp DM_EXEC_SETNEXTAPP A .
_dm_SetOtherTask DM_EXEC_SETOTHERTASK A
_dm_exec_dont_shed DM_EXEC_DONT_SHED

_dm_yield DM_EXEC_YIELD

_dm_task_count DM_EXEC_TASK_COUNT

_dm_get_clipboard_info DM_EXEC_CLIP_GETINFO

_dm_set_clipboard_info DM_EXEC_CLIP_SETINFO

_dm_clear_clipboard DM_EXEC_CLIP_CLEAR

_dm_inquire_product DM_EXEC_INQ_PRODUCT

_dm_inquire_taskid DM_EXEC_TASKID

_dm_inquire_critical_err DM_EXEC_LASTCRIT

_dm_inquire_program DM_EXEC_TASKNAME

_dm_inquire_res DM_EXEC_RESQURCES

_dm_inquire_floppy DM_EXEC_FLOPPY

_dm_inquire_desk_ver DM_EXEC_VERSION

_dm_get_mem DM_EXEC_GET_MEM

For the following calls, the argument is passed in DI. The segment is ES.

Library Call Value for AX
_dm_inquire_dmconfig DM_EXEC_INQ_DMCONFIG
_dm_dir_isithere DM_DIR_ISITHERE

For the following calls, the first argument is passed in DX and the second argument, if any, is
passed in BX. The segment for both arguments are ES.

o
\\ N

Page 7-2

Library Call

_dm_load_resource
_dm_temp_resource
_dm_free_resource
_dm_bind_resource
_dm_clear_resource
_dm_inquire_res_ver

DeskMate Technical Reference
Desk Executive

Value for AX

DM_EXEC_LOAD_RES
DM_EXEC_TEMP_RES
DM_EXEC_FREE_RES
DM_EXEC_BIND_RES
DM_EXEC_CLEAR_RES
DM_EXEC_INQ_RESVER

Page 7-3

DeskMate Technical Reference
Desk Executive

Autoload Resource Initialization Calls

autoload_bind_end ()

autoload_bind_end enables applications to release the autoload resource.

If an application calls autoload_bind_init, it must call autoload_bind_end when finished with
the autoload resource.

Page 7-4

‘\

DeskMate Technical Reference
Desk Executive

autoload_bind_init ()

autoload_bind_init sets up the bindings for the autoload resource, enabling the application to
use functions in the autoloader.

Input Parameters

None.
Return]

<int>
DM_ERROR if the call was unsuccessful.

Special Notes

autoload_bind_init should be made before calling any autoloader calls.

Page 7-5

DeskMate Technical Reference
Desk Executive

Database Defines ‘

Only the binding defines are listed here, the remainder of the Database structures and defines
are listed in the Database Resource section.

/* defines for initialization blndlng and unbinding */
BIND READ ONLY 0 /* for 89 app support */

BIND ALL — 1 * for server/88 network app support */
BIND UPDATE 2 /* bind update resource */

BIND BUILD 3 /* bind build and update resources */
BIND NETWK 4 /* bind network resource */

READ ONLY 5 /* parameter to db bind read */

READ WRITE 6 /* parameter to db bind read */

Page 7-6

DeskMate Technical Reference
Desk Executive

Database Resource Initialization Calls
db bind end ()
db_bind_end terminates the bindings to the the database manager resource.
In rameter

None.

db_bind_end is to be used with db_bind_init for 1988 DeskMate 03.02.0x compatability.
db_bind_end should not be used with db_bind_read. db_bind_end should be called when no
more database support is required by the application, and before csr_end.

Page 7-7

DeskMate Technical Reference
Desk Executive

db_bind init ()

db_bind_init causes the Read, (DBREAD.RES), Update, (DBUPDATE.RES), and Build,
(DBBUILD.RES) resources to be loaded into memory.

In rameter
None.
Retur]

DB _OK if loading was successful.
DM _ERROR if loading was unsuccessful.

Special Notes
db_bind_init is to be used with db_bind_end for 1988 DeskMate 03.02.0x compatability.

db_bind_init should be called prior to making any database manager requests, and after the
csr_init call.

Example
if (do bind init < DB OK)

/* do not make any database calls */

Page 7-8

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY

db_bind_read (ReadFlag)
int ReadFlag;

db_bind_read allows the application to utilize the 1989 Database Read Resource.
db_bind_read binds to the 1989 Database Manager Resource DMDB.R89 and the database
read resource DBREAD.RES.

Input Parameters

ReadFlag is READ ONLY if the database is to be used for read-only.

ReadFlag is READ WRITE if the database is to be used for updating/building. When specifying
READ WRITE the application must call db_mgr(INIT_DB, BIND_UPDATE) or db_mgr(
INIT_DB, BIND_BUILD) depending upon the desired functionality.

Retur |

<int>

DB_OK if successful.

DB READ ONLY if only the read-only function is available and the application asked for
READ WRITE.

DM ERROR if the desk executive was unable to find the resource(s) or there was not enough
memory to load the resource(s).

Special Notes

db_bind_read should only be used with db_end_read.

If the request is made for more than read-only, and the return code is DB_READ ONLY, the
application may still continue, however only the read-only functions may be called. The
application must still unbind to the resource via db_end_read. DM ERROR will cause an error
message to appear on the screen. DB_READ ONLY will not cause an error message.

The calls listed below are contained in the Database Read Resource:

CLOSE_FILE CLOSE_TABLE COUNT_RECORDS
END_DB FETCH_RECORD FIRST_RECORD
GET_COL_INFO GET_COLUMN_NAMES GET_INDEX_INFO
GET_MAX GET_MIN GET_PAGE_SETUP
GET_RECORD_LOCATION GET_TABLE_NAMES INIT_DB
LAST_RECORD MORE_RECORDS NEXT_RECORD
OPEN_FILE OPEN_TABLE PREV_RECORD

SETUP_QUERY

Page 7-9

DeskMate Technical Reference
Desk Executive
Example

/* bind to the 1989 DeskMate 03.03.0x read resource */
}f (db_bind read(READ_WRITE) == DB OK)

/* try to bind to the update resource */
%f (db mgr(INIT DB, BIND UPDATE) == DB OK)

/* calls to update the database */

/* unbind to the database update resource */
db mgr(END DB, BIND UPDATE);

/* unbind to the database read resource */
db end read();

}

Page 7-10

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY
db_end _read ()

db_end_read terminates the binding to the Database Read Resource. db_end_read unbinds to
the 1989 Database Manager Resource DMDB.R89 and the database read resource
DBREAD.RES.

Input Parameters
None.

Return Value
None.

Special Notes

db_end_read should only be used with db_bind_read. db_end_read should be called when no
more database read suppon is required by the application.

Example
/* bind to the 1989 DeskMate 03.03.0x read resource */
if (db bind read(READ WRITE) == DB_OK)

{
/* try to bind to the update resource */
if (db mgr(INIT DB, BIND UPDATE) == DB OK)
{ - - - B

/* calls to update the database */
/* unbind to the database update resource */

db mgr(END DB, BIND UPDATE);

/* unbind to the database read resource */
?b_end_read();

See Also

db_bind_read()
INIT_DB

Page 7-11

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY

END_DB (Resource)
int Resource;

END_DB will unbind database resources from the Database Resource Manager.

Input Parameters

Resource if BIND UPDATE the application may no longer access the database update functions.
Resource if BIND BUILD the application may no longer access the database build functions.
Resource if BIND ALL the application may no longer access any of the database functions.

Return Value

None.
END_DB must be called before db_end_read.

Example

/* unbind to the build resource */
erc = db_mgr (END_DB, BIND_BUILD)

Page 7-12

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY

INIT_DB (Resource)
int Resource;

INIT_DB will bind database resources to the Database Resource Manager.

Input Parameters

Resource if BIND UPDATE the application may access the database update functions.
Resource if BIND BUILD the application may access the database build functions.
Resource if BIND ALL the application may access all of the database functions.

Retur]

DB_OK if successful.

DB _OUT OF MEMORY if the resource requested could not be loaded.

DB_READ ONLY if an attempt was made to load a resource and db_bind_read bindings returned
aDB _READ ONLY.

db_bind_read must return DB_OK before calling INIT_DB. A return of DB_OUT OF MEMORY will

cause an error message to appear to the user. DB READ ONLY will not disp—lay an error
message.

The calls listed below are contained in the Database Build and Update Resources:

Build Resource

ALTER_TABLE COPY_LAYOUTS CREATE_FILE
CREATE_TABLE DEFINE_INDEX DROP_INDEX
DROP_TABLE PACK_TABLE

Update Resource
ADD_ROW ADD_ROW_NO_FLUSH DELETE_MULTI_ROWS
DELETE_ROW END_TEMP_SORT MERGE
SAVE_PAGE_SETUP TEMP_SORT UPDATE_ROW
Example

/* call db bind read */

/* see db bind Tead */

/* bind to the build resource */
erc = db mgr (INIT_DB, BIND__BUILD)

See Also

END_DB

Page 7-13

DeskMate Technical Reference
Desk Executive

Desk Executive Defines .
A et et *
/* x/
;* DMEXEC.H contains all of the Desk Executive defines */
*
[K e e e e e e e e e —————— x/
K e e e o e o e e e e e e s B e e R o e D R i U e S U S o *
* *

/* The following are the defines that define function parameter :/

/: constants and return values used in calls to the exec. /
*

/R e o
DM OK 1 /* returned when exec request was successful */
DM ERROR -1 /* returned when an error in exec occurred */
DM NOT ALLOWED -2 /* returned when an illegal task sw call */
DM DEFAULT 2 /* from DM EXEC INQ DMCONFIG means DESK */

- /* assigned */ —
DM_EXISTS -2 /* value returned when trying to load a */

/* resource that allready existed on an */
/* 1988 DeskMate System. */

/* Bits set by DM EXEC IIZQ PRODUCT *;
- - - *

DM RUN FLAG This is the runtime version */
DM COMPAT FLAG 8 /* 1989 Runtime running with */
- - * 1988 DeskMate */
DM SHELL FLAG 0x010 /* Desktop only "shell"™ product */
DM DESKLINK 0x100 /* DeskLink active */
DM TASKSWITCHING 0x200 /* Task switching is active */)
DM VERSION 0x8000 /* DM EXEC INQ VERSION call */
- /* isTavaiTable */

/* These are the different clipboard type */
/* available to the applications. */

CLIP EMPTY
CLIP TEXT

CLIP BITMAP
CLIP WORKSHEET
CLIP FILER
CLIP PAINT
CLIP DRAW

CLIP DRAW TEXT
CLIP MUSIT
CLIP CALENDAR

WO ULWRWNFPO

ACC BY NAME O0xff /* to give the name of the accessory */

Page 7-14

DeskMate Technical Reference
Desk Executive

' dm_acc_run (Accessory)
int Accessory;

dm_acc_run runs an accessory.

Input Parameters

Accessory is the code for the accessory to run.

Return Value

None.
Special Notes

Range checking should not be done by an application since the accessory list might change and

grow on different version of the software. For example do not do tests such as:
if (Accessory <= ACC SETUP)
dm acc_run (AcCessory);

The following are the different accessories available along with their associated codes. The
codes can be found in CSRBASE.H:

ACC CALC 0x00
/* 0x01 must remain undeflned due to MS-DOS parameter limitations */
‘ ACC NOTEPD 0x02
ACC CORKBRD 0x02
ACC CAL 0x03
ACC CLIPBD 0x04
ACC COLORS 0x05
ACCComM 0x06
ACC DATTIM 0x07
ACC MOUSE 0x08
ACC PRINTR 0x09 -
ACC HELP 0x0A
ACC PGSETUP 0x0B
ACC PHONE 0x0C
ACC DESKLINK 0x0D
ACC VIDEO 0x0E
ACC TASKSWITCH O0x0F
ACC SPELL 0x10
ACC ALARM 0x11
ACC SETUP 0x12
ACC TALK 0x13
ACC TODO 0x14
ACC MORE 0x15

/* resource referenced by name, not index */
ACC_BY NAME OxFF

dm_acc_run is run following an event_appl, appl_access event. dm_acc_run is usually
run using the event . x variable in an EVENT structure as the Accessory parameter.

Page 7-15

DeskMate Technical Reference
Desk Executive

If ACC_BY NAME is specified then dm_acc_run requires two parameters. The second parameter '
being the name of the accessory the application wishes to run. For example to run the phone \
accessory the call would be made as follows:

dm acc_run (ACC_BY NAME, "PHONE");

Page 7-16

\.

DeskMate Technical Reference
Desk Executive
1989 DeskMate 03.03.0x ONLY

dm_bind_resource (pResName, pResEntry)
char *pResName;
char *pResEntry;,

dm_bind_resource is used to determine if a resource is in memory.

Input Parameters

pResName is a near pointer to the resource name.
pResEntry is a near pointer to a far pointer to a procedure.

Return Value

NULL if resource is not already loaded.

DM OK if the resource is loaded and pResEntry receives a pointer to the resource’s binding entry
point.

DM ERROR if the DeskMate Core Services Resource CSR is busy initializing or terminating, try
again.

Page 7-17

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY

dm_clear_resource (pResName)
char *pResName,;

dm_clear_resource removes a resource from memory if its use count is zero.
n I I

pResName is a near pointer to the resource name.

Return Value

NULL if resource is not already loaded, it is in use, or was autoloaded.
DM _OK if the resource was removed from memory.

Page 7-18

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY

dm_compat (pName)
char *pName;

When dm_compat is called when running under the 1988 version of the desk executive, the
clipboard is set to the maximum size, 8K or 16K depending upon the memory size of the
machine, dm_SetNextApp is called to run the name specified by pName, and
DM COMPAT FLAG is returned to the application as described below.

Input Parameters
pName is the name of the file to execute, including the .EXE.

Return Value

The following chart summarizes the possible situations under which the application may run and
what dm_compat will do in each situation after calling dm_inquire_product and calling
dm_task_count if under the 1988 desk executive:

If the desk executive version is 1989, from DeskMate:
DM VERSION on

DM RUN FLAG off
DM_COMPAT FLAG off

If the desk executive version is 1989, runtime run from DOS:
DM VERSION on

DM RUN FLAG on
DM COMPAT FLAG off

If the desk executive version is 1988 and desk is not Task Switched:
DM VERSION off

DM RUN FLAG off
DM COMPAT FLAG on

If the desk executive version is 1988 and desk is Task Switched:
DM VERSION off

DM RUN FLAG off

DM _COMPAT FLAG off

If the desk executive version is 1989 runtime running on 1988 desk:
DM VERSION on

DM RUN FLAG on

DM_COMPAT FLAG on

Example
product info = dm_compat ("VENDOR.EXE") ;

if ((product info & DM VERSION) == 0)
{ — —

/* we're running on 1988 desk */
if ((product info & DM_COMPAT FLAG) == 0)

/* bind to csr */

csr init(); .

/* display error message can't run task-switched */
display "Cannot run while task-switched."

‘Page 7-19

DeskMate Technical Reference
Desk Executive

/* un-bind to csr */
csr_end();

exit ()
} /* running on a 1989 DeskMate or Runtime */

Sce Also

DeskMate Development Guide Compatibility Issues

Page 7-20

DeskMate Technical Reference
Desk Executive

dm_dir_isithere (pName)
char *pName;

dm_dir_isithere determines whether a specific file in a specific path exists.

Input Parameters

pName is a pointer to a null terminated pathname.

Return Value

Zero if not found.
One (1) if file was found.

Special Notes

dm_dir_isithere will test any removable drives first to ensure there is a disk in the drive. This is
especially helpful when an application does not want a critical error to occur when looking for a
file. There is a case where a critical error will occur, when only a filename is specified along with
a drive, and there is no disk in the drive.

dm_dir_isithere is used primarily with a file appended to the DMCONFIG variable.

Page 7-21

DeskMate Technical Reference
Desk Executive

dm_exec_dont_shed ()

dm_exec_dont_shed tells the executive not to code shed the current application.

Input Parameters
None.

rn Val
None.

If an application cannot have a portion of itself moved and replaced from the .PDM file on disk,
when an accessory is invoked, then the application should call dm_exec_dont_shed, in its
startup code. : :

in 1988 DeskMate 03.02.0x, there were a set number of fixups which could occur to the
application when returning from running an accessory. In 1989 DeskMate 03.03.0x there is no
limit imposed by the desk executive. Therefore medium model applications should check for the
version of DeskMate, and call dm_exec_dont_shed in instances where too many fixups would
occur.

Example

dm_exec_dont_shed();

Sece Also

dm_inquire_product()
The DESKHDR documentation in the Tools and Utilities manual.

Page 7-22

®

@

DeskMate Technical Reference
Desk Executive

dm_file_search (pFilename, pPathbuffer, bFloppySearch) 4 £ " Hy

char *pFilename; ' o , The birst pre s
char *pPathbuffer; /”M\f) %}ap\é\‘gi\ s ()\ﬁ{b’(‘/‘)ﬁt& ’h}-’\te, |‘f\ bW\A‘Qd- [‘\AA\ 4 P ?C ’75
H .« = . . ' N \] \

int bFloppySearch; "ok 5O MYH%M .6@‘3"\& Y bhis. Seso .swnm)

(£}
PROMPT #1
dm_file_search will first inform the user that FILENAME could not be found and that it will
search the entire system for it. If the user presses OK, it will then search all directories on all
available disk drives starting first with the floppy drives, then searching hard drives and redirected
drives.
If the user cancels the second prompt will appear.
PROMPT #2
The second prompt asks the user to place a disk containing the file requested in any floppy disk
drive. If the user presses OK, all floppy drives are searched. If the file is not found, Prompt #2 is
re-displayed.
If the user cancels, dm_file_search returns a zero(0) to the application.
If the file is found in either search, the full path is placed in Pathbuffer and a 1 is returned from
dm_file_search.

Input Parameters

pFilename is a pointer to the null-terminated filename to be found (the filename must be upper-
case). _

pPathbuffer is a pointer to a buffer into which the full path including the filename will be placed if
the file is found.

bFloppySearch can be set to one of four values as explained in the table below.

Value | Functionality

0 Complete system search with prompts

1 Floppy only search (prompts before search #2 above]
2 Complete system search with NO prompts

3 Floppy only search with NO prompts

Return Value

<int>

Zero (0) if the file was not found. .
One (1)1 if the file was found, Pathbuffer contains full path (the disk containing the file is still in

the drive). |
DM_ERROR if media failure or critical error that user cancelled. /

7 ad 3 do ot work 03
adverbised, o eash uwder DHSOZ
[3-2- f'],OwlY % or |

Page 7-23 shoold. be used.,

DeskMate Technical Reference
Desk Executive

e

Special Notes

pPathbutfer may contain invalid information if the file was not found.

Prompting will work correctly when DeskMate is active and when DeskMate is inactive (ie.,
character prompts are displayed).

If no extension exists on file, priority of files found in a single directory are PDM, COM, EXE,
BAT. Search will stop as soon as the first match has been made.

Maximum of ten directory levels will be searched (requires about 1000 bytes of stack space).

Page 7-23.1

@

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY
dm_get_mem (nPara)
int nPara;

dm_get_mem attempts to allocate DOS memory. dm_get_mem works like an INT 21h function
48h, except that the desk executive will attempt to remove unused resources from memory if
there is not already enough memory for the allocation.

n meter
nPara is an integer specifying a number of paragraphs.

Return Value

NULL if not enough memory.
The segment address of memory allocated if successful.

See Also

DOS INT 21h function 48h

Page 7-24

ey Ty

DeskMate Techpical Reference
Desk Executive

dm_inquire_critical_err ()

dm_inquire_critical_err returns the last critical error encountered.

Input Parameters

None.

Return Value

The number of last critical error.

The error numbers are DOS int 24 error numbers.

Page 7-25

DeskMate Technical Reference
Desk Executive

dm_inquire_desk_ver ()

dm_inquire_desk_ver returns the version number of DESK.EXE.
n ram r

None.

Return Value

The version number of the desk executive. The High Order byte is the Major version number.
The Low Order byte is the Minor version number. The table below shows what numbers are
returned for different versions of DeskMate.

DeskMate Version Desk Executive Version Release
03.03.00 55.00 SL
03.03.00 55.00 TL

03.03.01 65.00 FT1
03.03.01 66.00 2500 XL
03.03.01 66.00 Retail
03.04.00 67.03 Runtime '89
03.04.01 68.12 1000 RL
03.05.00 68.17 1000 RL cutin
03.05.00 68.18 TL/3
03.05.00 68.19 Retail
03.05.00 68.21 Runtime '90
Special Notes

dm_inquire_desk_ver is only available when running DeskMate 03.03 and iater.

Page 7-26

DeskMate Technical Reference
Desk Executive

dm_inquire_dmconfig (pString)
char *pString;

dm_inquire_dmconfig gets the contents of the environment variable DMCONFIG.
Input Parameters
pString is a pointer to a character string where the environment configuration is to be stored.

Return Value

DM _OKAY if user set the DMCONFIG environment variable.
DM DEFAULT if desk set it.

Page 7-27

DeskMate Technical Reference
Desk Executive
1989 DeskMate 03.03.0x ONLY '
dm_inquire_floppy (Drive)
int Drive;

dm_inquire_floppy checks to see if the specified floppy drive can be read.

Input Parameters

Drive is the floppy drive to check. 0= A, 1 =B, etc.

Return Value

NULL if the drive is floppy drive with no disk in drive.
One (1) if the drive is a floppy drive with a disk in the drive.
Greater than 1 if drive is not a floppy.

Page 7-28

i s L e i el

DeskMate Technical Reference
Desk Executive

dm_inquire_product ()

dm_inquire_product returns the product information for DeskMate including:
1. DeskMate or Runtime.
2. WRKGROUP availability.
3. Taskswitching capability.

!n Qut Egramg;g;'s

None.

Return Value

<int>

DM_RUN_FLAG if this is vendor runtime.)
DM_TASKSWITCHING if task switching is allowed.

DM_DESKLINK if wrkgroup installed.

DM_VERSION if DeskMate 03.03 or later; dm_inquire_desk_ver is available, to get the actual
version.

DM _COMPAT FLAG is returned when the 03.03 runtime is running under 03.02 DeskMate. The
03.03 runtime sets this bit if it finds it is running under the 03.02 desk executive. The 03.02 desk
executive never returns this bit set.

Two (2) if not runtime.

Combinations are returned ORed together.

Example
int Product:;
Product = dm_inquire_product();

if (Product & DM VERSION)
/* DeskMate Version 3.03 or later */

Page 7-29

b e et

o

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY
dm_inquire_program (pName)
char *pName;

dm_inquire_program returns the name of the current application or accessory.

Input Parameters

pName is a near pointer to a buffer to receive the program name. The buffer should be at least
13 characters long.

Return Value

The buffer is filled with the application or accessory name.

Page 7-30

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY
dm_inquire_res (pBuffer)
char *pBuffer;

dm_inquire_res fills the buffer with the names of resources currently in memory and indicates if
they are loaded or preloaded.

!nput Earamgtg;:&

pBuffer is a near pointer to a buffer to receive the resource information.

Return Value

The buffer is filled with the resource information, and the number of resources is returned.

Special Notes

Each entry takes ten bytes. Nine bytes for the filename and one byte for the autoload priority.

There is a maximum of 32 resources allowed in the system at any one time.

Page 7-31

Vets
it
.

o

DeskMate Technical Reference
" Desk Executive

1989 DeskMate 03.03.0x ONLY

dm_inquire_res_ver (pResName)
char *pResName;

dm_inquire_res_ver returns the version number for a resource.

Input Parameters

pResName is a near pointer to a resource name.

Return Value

The version number of the resource.
Zero (0) if the resource is not registered or did not register with a version number.

Page 7-32

DeskMate Technical Reference
Desk Executive

dm_inquire_taskid ()

dm_inquire_taskid returns an indicator for which program is in control. It is used by the shared
database routines.

<int>

One (1) for first task.

Two (2) for alternate task.
Three (3) for an accessory.

Example

int taskid;
taskid = dm_inquire taskid();

Page 7-33

DeskMate Technical Reference
Desk Executive

dm_SetNextApp (IpName, IpParam)
char far *IpName;
char far *IpParam;

dm_SetNextApp sets the name of the executable application and it's parameter string that is to
be executed when the current application is terminated.

Input Parameters

IpName is a far pointer to the path name of the application to be executed. If lpName is a
pointer to a null string DeskMate exits.
IpParam is a far pointer to the parameter list.

Return Value

DM_OK if successtul.
DM_ERROR if failure.

Special Notes

dm_SetNextApp can fail if the user is currently task switched to a non-DeskMate application and
the currently running application is attempting to set the next application to another non-
DeskMate application.

To set up this call to run .COM files:

1) It is the calling application's responsibility to place 0Dh(ascii carriage return) at the end of a
non nuil parameter string.

2) It is safest to make the first character of the parameter list a space because some older .COM
applications ignore the first character of the parameter list.

For DeskMate to exit [pName should be a pointer to a null string not a null pointer.

The parameters IpName and lpParam may point to automatic local, non-static, on the stack
buffers because dm_SetNextApp copies the contents of the parameters using the pointers, to
internal buffers in the Desk Executive (DESK.EXE). This is done because the data must be used
AFTER your application exits.

Page 7-34

DeskMate Technical Reference
Desk Executive

dm_SetOtherTask (IpName, IpParam) .
char far *IlpName;
char far *IpParam;

dm_SetOtherTask sets the name of an executable task and it's parameter string. The task is to
be executed when a task switch occurs.

Input Parameters

IpName is a far pointer to the path name of the task to be executed. If IpName is a pointerto a
null string DeskMate exits.
IpParam is a far pointer to the parameter list.

dm_SetOtherTask should only be called if dm_task_count returns one (1).

To set up this call to run .COM files:

1) It is the calling application's responsibility to place 0Dh(ascii carriage return) at the end of a

non null parameter string.

2) It is safest to make the first character of the parameter list a space because some older .COM

applications ignore the first character of the parameter list. !
For DeskMate to exit IpName should be a pointer to a null string not a null pointer.

dm_SetOtherTask does not update the task count. The task is executed through dm_yield.

Page 7-35

‘

DeskMate Technical Reference
Desk Executive ‘

dm_task_count ()

dm_task_count provides information about how many tasks are in memory.

Input Parameters

None.

Return Value

The number of active tasks in memory.

Page 7-36

DeskMate Technical Reference

This page intentionally left blank.

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY

dm_temp_resource (pResName, pResEntry)
char *pResName;
char *pResEntry;

dm_temp_resource attempts to load a resource i>n "temporary mode" and return an entry o its
binding point.

Input Parameters

pResName is a near pointer to the resource name.
pResEntry is a near pointer to a far pointer to a procedure.

Return Value

NULL if the resource is not loaded.
DM COK if the resource loaded, pResEntry received the address of the resource's binding entry
point.

Special Notes

The resource may be loaded in code shed space or in part of the other task's memory area.
Resources must be freed before the accessory exits or before an application task switches.

Page 7-37

DeskMate Technical Reference
Desk Executive

dm_yield ()

dm_yield allows one application to yield to another in response to a task switch event.

DM OK if a alternate task yielded as expected.
DM ERROR if a non recoverable error occurred during the alternate task.

Special Notes

In general, task switching allows the DeskMate version 3, and Professional DeskMate users (not
supported in Personal DeskMate), to have two applications active at the same time, switching
between them on user command. The only restrictions on what two applications can be in
memory at the same time is that one must be a DeskMate version 3, or Professional DeskMate
application (non-DeskMate apps can use the task switcher) and that only one copy of the default
application may be loaded. Task switching is not supported in the DeskMate Runtime
environment.

The application will make the dm_yield call in response to an EVENT APPL with parameter
APPL TASK SWITCH. The rule of thumb should be any time an accessory can be run, task
switching can occur. This means NO task switching in accessories, dialog boxes or message
boxes. When the application gets this event, it performs processing that places the application
into a stable state, such as removing any event interpreters, event drivers and interrupt vectors
then calls dm_yield. If the application must keep interrupt vectors active during the running of an
accessory, then the interrupt vector must be located above the applications split address, as
described in the DeskHdr section of the Tools and Utilities manual.

On a normal return (DM _OK), from dm_yield, the application should redraw its entire screen
including the menu bar. It should also check the clipboard for a change in contents and register
it's page setup information with the core (since the other application may have changed it).

On a abnormal return (DM _ERROR), the application must clean up and do an immediate exit
(program termination).

Applications which hook interrupt vectors must be aware that vectors are not swapped between
DeskMate applications. This causes problems with 'C' applications that use floating point
emulation because these vectors are changed when a second application hooks them.

Page 7-38

DeskMate Technical Reference
Desk Executive

Core Services Resource (CSR) Initialization Calls

1989 DeskMate 03.03.0x ONLY
csr_access_end ()

csr_access_end is used to terminate the use of the current active access session, which in tern
returns to the previous access session.
csr_access_end must be made only if csr_access_init was made.

csr_access_init()
csr_init()
csr_end()
dmesr_bind_end()
dmcsr_bind_init()

Page 7-39

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY ‘
int csr_access_init () \

csr_access_init initializés the CSR for a new user access session. This gives the effect of
creating a new base window with default settings without destroying the previous access session
state.

Each application can have more than one access session. The amount is dependent on the
number of window and hotspot created under each of the access session.

The handle of the base window. (new current active window.)

See Also

csr_access_end()
csr_end()
csr_init()
dmesr_bind_end()
dmcsr_bind_init()

Page 7-40

DeskMate Technical Reference
Desk Executive

csr_end ()

csr_end terminates the application interface to the CSR.

Input Parameters

None.

Return Value

None.
Special Notes

csr_end must be called at the end of each application.

Page 7-41

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY
csr_form_bind_end ()

csr_form_bind_end terminates the form manager loaded by csr_form_bind_init.

Input Parameters

None.

Return Value

<int>
One (1) if the resource was found and released.

Page 7-42

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY
csr_form_bind_init ()

csr_form_bind_init loads, executes, and links to the form manager resource as-a near form
manager usage. This is the same functionality provided in the 1988 DeskMate 03.02.0x.

<int>
DM_ERROR if the form manager could not be loaded. (/U A
DM_EXISTS if the application is running on DeskMate 03.02.0x. <— WD/, Cowses sysfem [oc[fu

U/ICZU’ A%I‘Mﬂ%&{)nbr #D 3.04.
Must- check version bebore wuubln)
Hu's caj{.

Page 7-43

DeskMate Technical Reference
Desk Executive

csr_get_version ()

csr_get_version returns the version number of the currently loaded DMCSR.RES.

Input Parameters

None.

Return Value

<int>
The version number of the curently loaded DMCSR.RES.

Page 7-44

DeskMate Technical Reference
Desk Executive

csr_init ()

csr_init initializes the application interface to the CSR.
Input Parameters

None.

Return Value

<int>
The handle to the: application's base window.

Special Notes
csr_init must be called at the beginning of the application before any other core service calls are
made. :
All CSR data and states are initialized as follows:
The mouse pointer is defined as the default pointer image.
No pointer regions are defined for the mouse pointer.
The mouse pointer is turned off.
All event and input device buffers are cleared.
No main menu bar is defined.
Only the default CSR components are available.
Only the base window is defined.
All help levels one defined as HELP_NULL.
The configuration table modified flag is cleared.
The world origin is set to 0, 0 and its extent is set to 8000, 5500.
The viewport origin and extent are set to the full video display surface as defined by
vid_inquire_device.
The clip region origin is set to 0, 0 and its extent is set to 8000,5500.
The cursor position is set to 0,0.
The cursor is turned off.
The cursor type is to VID_BLOCK_CURSOR.
The character attribute is set to NORMAL.
The background color is set to COLOR1 and the foreground color is set to COLOR2.
The line type is set to LINE_SOLID, the line width to LINE_THIN, and the line color to
COLOR4.
The fill pattern is set to PATTERNZ.
The palettes are set according to the loaded video driver.
All configuration states contained within DMCSR.CFG are setup.

Page 7-45

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY ‘
dmcsr_bind_end () -

dmcesr_bind_end is used to terminate the use of the CSR routines. dmcsr_bind_end must be
made if dmesr_bind_Init was made, if not a use count on the CSR would be indicated when
exiting DeskMate.

Input Parameters

None.

Return Value

None.

See Also

dmesr_bind_init()
csr_access_end()
csr_access_init()
csr_end()
csr_init()

Page 7-46

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY

dmesr_bind_init ()

dmesr_bind_init is used to bind to the CSR. lts objective is to allow the user to call CSR
routines without having to create an access session. (To be able to use the core without

changing or creating another window.)
An example of if its use would be in the situation of swapping to a diferent video driver (mode).

Input Parameters

None.

Return Value

None.

See Also

dmcsr_bind_end()
csr_access_end()
csr_access_init()
csr_end()
csr_init()

Page 7-47

i i o

DeskMate Technical Reference
Desk Executive

eform_bind_end ()

eform_bind_end terminates the forms resource loaded by eform_bind_init and unbinds any
resources loaded by the enhanced (far) forms resource.

n r T
None.
Return Value
None.

eform_bind_end requires the application to link with DeskMate 03.05 or later libraries (DM.LIB
or DMMED.LIB).

Page 7-48

DeskMate Technical Reference
Desk Executive

eform_bind_init (Font)

eform_bind_init loads and links to the forms resource as an enhanced (far) forms resource.
This functionality is only available in for use in 1989 DeskMate 03.03.0x and later.

Input Parameters

<char>

If Font is FALSE the enhanced form manager will not support fonts. The font resource and
enhanced video driver will not be loaded into memory.

If Font is TRUE the enhanced form manager will support fonts, and the enhanced video driver will
be loaded into memory.

Return Value
<int>

DM_OK if everything was loaded correctly.
DM_ERROR if the forms resource could not be loaded..

Special Notes

eform_bind_init requires the application to link with DeskMate 03.05 or later libraries (DM.LIB or
DMMED.LIB).

Page 7-49

DeskMate Technical Reference
Desk Executive

GUF Resource Initialization Calls ‘
guf_bind_end ())
In DeskMate 03.03.0x guf_bind_end terminates the applications bindings to both the low-level,

(PRGUF.RES) and high-level, (DMGUF.RES) GUF resources. ;
In DeskMate 03.02.0x guf_bind_end terminates the applications bindings to the GUF resource.

Input Parameters
None.

rnV
None.

guf_bind_end should be made when termination to the GUF resource(s) is desired by the

application. Usually just priorto csr_end.
If the application makes this call it should not make the call to prguf_bind_end.

L

an

Page 7-50

DeskMate Technical Reference
Desk Executive

guf_bind _init ()

In 1989 DeskMate 03.03.0x guf_bind_init sets up the applications bindings to both the low-level,
(PRGUF.RES) and high-level, (DMGUF.RES) GUF resources.

In 1988 DeskMate 03.02.0x guf_bind_init sets up the bindings from the application to the GUF
resource.

Input Parameters

None.

Return Value

DM _ERROR if the high-level GUF resource, DMGUF.RES could not be loaded.

guf_bind_init should be called when the user wishes to use any of the calls in either of the GUF
resources, usually right after csr_init.

If the application makes this call it should not make the call to prguf_bind_init.

Functions included in the high level GUF, DMGUF.RES, which require guf_bind_init:
File /O manager:

dlgbox Generic dlg Run
dlgbox”SaveAs dlg”Run this(new for '89)
fil close error msg fil“create error msg
fil"lseek_error msg fil"menu mérge
fil menu new fil menu” open

fil menu page fil menu_quit

fil menu run fil menu save

fil menu saveas fil"open_error msg
fil"read_error_msg fil"writ€é error msg
file already eXists FilTWithDir

msgbox SaveModifiedData msgbox_SaveChanges
Set_CPU Speed valid Tilename

valid filename w1ld(new for '89)

International Support Routines
get month strings

Printer Support
ptd open

Page 7-51

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY ‘
prguf_bind_end ()

prguf_bind_end terminates the applications bindings to the low-level GUF resource
PRGUF.RES. : :

Input Parameters

None.

prguf_bind_end should be made when termination to the low-level GUF resource, PRGUF.RES
is desired by the application. Usually just prior to csr_end.
prguf_bind_end is automatically made by guf bind_end.

Page 7-52

DeskMate Technical Reference
Desk Executive

1989 DeskMate 03.03.0x ONLY
prguf_bind_init ()

prguf_bind_init sets up the bindings from the application to the low-level GUF resource,
PRGUF.RES.

Input Parameters

None.

Return Value

CSR_ERROR if the low-level GUF resource, PRGUF.RES could not be loaded.
Special Notes

prguf_bind_init should be called when the user wishes to use any of the calls in the low-level
GUF resource, PRGUF.RES, usually right after csr_init.

prguf_bind_init is automatically made by guf_bind_init.

Calls contained in the PRGUF.RES resource:

Functions included in the low level GUF, PRGUF.RES, which require prguf_bind_init:

File 1/0 Manager

Current Disk Delete File
dosENDFIND (new for '89) dosFINDFIRST (new for '89)
dosFINDNEXT {new for '89) dosSTARTFIND (new for '89)
fil access fil close

fil create fil dup

fil force close fil"lock bytes

fil 1lseek™ fil open™

fil read fil"read far(new for '89)
fil7unlock bytes fil write

fil write Tar(new for '89) get free space
Get Directory get drive map

is Tloppy Path Expand
gfn(new for '89) Rename File

Select Disk valid drive

Environment Manager

env add env close

env delete env get

env_open env_replace
env_write env_init disk labels

env_get_disk labels

International Support Routines

compare chars compare chars_ins
get intT str_upper
to upper

Page 7-53

DeskMate Technical Réference
Desk Executive

Spell Resource Initialization Calls

void spell_bind_end ()

spell_bind_end terminates the application interface to the spell checker.
Input Parameters

None

Return Value

None

Special Notes

spell_bind_end should be called at the end of an application in which spell_bind_init was
called.

Page 7-54

DeskMate Technical Reference
Desk Executive

int spell_bind_init ()
spell_bind_init initializes a spell checker session.

Input Parameters

None.

Return Value

DM ERROR if SPELL.RES or SPL.RES cannot be loaded.
NULL if successfully loaded.

spell_bind_init loads the Spell Checker Engine (spl.res), loads and initializes the user
dictionary, and initializes the internal cache.

Any application which uses any of the spell checker functions must first initialize the spell checker
with spell_bind_init.

Page 7-55

DeskMate Technical Reference
Desk Executive

Thesaurus Resource Initialization Calls

thes_bind_end ()

thes_bind_end terminates the applications interface to the thesaurus.

thes_bind_end should be called at the end of an application if thes_bind_init was called.

Page 7-56

DeskMate Technical Reference
Desk Executive

thege. bind_init ()
thes_bind_init initializes a thesaurus session.

Input Parameters

None.

Return Value

DM _ERROR if THES.RES cannot be loaded.
NULL if THES.RES is successfully loaded.

Special Notes

Any application which wishes to use the thesaurus functions must first initialize the thesaurus
with thes_bind_init.

Page 7-57

A ~
L

DeskMate Development System
~ Technical Reference
| 03.05.00

//0:&[03 5«)(Man auier\A

e i e e R e o o 2 ke NG W ™

A

o ﬁ

Dialog Box Manager

Table of Contents

General DesScCription/Notes ..ottt nonnnnnnnns 8- 1
SEruCtures/Defines . ivitiiiit it it ittt it e i, 8- 2
dlg draw Displays a dialog boX.....coviiiiininnrnnsns 8-

dlg draw frameDraws a dialog box frame.................... 8~
dlg run Runs a dialog boX.....oviiiiiiiiiiiinnnnnnn 8-

General Description/Notes

The Dialog Box Manager allows the application to prompt the user for several pieces of
information simultaneously. It manages all of the components within the dialog box and returns
to the application when an action has taken place on a component.

Control is passed back to the application only if an action is taken on a component in the dialog
box. A change of focus without a change of state in a component will NOT return control to the
application.

The coordinates of the component structures within a dialog box are placed relative to the dialog
box window and are in world coordinate terms. The dialog box itself is relative to the base
window.

All components have a return code and upon exit from a dialog box, the return code of the most
recent component action is retumed and also is placed in the dialog box structure. Return codes
for Dialog Boxes and return codes for Menu Bars should always be unique. For example define
dialog box return codes to be APP_TAG + 1, APP_TAG + 2, APP_TAG + 3, etc, and menu bar
return codes to be APP_TAG + 100, APP_TAG + 101, APP_TAG + 102, efc.

Buttons all have an on/off state. They are toggled by a mouse click on them or by hitting the
space bar when the button has the focus.

The tab key changes focus to the next component as determined by the order of the application
assigned focus order in the component pointer hst of the dialog box, and the "back-tab" key
changes focus to the previous component.

Upon entry into the dialog box, all push buttons should be in the BUTTON_UP state.

In most cases, each dialog box should have the standard OK and CANCEL push buttons. This
creates a standard and will aiways allow a path back to the application. The application must
define these push buttons. The OK button should have an accelerator of DLG_OK_KEY and the
CANCEL button should have an accelerator of DLG_CANCEL_KEY (defined in CSRCMPS.H).
general, no other components in a dialog box should have these accelerators. Static strings and
boxes in dialog boxes are not interactive.

When using a menu bar in a dialog box, the menu bar must not be in the tab order. To make

any component not be accessable through the tab and cursor keys set bEnabled 10
CMP_NO_TAB.

Page 8-1

DeskMate Technical Reference
Dialog Box Manager

Structures/Defines
* ' *
;* *;
; : CSRCMPS.H contains the Dialog Box structures and defines *;
*
/* */

Dialog boxes and information boxes use the titled frame structure. A frame defines the outer
boundary of a dialog or information box.

/* Titled frame */
struct frame defn

MAPRECT maprect; /* origin/extent of the frame */
unsigned char *pString; /* pointer to title string for the frame */

}:
typedef struct frame defn FRAME;
Dialog boxes use static strings as labels and messages.

MAPRECT: -
Defines the location and size of the frame. The MAPRECT structure is defined in CSRBASE.H
and should be included in the application.

pString:
The pointer to the title string to be displayed in the frame.
/* Static string */

?truct static_string defn

char bEnabled; /* grayed flag */

int X0rg; /* X origin of string */
int yorg; /* y origin of string */
char attr; /* string attribute */
unsigned char *pString; - /* pointer to string */

}i
typedef struct static_string defn STATIC_STRING;

bEnabled:

This is the state the string is drawn in. If bEnabled is DISABLED, the string is drawn in the
grayed state. If bEnabled is ENABLED, the string is drawn in the normal state. Static strings
can be used as labels for other components. Us the grayed state when the component described
by the string cannot be selected in the application.

xorg and yorg:
The x and y screen coordinates of the first character of the string.

attr:
The text attributes of the characters in the string. Two attributes are supported, BOLD and

UNDERLINE. These are defined in CSRVID.H

pString:
A pointer to the string definition in the application’s data area.

Static boxes visually separate similar or related component groups within dialog boxes. For
example, a radio button group is usually surrounded by a static box to separate it from other
components in a dialog box.

Page 8-2

L

DeskMate Technical Reference
Dialog Box Manager

/* Static box */
struct static _box defn

char type; /* typevof box */
MAPRECT maprect; /* org/ext of box */
char color; /* color of the box */

}i
typedef struct static_box defn STATIC BOX;

type:
Describes the kind of box to be used. The following identify the acceptable values for the type

element in the STATIC BOX structure:
/* Box types */

FLAT BOX 0 /* single thin line box */

RAISED BOX 1 /* 3-D raised block */

PYRAMID 2 /* 3-D pyramid */

DEST FLAT BOX 3 /* thin line box that erases a RAISED BOX */
LISTBOX BOX 4 /* item list border for list boxes */—
GRAYED BOX 0x80 /* flag to make boxes grayed */

ENLARGED BOX 0x40 /* flag to pad frame interior with gap */

MAPRECT:
Defines the location and size of the box. The MAPRECT structure is defined in CSRBASE.H and
should be included in the application.

- 4
/‘/z?r. Cofor s e color
3 e

color: . / '

Selects a valid color (COLOR1 to COLOR1 6) for the interior of the box. “~ 7[/7/(’ fok' 74‘(1 ~e / Af G s
—] N

Static icons are line drawings used to describe options, states, etc. (;J{M_ yj ﬁ/ge \‘urrcmé /)(&«A'ﬁ.’f o f”ff'/

/* Static Icon */ tolor,

struct static_icon_defn

MAPRECT maprect; /* icon org/ext */
} char *pIcon; - /* pointer to icon definition */
typedef struct static_icon_defn STATIC_ ICON;
MAPRECT:
The location and size of the icon. The MAPRECT structure is defined in CSRBASE.H and should
be included in the application.

plcon:
The pointer to the icon definition.

The elements in a dialog box structure define the appearance of the dialog box and some
aspects of how the box will be used.

/* Dialog box */
struct dialog_box defn

char bStatRedraw; /* redraw flag for static items */
unsigned int return value; /* return code */

char : focus Index; /* next focus id */

char help Tevel; /* help level */

FRAME *pFrame; /* pointer to FRAME structure */
char nStrings; /* number of static strings */
STATIC STRING *pStrings; /* ptr to STATIC STRING structs */
char ~ nBoxes; /* number of staftic boxes */

Page 8-3

DeskMate Technical Reference
Dialog Box Manager

STATIC BOX *pBoxes; /* pointer to STATIC BOX structs */

char nicons; /* number of static Icons */ .
STATIC ICON *pIcons; /* pointer to STATIC ICON structs */ A
char ~ nCmps; /* number of components */

char *pRFlags; /* ptr to component redraw flags */

char **pCmps; /* ptr to component pointer list */

}:
typedef struct dialog box defn DIALOG_BOX;

DIALOG_BOX.bStatRedraw:
Redraw flag for static items of the dialog box (DLG_REDRAW or DLG_NO REDRAW). See the
PRFlags element below to redraw components.

DIALOG_BOX.return_value:
The return code returned by the component with the last action.

DIALOG_BOX.focus_index:

The index of the component with the current focus, used to get the focus the next time the box is
run. An index of zero refers to the first component in the component list (pCmps).

DIALOG_BOX.help level:
HELP_ NULL is the only valid value for this element.

DIALOG_BOX.pFrame:

Pointer to FRAME structure
FRAME .maprect :
MAPRECT.xorg world coordinate x origin of the area
to frame. 2
MAPRECT.yorg world coordinate y origin of the area .
to frame. R
MAPRECT . xext world unit x extent of the area to
frame.
MAPRECT.yext }Jorld unit y extent of the area to
rame.
FRAME.pString gointer to the title string of the
rame.

DIALOG_BOX.nStrings:
Number of static strings in the dialog box.

DIALOG_BOX.pStrings:

Pointer to the STATIC_STRING structure for the dlalog
STATIC STRING.xorg world coordinate x origin of string.
STATIC STRING.yorg world coordinate y origin of string.
STATIC STRING.attr character attribute to display the

string with. Any valid character
attribute mag be used.
STATIC_STRING.pString pointer to the string.

DIALOG_BOX.nBoxes:
The number of static boxes in the dialog box.

DIALOG_BOX.pBoxes:

Pointer to the STATIC BOX structures. . .
STATIC BOX.type type of frame to display as defined below.

/* Box types */ P
FLAT BOX 0 ‘

Page 8-4

I\

DeskMate Technical Reference
Dialog Box Manager

RAISED BOX 1
PYRAMID 2
DEST FLAT BOX 3
LISTBOX BUX 4
GRAYED BOX 0x80

ENLARGED BOX 0x40
STATIC BOX.maprect:

MAPRECT.xorg world coordinate x origin relative to the
origin of the dialog box of the area to
draw the frame around.

MAPRECT.yorg world coordinate y origin relative to
the origin the dialog box of the area to
draw the frame around.

MAPRECT.xext world unit x extent of the area to draw
the frame around.
MAPRECT .yext world unit y extent of the area to draw
the frame around.
STATIC BOX.color color of the frame (COLOR1l to COLOR1S6).

DIALOG_BOX.nIcons:
The number of static icons in the dialog box.

DIALOG_BOX.pIcons:

Pointer to the STATIC ICON structures.
STATIC ICON.maprect:

MAPRECT.xo0rg world coordinate x origin of the icon
relative to the origin of the dialog box.
MAPRECT.yorg world coordinate y origin of the icon
relative to the origin of the dialog box.
MAPRECT.xext world unit x extent of the icon.
MAPRECT.yext world unit K extent of the icon.
STATIC ICON.pIcon pointer to a graphic list defining the icon.

DIALOG_BOX.nCmps:
Number of components in the dialog box.

DIALOG_BOX.pRFlags:
Pointer to an array of component redraw flags. There must be a 'char for each component in the
dialog box. Use DLG_REDRAW or DLG_NO REDRAW for each redraw flag.

DIALOG_BOX.pCmps:

A pointer to the component pointer list. The order of the component entries in this list determines
the "TAB order" of the components in the dialog box. The TAB key will move the focus "down”
the list and the BACKTAB key will move the focus "up” the list.

Frame types:

/* Box types */

FLAT BOX 0 * single thin line box */

RAISED BOX 1 /* 3-D raised block */

PYRAMID 2 * 3-D pyramid */

DEST FLAT BOX 3 /* thin line box that erases a RAISED BOX */
*

LISTBOX BUX 4 /* item list border for list boxes */~
GRAYED BOX 0x80 /* flag to make boxes grayed */,
ENLARGED BOX 0x40 /* flag to pad frame interior with gap */

/* Static item redraw flags */ .

DLG REDRAW SELECTED /* causes dlg run to redraw the static */
- /* string, boXes and icons in the */

dialog box. */ _

DLG NO REDRAW DESELECTED /* prevents dlg run from re-drawing the */

S~
*

Page 8-5

DeskMate Technical Reference
Dialog Box Manager

/* static strings, boxes and icons in */
/* the dialog box. */ .

/* No dialog box help */

DLG_NO_HELP CSR_NULL

/* OK and Cancel button accelerators */

DLG_OK KEY RETURN KEY /* the accelerator for the 'OK' button */
/* in a dialog box */

DLG_CANCEL_KEY ESC_KEY /* the accelerator for the 'Cancel’ */

/* button in a dialog box *

/* Request for event appl to be returned to application */
/* or in help level ¥/

DLG APPL REQUEST (MENU TAG+01) /* return code for */
- - - /* appl events */
DLG_RETURN_APPLS 0x80 /* all appl events to */

/* be returned */

* keep a component out of tab order */

* to be ORed into the bEnable element */
/* of the specific component that needs */
/* to be out of the tab order */
CMP_NO_TAB 0x02

Page 8-6

»

DeskMate Technical Reference
Dialog Box Manager

dig_draw (pDIALOG_BOX)
DIALOG_BOX *pDIALOG_BOX;

dlg_draw is used to display a dialog box.

Input Parameters
pDIALOG_BOX is a pointer to a dialog box structure.
Return Value
None.
ial
Dialog boxes are always drawn relative to the base window origin.

Use the following formulas to determine the origin/extent of the area of the screen to preserve for
a dialog box:

xorg = FRAME.xorg-CHAR XEXT

yorg = FRAME.yorg-((CHAR YEXT*3)/2)
xext = FRAME.xext+(2*CHAR_XEXT)
yext = FRAME.yext+(2*CHAR_YEXT)

Page 8-7

DeskMate Technical Reference
Dialog Box Manager

dig_draw_frame (pFRAME)
FRAME *pFRAME;

dig_draw_frame draws the frame with the title in top of the frame.

Input Parameters

pFRAME is a pointer to a FRAME structure.

Return Val
None.
Special Notes
Use the following formulas to determine the origin/extent of the area of the screen to preserve for
a dialog box:
Xorg = FRAME.xorg-CHAR XEXT
yorg = FRAME.yorg-((CHAR YEXT*3)/2)
xext = FRAME.xext+(2*CHAR XEXT)
yext = FRAME.yext+ (2*CHAR_YEXT)

Page 8-8

DeskMate Technical Reference
Dialog Box Manager

dig_run (pDIALOG_BOX)
DIALOG_BOX *pDIALOG_BOX;

dig_run runs the dialog box.
Input Parameters

pDIALOG_BOX is a pointer to a dialog box structure.

Return Val

The return code of the component with the last action.
Special Notes

dig_run is used to get the next update of the dialog box. The bStatRedraw flag in the dialog
box is only used to force the dialog box to redraw the Static component(s) if there is any
Static component(s) which have changed.

The pRFlags pointer is a pointer to a redraw flag list. Each element of the list is a flag
corresponding to a component that indicates whether or not that component is to be redrawn.
There are two areas that the applications may use for re-drawing dialog box pieces. The redraw
structure element, DIALOG_BOX.bStatRedraw, is used to redraw all static icons, strings, and
boxes. The second structure element, DIALOG_BOX.pRFlags, is a pointer to an array of
characters that number exactly the same as the number of components. Each of these chars
may be set to DLG_REDRAW or DLG_NO_REDRAW. The dig_run call will selectively redraw the
components you request. This allows you to optimize your code to only redraw the component(s)
that have been changed by the application. Remember that components are displayed in their
correct current state when the dig_run call returns to the application. A good example is the
listbox/edit field type of dialog box. As the listbox changes you see from
DIALOG_BOX.return value that a CMP_SELECT CHANGE has occurred. Simply update the
edit field structure, set the edit field redraw flag to DLG_REDRAW, and call dig_run. Only the edit
field will be re-displayed. After dig_run re-draws it will automatically reset the flag to
DLG_NO_REDRAW.

For dialog boxes, the return value of dig_run wil continue to return the
CMP_HEADER.return_code of the component that an action has occurred in. The type of
action__(ie.,—the-—return_value from the actual component) will be placed in the

(DIALOG_BOX.return_value.

This—Tzﬂmﬁe‘apy’of'the‘CMP_ returns defined in the component documentation. If the value
is CMP_SELECT_C!-IANGE, the component is informing the application that a change in its'
select status has ocqurred. A change in select status may mean the user has begun selecting
text or terminated a selection in an edit field, or the user has moved the arrow key on a single
selection listbox (thus\deselecting the current item and selecting the next item). NO EVENT IS
LEFT ON THE EVENT, QUE TO BE READ. Except for mouse hold on Push buttons. Therefore,
if other events are not \equired, and event_purge should be called to stop mouse hold events
being returned and the painter being fenced within the push button component.

For the CMP_ACTION retyn, the component has had a change in its' data and focus is now
moving to another componekt. The application may see the component return value in the dialog
box structure. The applicatioh must either return to the dialog box manager via dlg_run without

DeskMate Technical Reference
Dialog Box Manager

clearing the event queue, or terminate the dialog box and clear the event queue via
event_purge.

Page 8-10

Environment Manager

/lélvz’rf(ymm% /%Ufa’?f“

Table of Contents

General DeSCription/NoteSeueereeeeneeeenonnnnannnnnnonss 9-
Structures/Defines ...ttt i i i e e e e 9-
env.addcc.0un. Appends specified to existing data......... 9-
env_close Removes configuration data from memory..... 9-
env_delete Removes all configuration data............. 9-
envgeticnann- Setup configuration data for use........... 9-
eNV_OPen Opens and loads configuration data......... 9-
env_replace Replaces configuration data on disk........ 9-

env_write Writes configuration data to disk.......... 9-

O o ~ oy bW

DeskMate Technical Reference
Environment Manager

General Description/Notes

DeskMate applications which need to store application specific configuration information on the
disk and retrieve it when the application is run may do .so through the Environment manager.
Accessing configuration files involves file opens, reads, writes, disk swapping, user interface, and
error processing that is not easily duplicated in any application that requires configuration
information.

The environment manager stores configuration information for any DeskMate application, and
handles all disk I/0Q and user interface in a consistent manner that does not cost the application
considerable code space.

The environment manager provides two major benefits to DeskMate applications:

1. All configuration information is easily available to any other DeskMate application or accessory
through a standard application interface.

2. Each application and accessory that needs configuration information does not have to perform
the complicated file /0 and disk swapping to store and access the information.

The environment manager is similar in concept to the MS-DOS environment specified with "set"
commands by the computer user. Unlike the MS-DOS environment, which only stores null-
terminated ASCII strings, DeskMate applications may store both ASCII and binary configuration
information. Another special feature is that the environment manager will manage multiple
environment information files simultaneously. :

The application that uses the environment manager requests that it be loaded at initialization with
the call to guf_bind_init. The application issues the env_open call, specifying the name and
location of the environment information file that contains the environment information it needs
access to. The environment manager loads the file, and the application may then access and
update information through calls to env_get, env_add, env_replace and env_delete. When it is
necessary for the application to have the environment information updated to the disk, the
application does so with a call to env_write.

The environment manager maintains all information in memory while DeskMate is active, and
does not read or write environment files unless specified by an application. The information may
be removed from memory by a call to env_close. When reading and writing environment files,
the application may cause the environment manager to look only on the current disk for the
environment file, or may optionally cause the environment manager to perform disk swapping
until the user inserts the disk containing the file or the user cancels.

Page 9-1

DeskMate Technical Reference
Environment Manager

Structures and Defines

All calls to the environment manager require a pointer to an environment data information
structure. This structure and these defines may be found in dmguf.h and dmguf.inc.

/* ___ *
/* *
;* DMGUF.H contains the Environment structures and defines */
* *
/* ___ */
?ypedef struct env_defn
char *pEnvFileName; /* environment data file being accessed */
char *pDosEnvString; /* MS-DOS environment variable */
/* specifying path of data file */
char bSwap; /* flag to disk swap until disk is */
/* found containing env data file */
char *pDmEnvString; /* name of DeskMate env data being */
/* accessed in data file */
char far *pDatalnfo; /* pointer to the specified */
/* environment data */
int Datalen; /* length in bytes of the environment data */
}ENVDATA;

Values for bSwap are:

ENV SWAP DISABLED 0 /* look on the current disk only for */
- - /* the file */
ENV SWAP ENABLED 1 /* if file is not found, prompt user */
B - /* to insert disk and retry */
ENV SWAP CREATE 2
ENVNO CREATE 3 /* allows an application to create */
- /* temporary memory-only environment */
/* data which is only used during a */
/* single DeskMate session */
ENV CANCEL =2

Page 9-2

DeskMate Technical Reference
Environment Manager

env_add (pENVDATA)
ENVDATA *pENVDATA;

env_add gppends the specified configuration data to the end of the existing configuration data
that is referred to by the name specified by pDmEnvString. If no configuration data exists for
pDmEnvString, then a new entry for the configuration information will be started.

Input Parameters

pEnvFileName must point to a string specifying the name of the environment data file that the
application wishes to update. This string may be a file name or a complete pathname.
pDmEnvString must point to a string specifying the name of the DeskMate environment variable
that references the environment data that the application wishes to update.

pData points to the first byte of the application's environment data to be added to the specified
environment data file. The environment manager copies this information from the application into
it's own data buffer.

DataLen specifies the number of bytes of environment data that the application wishes to add to
the environment data file.

Return Values

<int>
_CSR_ERROR if there is not enough memory in the environment manager to store the specified
environment data, or the filename has not been previously opened.

Page 9-3

DeskMate Technical Reference
Environment Manager

env_close (pEnvData)
ENVDATA *pEnvData;

env_close removes all configuration data from memory for the specified file.
n m I

pEnvFileName must point to a string specifying the name of the environment data file that the
application wishes to access. This string may be a file name or a complete pathname.
pDosEnvString must point to a string specifying the name of the MS-DOS environment
variable that specifies the path of where to find the environment data file. If no variable exists in
the MS-DOS environment under this name, then the environment manager will access the file in
the subdirectory specified by the pEnvFileName string. If pEnvFileName does not specify a
drive and directory, then the environment manager will look for the data file in the current
directory. pDosEnvString cannot contain multiple paths (ie: the PATH environment variable is
not allowed).

Return Value
CSR_ERROR if the specified data is not in memory.
Special Notes

env_close WILL NOT write any data to disk before removing it from memory. env_close must TN
be called with the same pEnvFileName and pDosEnvString as when it was opened.

Page 9-4

DeskMate Technical Reference
Environment Manager

env_delete (pEnvData)
ENVDATA *pEnvData;

env_delete removes configuration data referred to by the name specified by pDmEnvString
from the specified environment data file.

Input Parameters

pEnvFileName must point to a string specifying the name of the environment data file that the
application wishes to update. This string may be a file name or a complete pathname.
pDmEnvSt ring must point to a string specifying the name of the DeskMate environment variable
that references the environment data that the application wishes to delete.

Return Values

<int>
CSR_ERROR if no environment data exists under the name specified by pDmEnvSt ring, or the
filename has not been previously opened.

Special Notes

The file will remain registered in memory and if it has multiple pDmEnvSt ring's, the other strings
will remain. The disk file will not be updated by env_delete.

Page 9-5

DeskMate Technical Reference
Environment Manager

env_get (pEnvData)
ENVDATA *pEnvData;

env_get sets the far pointer, pData to the first byte of configuration data that is referred to by the
name specified by pDmEnvSt ring.

Input Parameters

pEnvFileName must point to a string specifying the name of the environment data file that the

application wishes to access. This string may be a file name or a complete pathname.
pDmEnvSt ring must point to a string specifying the name of the DeskMate environment variable

that references the environment data that the application wishes to access.

pData points to the first byte of data in the environment manager data buffer that is referenced
by the specified DeskMate environment variable in the specified environment data file. The
application should copy this information from the environment manager into it's own data buffer.
DatalLen specifies the number of bytes of environment data for pDmEnvSt ring.

Return Values

<int>
CSR_ERROR if no environment data exists under the name specified by pDmEnvString, or the

filename has not been previously opened.

Page 9-6

DeskMate Technical Reference
Environment Manager

env_open (pEnvData)
ENVDATA *pEnvData;

env_open opens the configuration data file specified by pEnvFileName and loads it into
memory.

Input Parameters

pEnvFileName must point to a string specifying the name of the environment data file that the
application wishes to access. This string may be a file name or a complete pathname.
pDosEnvString must point to a string specifying the name of the MS-DOS environment
variable that specifies the path of where to find the environment data file. If no variable exists in
the MS-DOS environment under this name, then the environment manager will access the file in
the subdirectory specified by the pEnvFileName string. If pEnvFileName does not specify a
pathname, then the environment manager will look for the data file in the current directory.
pDosEnvString cannot contain multiple paths (ie: the PATH environment variable is not
allowed).

bswap specifies whether to disk swap to find the environment data file. If set to
ENV_SWAP ENABLED it will look for the file in the path specified by pDosEnvstring and
pEnvFileName. If the file is not found, it calls dm_file_search to determine if it exists anywhere
in the system. dm_file_search either finds the file or prompts the user to insert the disk
containing the file with RETRY and CANCEL prompts. If the user CANCEL's, the file is not
created. If bswap is set to ENV_SWAP_DISABLED it looks on the current disk only, if not found it
creates the empty file. If bswap is set to ENV_NO_CREATE and if the file is not already opened
and registered with the environment manager it registers the file in RAM. It does NOT do any
searching for the file, and does NOT create the file.

Return Values

<int>
CSR_ERROR if:

an error occurred opening or loading the data file.

an error occurred creating the data file.

there is not enough environment memory left to load the data file.
ENV_CANCEL if:

the user chose to CANCEL from disk swapping.

if bswap is ENABLED the file did not get created.

A/Mc 010 ﬂe aéova i3 correcf it /W{' nE {;{)05 EIWS]F”M) is /[Q@NHQ

jf /)Dojglt\/ J/'ﬂnj & g noll 5747,7 bhe onvironment marager will be cor /)M
ccUJS"’Lj {f’véu/’ uncler PeskMete 3, #2. (7Y Uholer ML,)pg/’vF Ncma
FMAmL& A CO&«/)/@AE/M% /YL Iiu)SI," ée M 7(}([Cfrfsml o//n’c/or)(or -/148 a/lrecforv
specitiedl b, 4) |
@os&v /2;7 Zn&//e Page 90;6\;/)//# v NULL mw(Use Se}_ 0:}5(%7()/,L@
Zw/ a Jpwé‘c ?ﬁvaML [h A 5/@4} o hvcfk?z

PERN. K S IRBUIPRBICT- -3¢ S i

DeskMate Technical Reference
Environment Manager

env_replace (pEnvData)
ENVDATA *pEnvData;

env_replace replaces the specified configuration that is referred to by the name specified by
pDmEnvString. If no configuration data exists for pDmEnvString, then a new entry for the

configuration information will be started.

Input Parameters

pEnvFileName must point to a string specifying the name of the environment data file that the

application wishes to update. This string may be a file name or a complete pathname.
pDmEnvSt ring must point to a string specifying the name of the DeskMate environment variable

that references the environment data that the application wishes to update.
pData points to the first byte of the application's environment data to be added to the specified

environment data file. The environment manager copies this information from the application into

it's own data buffer.
DataLen specifies the number of bytes of environment data that the application wishes to add to

the environment data file.

Return Values

<int>
CSR_ERROR is returned if there is not enough memory in the environment manager to store the
specified environment data, or the filename has not been previously opened.

Page 9-8

DeskMate Technical Reference
Environment Manager

env_write (pEnvData)
ENVDATA *pEnvData;

env_write writes all current configuration data in the specified environment data file to the disk.

Input Parameters

pEnvFileName must point to a string specifying the name of the environment data file that the
application wishes to write. This string may be a file name or a complete pathname.
pDosEnvString must point to a string specifying the name of the MS-DOS environment
variable that specifies the path of where to find the environment data file. If no variable exists in
the MS-DOS environment under this name, then the environment manager will write the file in the
subdirectory specified by the pEnvFileName string. If pEnvFileName does not specify a
pathname, then the environment manager will write the data file in the current directory only.

if bSwap is set to ENV_SWAP_ENABLED or ENV_SWAP_CREATE, it searches for the file via the
pDosEnvString and pEnvFileName. If the file is not found, it calls dm_file_search. If
dm_file_search cannot find the file, the user will be prompted to insert a disk containing the file
or CANCEL. If the file is found, the data will be written to disk. If the user CANCEL's and bSwap
is set to ENV_SWAP ENABLED, th file is not created. If the user CANCEL's and bSwap is set to
ENV_SWAP_CREATE, the file is created and written. If bSwap is set to ENV_SWAP_DISABLED it
looks on the current disk only, if not found, it creates the file and writes it.

Return Values

<int>

CSR_ERROR if an error occurred opening or writing the data file or there is not enough disk space
to write the data file.

ENV_CANCEL if the user chose to CANCEL from disk swapping

Page 9-9

Event Manager

/févac/’ /{Mﬁ?ef)

Structures/Defines

event_add edriver ...
event_add interp
event delete edriver
event_delete_interp .
event_get_uninterp ..
event purge

event read

event scan

event write

Table of Contents

General Description/NOteS ..veiivriierieennneereeeennaneneeenns 10~ 1
.. 10- 3

.Adds a user defined event driver......... 10- 6

Adds a user defined interpreter.......... 10- 7

.Deletes a user defined event driver...... 10- 8

.Deletes a user defined interpreter....... 10- 9

.Gets an uninterpreted event.............. 10-10

Purges event from event queue............ 10-11

Returns an event........... ..ot 10-12

Scans for anevent......o i, 10-13

DeskMate Technical Reference
Event Manager

General Description/Notes

The event manager will return events from both the keyboard and the pointing device. All events
returned have a message type, a parameter, and a set of coordinates for mouse events. The
event manager will also determine if the event has occurred inside or outside the currently active
window. If an event is outside the active window, an EVENT OUTSIDE message will be returned.

There is a maximum of two events stored at any one time.

About Hot Spots:

A hot spot is an item or an area of the display that has been defined by the application as being
an item on display area that it wishes the event manager to monitor. When an action occurs on a
hot spot, the event manager notifies the application by returning a command event (see below).
Hot spots may only be defined by opening a component or drawing a main menu bar. Generally,
a hot spot will have a keyboard accelerator and/or a display rectangle defined for it. If the user
presses the keyboard accelerator or generates a mouse button event while the mouse pointer is
within the defined display rectangle, the event manager will translate the event to the appropriate
command event. Only the window in which the hot spot was created may receive the command
event for that hot spot. All other windows will be returned as an outside event, with the exception
of mouse events on covered hot spots, as described below for EVENT _COMMAND.

There is a fixed 2K buffer used to track windows and hot spots. Each newly created window
uses 40 hex bytes, each hot spot uses 12 hex bytes. For example;

MAX window buffer size = 2048 bytes (39 windows)
each win group init = - 68 bytes (done by each csr_init)
1980 bytes
menu bar entry = = 16 bytes (hot spot entry)
1964 bytes
each menu button = X bytes (No. buttons * 32)
BUFFER

each menu item w/accel X bytes (No. items * 16)

BUFFER

For each menu button F9 or F10 it takes one hot spot. (16 bytes each)

Each window created by an application (win_open) is one window. (52 bytes)

Each component created/opened (cmp_open (non push button)) is one hot spot. (16 bytes)
Each push button with DEFAULT_ACCELERATOR is 2 hot spots. (32 bytes)

Each push button with other than DEFAULT_ACCELERATOR is one hot spot. (16 bytes)

no. windows available = BUFFER - ((num windows*52)+(num hot spots*16))

Note: You must allow for one window entry to exist (free), to use the component manager.

Page 10-1

DeskMate Technical Reference
Event Manager

There are currently six types of events that may be returned:

EVENT COMMAND: A command event is returned when an event caused by the mouse click or
pressing an accelerator of another component in the current active window. A command event
is not returned when the focus is on the component and either the mouse click or an accelerator
key is pressed on that component.

EVENT CHAR: A character event is a keyboard action and the key code is returned in the event
parameter when this message type is returned. '

EVENT MOUSE: The return of a mouse event indicates that a mouse click has occurred. The
type of the mouse click can be found in the event parameter and the position of the mouse
pointer can be found in the event x and y elements. Note that if the mouse is clicked on a
component, the action will be returned as an EVENT COMMAND and not an EVENT_MOUSE. When
a mouse button hold sequence is initiated, the mouse pointer will be limited to the active window
until the button is released, and therefore, a hold sequence cannot generate an outside event.
Also, only the window that read the mouse button down event will be able to read any other
events associated to that hold sequence.

EVENT OUTSIDE: An outside message type is returned when an action has occurred outside
the currently active window. The application must decide upon receipt of an outside event
whether to activate the parent window to process the event or to ignore the outside event. If the
application chooses to process the event, it must activate the parent window and call event_read
again to get the event message type and parameter. If the application chooses to ignore the
event, it must purge the pending event with event_purge before making any other calls to
event_read.

EVENT APPL: This message type indicates that a special CSR defined event has occurred.
There are six types of parameters that may accompany this event: APPL ACCESS,
APPL REDRAW VID, APPL REDRAW_VGM, APPL TASK SWITCH, APPL STAT, and
APPL ALARM. If APPL ACCESS is returned, it means that an accessory has been chosen by the
user. It is the responsiEiIity of the application to run the accessory through an Executive routine.
The number of the accessory to run can be found in the event x element. If APPL REDRAW VID
is returned, it means that the application must redraw its display. If APPL REDRAW VGM is
returned, it means the application needs to redraw its form. 1f APPL, TASK SWITCH is returned
it means the user has requested a Task Switch. APPL STAT is used for the applications
interpreters, explained below. An APPL ALARM is returned when an alarm item has been
selected.

EVENT NULL: This message type is only returned by the event_scan routine and indicates that
there is no event available.

About key codes returned by the Event Manager:

All normal ASCII key codes are returned in an EVENT structure in the application’s data area. If
the user strikes a normal ASCIl key, the "msg" element of the EVENT structure will be
EVENT CHAR and the "param” element will hold the ASCII code of the key.

Other non-ASCIi keys are returned in the same way, and the application should use the CSR key
defines to reference these keys. It is suggested that the keys be referenced by their functions
described in the Keyboard Manager section of this manual.

Page 10-2

DeskMate Technical Reference
Event Manager

Structures/Defines
K o ot e e e e o e e o e B o e o S B A B e S e o e e e e e o o S *
/x Y
;: CSRBASE.H contains the Event structure and defines */
*
K e e e e e e e e x/
/* Event Manager */
struct event defn
char nmsg; /* event type */
unsigned int param; /* event parameter */
int X; /* event mouse x */
int v /* event mouse y */

}i
typedef struct event defn EVENT;

EVENT.msg char - event type as defined below.
EVENT.param int - event parameter as defined below.
EVENT.x int - normalized world coordinate x position of the

event (-32768 to 32768). This element is
valid only if 'msg' is EVENT MOUSE.

EVENT.y int - normalized world coordinate y position of the
event (-32768 to 32768). This element is
valid only if 'msg' is EVENT MOUSE.

/* Event types for msg element */
EVENT NULL 0 /* no event only returned by event scan */
EVENT CHAR 1 /* character event generated by */~
- /* keyboard {(destructive) */
EVENT MOUSE 2 /* mouse click event - generated by */
- /* pointing device (destructive) */
EVENT COMMAND 3 /* command event - event on a hotspot */
B /* (destructive) */
EVENT OUTSIDE 4 /* outside event - event outside current*/
- /* active window (non-destructive) */
5 /* reevaluate raw event - forces a */
/* reevaluation of the raw event which */
/* generated the most recent event. */
/* This event type will never be */
/* returned from the Event Manager, but */
/* is used when using 'event write') */

EVENT REEVALUATE

EVENT APPL 6 /* special application message */
- /* (destructive) */
EVENT _MENU 7 /* special menubar event */

/* Mouse event types for param element */

MS CLICK (MOUSE TAG+1) /* single click */

MS DBL CLICK {MOUSE TAG+2) * double click */

MSTBUTTON DOWN (MOUSE TAG+3) * button down (begin repeat) */
MSTHOLD ~— (MOUSE TAG+4) /* button held (repeating) */

MS BUTTON UP (MOUSE™ TAG+5) * button released (end repeat) */
MS SHFT CLICK (MOUSE:TAG+6) /* shifted click */

Page 10-3

DeskMate Technical Reference
Event Manager

/* BApplication messages for param element */ .
APPL REDRAW VID 1 /* redraw video */ ‘
APPL REDRAW VGM 2 /* redraw form */ _44
APPL_ACCESS™ 3 /* an accessory has been selected by */

/* the user that the application needs */
/* to invoke. */

APPL TASK SWITCH 4 /* task switch requested */
APPL™STAT 5 /* request for immediate Appl attention */
APPL ALARM 6 /* an alarm item has been selected */

/* Definable event drivers and interpreters */
struct edriver defn

int (far *pInit) (), /* This element is a far pointer to the
driver initialization procedure.
The initialization procedures are
called when the CSR received a new
task data segment. This routine is
responsible for initializing any
task data within the module that it
resides that 1s pertinent to the
event driver.

ENTRY: None.
_ EXIT: None.*/
int (far *pRead) (); /* This element is a far pointer to the

driver read procedure. This routine
is called by event scan/event read
only when none of The built-in event
drivers and none of the event
drivers registered prior to this
event driver have no events pending.
This procedure typically should -
return the pending event and remove .
the event from its own queue (if

any). If the event driver has no

event pending, it must return a null

event.
ENTRY: ds:di points to an EVENT
structure

EXIT: the passed event structure
must contain a valid event of the
event driver or a null event. */

int (far *pResrvl) (); /* This element is reserved for future
use of event drivers. This should

oint to a far return. */

int (far *pResrv2)(); /* This element is reserved for future
use of event drivers. This should
point to a far return. */

}i
typedef struct edriver defn EDRIVER;
struct interp defn

char priority; /* This element specifies the

, priority of the event interpreter.
If it is set to EVENT HIGH PRIORITY,
the interpreter will be caTlled
before the built-in interpreters.
If it is set to EVENT LOW PRIORITY,
the interpreter will be called after
the built~-in interpreters. No
interpreters are allowed to take ‘
precedence over the record/playback .
interpreter.*/

Page 10-4

DeskMate Technical Reference
Event Manager

int (far *pInterp) (); /* This element is a far pointer to
interpreter procedure. This routine
must preserve all registers and the
direction flag. This procedure may
or may not modify the current event
by overwriting the current event.
The interpreter may not cause the
event manager to "drop" events.
Events may be modified, but should
never be lost. In particular, a
mouse button up event must pass
through the built-in interpreters
for proper mouse hold processing to
occur. :
ENTRY: ds:di = pointer to an EVENT
structure containing the current
event.
EXIT: None.*/

}i
typedef struct interp defn INTERP;

EVENT HIGH PRIORITY 1
EVENT LOW_PRIORITY 2

Page 10-5

DeskMate Technical Reference
Event Manager

event_add_edriver (pEDRIVER)
EDRIVER *pEDRIVER;

event_add_edriver allows a CSR user defined device driver to be polled by the event manager.
n I | o

PEDRIVER is a pointer to an EDRIVER structure.

Returp Value

<int>
The handle of the event driver.
CSR_ERROR if the device driver table is full.

Special Notes

The event driver's structure is added to the event manager's driver list and will be considered to
be available at all times. The module in which the driver routines reside must remove the event
driver if it terminates without remaining resident. All of the driver routines specified by the
EDRIVER structure must point to executable routines, i.e. if no routine is required for a procedure
then the pointer must point to a far return.

The added event driver routines must preserve the ES segment register.

The added event driver should not make direct calls into DOS.

The added event drivers have a lower priority than the mouse and keyboard drivers. The event
drivers initialization routine will be called when added.

See Also

EDRIVER structure listed above.

Page 10-6

DeskMate Technical Reference
Event Manager

event_add_interp (pINTERP)
INTERP *pINTERP;

event_add_interp adds a CSR user event interpreter to the event manager.

Input Parameters

PINTERP is a pointer to an INTERP structure.
rn Val

<int>
The handle of the interpreter.
CSR_ERROR if the interpreter table is full.

Special Notes

The event interpreter's structure is added to the event manager's interpreter list and will be
considered to be available at all times. The module in which the interpreter routine resides must
remove the event interpreter if it terminates without remaining resident. The interpreter routine
specified by the INTERP structure is assumed to have an assembly interface.

The added event interpreter routine must preserve the ES segment register.
The added event interpreter should not make direct calls into DOS.

See Also

INTERP structure listed above.

Page 10-7

DeskMate Technical Reference
Event Manager

event_delete_edriver (handle)
int handle;

event_delete_edriver removes an event driver from the event manager's driver list.

Input Parameters

handle is the handle of the event driver to delete as returned by event_add_edriver.

event_delete_edriver must be made prior to the module containing the event driver terminating
and leaving memory.

See Also

event_add_edriver()

Page 10-8

DeskMate Technical Reference
Event Manager

event_delete interp (handle)
int handle;

event_delete_interp removes a CSR user interpreter.

Input Parameters
<int>

handle is the handle of the event interpreter to delete as returned by event_add_interp.
Return Val

None.

Special Notes

event_delete_interp must be made prior to the module containing the event interpreter
terminating and leaving memory.

See Also

event_add_interp()

-Page 10-9

DeskMate Technical Reference
Event Manager

event_get_uninterp (pEVENT)
EVENT *pEVENT;

event_get_uninterp determines the uninterpreted event that generated the last event returned
by the event manager.

Input Parameters

pEVENT is a pointer to an EVENT structure.
rn Val

None.

Special Notes

Technical Description:

The event manager process events with a two step procedure: 1) get the current base or raw
event and 2) interpret that event. The result is an interpreted event. event_get_uninterp
returns the uninterpreted or raw event which was used to derive the interpreted event. An
uninterpreted event may come from one of three sources: 1) a built-in or added device driver (a
raw event), 2) the message queue (a message event resulting from an event_write), or 3) the
current raw event (a raw event from a device driver that has only been scanned.) Assuming that
no "unusual' event drivers have been added, event_get_uninterp will return a raw event or a
message event. An outside or command event cannot be returned by this service (outside
events cannot be written to the message queue.) A command event may be returned, but only if
the event came from the message queue. Raw events (mouse or character events) may come
from any of the three uninterpreted event sources.

Please note the mouse events will have device coordinates and not world coordinates. If they
are to be used with world coordinates and window relative comparisons they must be converted
using the vid_dcx_to_wex, and vid_dcy_to_wecy calls.

Non-technical Description:

If you get an outside or command event and you simply must know what key or mouse action
caused that event, then use this service.

See Also

vid_dcx_to_wex()
vid_dcy_to_wcy()
event_write

Page 10-10

¢

DeskMate Technical Reference
Event Manager

event_purge ()

event_purge removes the current event from the event queue.

Input Parameters
None.

Return Value
None.

Special Notes

An example of when event_purge is used is when an event has occurred outside the
application's currently active window and the application chooses not to service the event.

If an event was written (via event_write) while a new event was in the event queue, only the
written event will be purged.

event_purge will stop any mouse hold processing, until the mouse button is released.

Example

event purge();

Page 10-11

DeskMate Technical Reference
Event Manager

event_read (pEVENT)
EVENT *pEVENT,;

event_read returns an event.

n ram T

PEVENT is a pointer to an EVENT structure.

Return Valye

None.

Special Notes

event_read waits for an event from the user and fills the specified structure. The event is
removed from the event queue when read, unless it is an outside event. If a main menu bar has
been defined via the mb_draw routine, then event_read will process that menu bar for the
application and any other interpreters.

A task switch event will be returned to child windows differently based on whether the user
invokes the task switch via the F10 Accessory Menu or with the ALT+= accelerator. If the task
switch is invoked via the F10 Accessory Menu only the base window (e.g. the window in which
the main menu bar was created) will receive the task switch event. All other windows will receive
an outside event. However, if ALT+= is used the task switch event will be retumed to all
windows. No window will receive an outside event.

Example

EVENT EventStruct:
EVENT *pEvent;

pEvent = &EventStruct;

/* read an event */
event_read(pEvent);

Page 10-12

DeskMate Technical Reference
Event Manager

event_scan (pEVENT)
EVENT *pEVENT;

event_scan polls for an event.

Input Parameters ‘

pEVENT is a pointer to an EVENT structure.

Return Value

None.
ial

event_scan fills the specified structure with the current event. The event is NOT removed from
the event queue. If no event is available, then the specified EVENT structure will contain an
EVENT_NULL for the message type upon return to the application. If a main menu bar has been
defined via the mb_draw routine, then event_scan will process that menu bar for the application.

A task switch event will be retumed to child windows differently based on whether the user

invokes the task switch via the F10 Accessory Menu or with the ALT+= accelerator. If the task

switch is invoked via the F10 Accessory Menu only the base window (e.g. the window in which
.. the main menu bar was created) will receive the task switch event. All other windows will receive
an outside event. However, it ALT+= is used the task switch event will be retumed to all
windows. No window will receive an outside event.

Example

EVENT EventStruct:;
EVENT *pEvent;

pEvent = &EventStruct;

/* scan for an event */
event_scan(pEvent);

Page 10-13

DeskMate Technical Reference
Event Manager

event_write (pEVENT)
EVENT *pEVENT;

event_write places the specified event on the event queue.

Input Parameters

PEVENT is a pointer to an EVENT structure.

event_write places an event into the event queue, usually for the purpose of "passing” the event
to another window. The specified event message type and parameter will be returned to the next
call to event_read or event_scan exactly as defined and regardiess of the window that the event
is read from. Mouse events will re-evaluate the x and y elements for the next caller, but will NOT
evaluate outside events. If the specified event message type is EVENT REEVALUATE, then the
current “raw” event will be re-evaluated and retumed to the next caller. This will cause a full
evaluation for the next cailer, inciuding evaluation of outside events. In this case, the next caller
will NOT receive an event message type and parameter as defined in the specified structure. -

If the message type of the specified event is not an EVENT REEVALUATE, any pending event in
the event queue will not be affected by event_write. The event written will be retumed to the
next caller, e.g. a written event will have priority over a pending event. Once the written event
has been removed from the event queues the pending event will be retumed upon the next
event_read or event_scan.

Example

EVENT EventStruct;
EVENT *pEvent:;

pEvent = &EventStruct:
/* write an event */
event_write(pEvent);

Page 10-14

: ‘ ;
Y I I I -

File I/O Manager

//}7/6 I/O M‘“‘“j@’m

Table of Contents

General Description/NOteS . .uueeeeereeeeaeeaeonsssssnanoeannnsas 11- 1

SErUCEULES/ D iNeS vttt ittt ittt ittt taeeesr e e 11-

Current Disk Returns the current active disk......... 11-

Delete File Deletes a file......coivivivii, 11-

dlgbox Generic Displays OPEN/MERGE/LOAD dialog box..... 11-

dlgbox Run Displays the RUN dialog box............. 11-10
dlgbox Run this Display RUN DB, prompts filled......... 11-11
dlgbox SaveAs Displays the SAVE AS'dialog box......... 11-12
dosENDFIND............. Restores old Disk Transfer Area to DTA..11-13
dosFINDFIRST........... Attempts to locate a file name match....11-14
dosFINDNEXT............ Locates next file or directory match....11-15
dosSTARTFIND........... Establishes a new Disk Transfer Area....l11-16
file already exists ...Determines if a file exists............. 11-17
FillWithDir Fills a list box with a set of files....11-18
fil access Returns file attributes................. 11-19
fil close Closes a file.... ..., ...11-20
fil close error msg ...Displays close error messagesS........... 11-21
fil commit Writes buffered file data to disk....... 11-22
fil create Creates a file......cvviiiiiiiiinnenen, 11-23
fil create error msg ..Displays create error messages.......... 11-24
fil dup ..ol Duplicates a file handle................ 11-25
fil force close Forces DOS to close a file.............. 11-26
fil lock bytes Locks specified portion of file......... 11-27
fil lseek Seeks to an offset in a file............ 11-28
fil lseek error msg ...Displays lseek error messagesS........... 11-29
fil menu merge Merges a file.....oviiiiviiiiininnnnnnn 11-30
fil menu new Takes the application to a "new" state..11-32
fil menu open Prompts the user for file to open....... 11-34
fil menu page Runs the page setup accesSSOrY........... 11-36
fil menu quit Sets up the datafile so app may exit....11-37
fil menu run Prompts user to run of alternate app....11-38
fil menu save Saves applications data in memory....... 11-39

fil menu saveas Prompts user for filename to save data..l11-40

fil open Opens a file......ciiiii i, 11-41
fil open error msgDisplays open error messagesS............ 11-43
fil read Reads from a file................ 11-44
fil read error msgDisplays read error messageS............ 11-45
fil read far Reads a file from far memory............ 11-46
fil unlock bytes Unlocks specified portion of a file..... 11-48
fil write Writes to a file....iviiiiiiiiiiennnnnn. 11-49
fil write error msg ...Displays write error messages........... 11-50
fil write far Writes a file from far memory........... 11-51
Get Directory Gets the current directory.............. 11-53
get drive map Gets bitmap of all drives in system..... 11-54
get free space Gets the amount of disk free space...... 11-55
guf bind end........... Terminates bindings to GUF resources....1l1-56
guf bind init.......... Initializes bindings to GUF resources...l11-57
is floppy .-v.vevernienn Determines if a drive is removable...... 11-58
msgbox SaveChangesDisplays the SAVE CHANGES message box...11-59
Path Expand Expands a partial path.................. 11-60
prguf bind end......... Terminate bindings to low-level GUF..... 11-62
prguf bind init........ Initializes bindings to low-level GUF...11-63
gfn. ..., Qualifies a path as existing in drive...1l1-64
Rename File Renames a file..........coiiiiiiiinnne, 11-66
Select Disk Selects the specified drive............. 11-67
Set CPU Speed Sets the CPU speed.......ccvvvviiinnaan. 11-68
Set Directory Sets the current directory as specified.11-69
valid drive Determines if specified drive is valid..11-70
valid filename Verifies correctness of filename chars..11-71
valid filename wild ...Verifies filename using wildcard char...11-72

DeskMate Technical Reference
File I/0O Manager

General Description/Notes

DeskMate File /O provides three levels of /O support, including low level direct access, hlgh
level block oriented support including user interface management, and a database.

In order to use these File I/O routines the user must call either guf_bind_init or prguf_bind_init
depending upon the level of support the application needs. See below for an explanation of
which resources contain which functions.

Low Level File /O

The low level file I/O consists of 8 calls which perform direct file access such as opening,
reading, and writing disk files. These familiar calls allow the application complete freedom to
manage data files in any way necessary. At the same time the application must fully perform
tasks such as interacting with the user, error handling and disk swapping. The only errors
handled by the low level calls are critical disk I/O errors such as the user leaving the drive door
open, bad media errors or write protect errors.

If dmerrno contains a value of DM_ERROR (-1) it means that a critical error (other than write

protect) occurred and the user chose the CANCEL action from the "Disk not ready” message
box.

If dmerrno contains a value of -2, it means that the user chose the CANCEL action from the
"Write protect” message box.

It is necessary for the application to extern the variable "dmerrno" if it is using the low level 1/O
calls, so that it may check if an error occurs during any of the /O calls. The critical error routine
will be set up by desk for ali applications. Desk will also be responsible for displaying a
RETRY/CANCEL message box in the event a critical I/O error occurs. If the application makes a
low level call and is returned a critical error value, it should call fil_force close to force the
closure of the file and allow DOS to properly free its resources.

High Level File /0

The high level /O suppont consists of eight calls which perform the standard "File menu"
functions. (New, Open..., Save, etc) for applications's whose data is in a single contiguous block.
These calls completely manage the low level calls, including all interaction with the user and all
error handling. They also maintain a consistent user interface for the “file menu” functions across
all applications. High level file /O is very useful because the application does not have to
develop any file I/O functions at all with the exception of managing these calls.

High level /0O also performs an optional service of saving the current page setup with each
individual datafile, and storing an identifier with each data file so that application's can distinguish
data files in a way other than by the file extension. This file identifier and the page setup
information is stored in a header which is automatically created at the beginning of each data file
and the management of this header information is completely invisible to the application.

Miscellaneous File I/O Routines
These are some general file manipulation routines which are provided for use by the application.

Database File I/0
The database file /0 is discussed further in the database section of this manual.

Page 11-1

DeskMate Technical Reference
File /0 Manager

1989 Summary of changes to the File I/O

In 1989 DeskMate 03.03.0x the GUF resource was split into two resources, the high level
functions contained in DMGUF.RES, and the low level functions contained in PRGUF.RES.
There are separate initialization calls for each different part. When binding to the high level
resource (DMGUF.RES), the low level resource (PRGUF.RES) binding is automatic. The
application only need bind to the resource it uses. Below is a list of the different functions
contained in the different resources.

Functions included in the high level GUF, DMGUF.RES, which require guf_bind_init:

digbox_Generic dig Run
digbox_SaveAs dig_Run_this(new for '89)
fil_close_error_msg fil_create_error_msg
fil_lseek_error_msg fil_Lmenu_merge
fil_menu_new fil_menu_open
fil_menu_page fil_menu_quit
fiL_Lmenu_run fil_menu_save
fil_menu_saveas fil_open_error_msg
fil_read_error_msg fil_write_error_msg
file_already_exists FillwithDir
msgbox_SaveModifiedData msgbox_SaveChanges
Set_CPU_Speed valid_filename

valid_filename_wild(new for '89)

Functions included in the low level GUF, PRGUF.RES, which require prguf_bind_init:

Current_Disk Delete_File '

dosENDFIND(new for '89) dosFINDFIRST(new for '89)
dosFINDNEXT(new for '89) dosSTARTFIND(new for '89)

fil_access fil_close
fil_create fil_dup
fil_force_close fil_lock_bytes
fil_lseek fil_open
fil_read fil_read_far(new for '89)
fil_unlock_bytes fil_write
fil_write_far(new for '89) get_free_space
Get_Directory get_drive_map
is_floppy Path_Expand
gfn(new for '89) Rename_File
Select_Disk valid_drive

Page 11-2

DeskMate Technical Reference
File IO Manager

Structures/Defines

£ T _—— e _ * /

/* ' */

;: DMGUF.H contains the File I/0 structures and defines */
*

R -—--- --- -/

WILD 1
NO_WILD 0

FILE HEADER LENGTH 22

/* file access modes */
OPEN FOR READ
OPEN FOR WRITE

OPEN_FOR UPDATE

NEREO

/* file sharing modes (OR with a file access mode from above) */
EXCLUSIVE 0X90

DENY WRITE 0XA0
DENY READ 0XB0
DENY_NONE 0XCO /* share */

OPEN FOR UPDATE SHARE 0xA2
OPEN READ DENY NONE 0xCO

OPEN NO DIALOG

/* do not use a dialog box on open */
OPEN WITH DIALOG

/* use a dialog box on the open */

MERGE NO DIALOG

1
0
/* file menu merge *{
MERGE WITH DIALOG 0

2

LOAD WITH DIALOG

LOAD_NO DTALOG 3

/* used for dlgbox Generic */

FIO OPEN -1

FIQO MERGE 2

FIO_LOAD 3

FIO CHAR XEXT 100 /* these are the same in dmcsr.h */

FIO CHAR YEXT 220 /* same as in dmecsr.h world coordinate */

FIO SCREEN WIDTH (80 * FIO CHAR XEXT)
FIO SCREEN HEIGHT (25 * FIO CHAR YEXT)

FIO PB_YEXT (2 * FIO CHAR YEXT)
"MAX FILE NAME SIZE 65 /* maximum size that a filename can be */
MAX FILES - 50 /* used in the FillWithDir call */

MAX BUFFER SIZE FOR FILES 650 /* MAX FILES * 13 */
/* MAPRECT of dlgbox Generic */

op col 26 * FIO CHAR XEXT + FIO CHAR XEXT/2 /* starting column */
op row 7 * FIO CHAR YEXT - - /* starting row */

op width 27 * FIO CHAR XEXT /* width */

op height 12 * FIO_CHAR YEXT /* height */

sa col 24 * FIO CHAR XEXT /* starting column for dlgbox SaveAs */
sa row 9 * FIO CHAR YEXT /* starting row for dlgbox SaveAs */
sa width 32 * FIO CHAR XEXT /* width of dlgbox SaveAs *7

sa height 7 * FIO CHAR YEXT /* height of dlgboX_SaveAs */

Page 11-3

DeskMate Technical Réference
File /0 Manager

FIO RUN WIDTH (36 * FIO CHAR XEXT)

FIO RUN HEIGHT ((6 * FIO CHAR YEXT) + FIO PB_YEXT)

FIO RUN_XORG ((FIO SCREEN WIDTH - FIO RUN WIDTH) >> 1)

FIO RUN YORG ((FIO SCREEN HEIGHT - FIO RUN HEIGHT) >> 1)
FIO PRINT WIDTH (35 * FIO CHAR XEXT)

FIO PRINT HEIGHT ((11 * FIO CHAR YEXT / 2) + FIO PB YEXT)

FIO PRINT XORG ((FIO SCREEN WIDTH - FIO PRINT WIDTH) >> 1)
FIO PRINT_YORG ((FIO SCREEN HEIGHT - FIO PRINT HEIGHT) >> 1)

/* file i/o error codes */

DMERR INVALID START POINT 1
DMERR FILE NOT FOUND 2
DMERR INVALID FILENAME 3
DMERR TOO MANY OPEN FILES 4
DMERR INVALID PATHNAME 5
DMERR INVALID FILE HANDLE 0

DMERRINVALID ACCESS CODE 12
DMERR QUT OF DISK SPACE 28
DMERR FILE LOCKED 32
DMERR READ ONLY FILE 65
DMERR NONDESTRUCTIVE ABORT 101
DMERR DESTRUCTIVE ABORT 102
DMERRTINVALID FILE TYPE 103
DMERRINVALID LOCK LENGTH 104
DMERR NO EEPROM — 105
DMERRTINVALID DRIVE 106
DMERRINVALID DIRECTORY 107
DMERR BASE TOU LONG 108
DMERR EXTENSION TOO LONG 109
DMERRINVALID FTLENAME CHAR 110
DMERR NO BASE™ - 111
DMERR EXPANDED PATH TOO LONG 112
DM ERROR -1

/* file types */

PERSONAL TEXT FILE 1

OLD WORKSHEET FILE 2

FILER FILE — 3
PERSONAL TEXT ASCII FILE 10

MAIL FILE - - 11

MUSIT FILE 12
OFFICE TEXT FILE 13
WORKSHEET FTLE 14

OFFICE TEXT ASCII FILE 15

DRAW FILE - 16
CALENDAR FILE 17
TELECOM FILE 18

PAINT FILE 19
DRAWS8YE FILE 20
VENDOR_TAG 50

Page 11-4

DeskMate Technical Reference
File /0 Manager
/* this is the datafile structure */

%ypedef struct datafile defn

unsigned char FileType; * what application owns the file */

unsigned char Modified; /* flag for save data prompt, */
* set to TRUE or FALSE */

int FileHandle; /* file handle, -1 if no open */
/* file (untitled) */

long FileSize; /* number of bytes in file */

char *pFilename; /* ptr to filename string */

char *pExtension; /* ptr to application's filename ext */

char *pStart; /* ptr to beginning of data block to write */

char *pEnd; /* ptr to end of data block to write */

char *pTop; /* ptr to top of available memory */

char ‘*pTmpfil; /* temporary filename pointer */
} DATAFILE; :

%ypedef struct mergefile defn

unsigned char FileType; /* what application owns the file */
unsigned char Modified; /* flag for save data prompt, */
/* TRUE/FALSE */

int FileHandle; * file handle, -1 if no open file */
* (untitled)*/
long FileSize; /* number of bytes in file */
char *pFilename; * ptr to filename string */
char *pExtension; /* ptr to application's filename */

/* extension */

char *pStart; /* ptr to beginning of data block to write */
char *pEnd; /* ptr to end of data block to write */
char *pTop; /* ptr to top of available memory */
: char *pTmpfil; /* temporary filename pointer */
} MERGEFILE;

The high level /O calls require a pointer to a DATAFILE structure containing information about
the current data file.

DATAFILE.FileType:

Identifies the application which this data file belongs to. The FileType is checked before the file
is loaded to see that the file belongs to the application. If FileType is equal to zero, no
checking is performed on the selected file.

DATAFILE Modified:
This should be set to TRUE if the data file has been modified since the last time that the data file
has been saved. A value of FALSE indicates that the data file has not been changed, and is also

the state after calls to new, open, save, and saveas are made. When any keystroke or user
action affects the data file, the application must set this to TRUE.

DATAFILE.FileHandle:

This is the handle to the data file that is set when the data file is opened, and is used to access
the data file on subsequent high level IO calls. If a call to open the data file is unsuccessful, or
after closing a data file, this will be set to DM_ERROR. After performing a NEW, the application
should set this value to DM_ERROR to indicate that no data file is open.

DATAFILE.FileSize:

This is the length (in bytes) of the data file. The application does not need to initialize or update
this parameter.

Page 11-5

DeskMate Technical Reference
File /O Manager

DATAFILE.pFilename:

This is a pointer to a null terminated filename of the current working data file. The application
should initially set this to point to a null string. It is not necessary for the application to maintain
this pointer after initially setting it, except as noted in pTmp£fil below.

DATAFILE.pExtension:

This is a pointer to a null terminated filename extension representing the extension used by the
application’s data file. This should be initialized by the application when it first loads and begins
running. This is used for identifying data files that belong to the current application. This string
must be 3 characters + null terminator.

DATAFILE.pStart:
Pointer to the beginning of the application's data block.

DATAFILE.pEnd:

Pointer to the current end of the application's data block. When the high level /O writes the data
block to the disk, it writes all the data starting at pStart and ending at pEnd.

DATAFILE.pTop:
Pointer to the last available byte of the application's data block area. The high level YO uses this
pointer to check if the data file is too large to be loaded by the application.

DATAFILE.pTmpfil: Before a data file is opened, the filename pointed to by pFilename is
copied to this buffer (the buffer then holds the filename entered by the user in the open, load, or
merge dialog box). This is provided so that an application may (if it wishes) force the high level
I/0 call to load the datafile even though the file type and extension do not match those normally
used by the application. When the filetypes do not match, the high level /O routines will return
an error DM_ERROR and dmerrno will be set to DMERR _INVALID FILE TYPE. If the application
wishes to force the datafile to be opened, it must set FileType in it's DATAFILE structure to the
value of NULL (a flag specifying IGNORE the filetype) and copy the filename pointed to by
pTmpfil back to the buffer pointed to by pFilename in it's DATAFILE structure. If the
application then calls the I/O routine again, the datafile will be opened and loaded.

The following is an example of how an application might initialize the datafile structure upon
loading and running:

char Filename([64] = ""; /* example null terminated filename */
char Tempname{64]; * example Tmpfil file name buffer */
char Extension[] = "DOC"; /* example null terminated extension */
char Workspace[1024]; /* example 1K data buffer */

DATAFILE datafile; :

datafile.FileType = TEXT FILE;

datafile.Modified = FALSE;
datafile.FileHandle = -1;
datafile.pFilename = &Filename[0];
datafile.pExtension = &Extension[0];
datafile.pStart = &Workspace([0}];
datafile.pTop = &Workspace[1023];
datafile.pTmpfil = &Tempname(0];

Page 11-6

‘

DeskMate Technical Reference

File /0 Manager

Current_Disk ()
Current_Disk returns the current active disk to the caller.
Input Parameters

None.

Return Value

<char>
The current active disk in the form of A, B, C, etc.

Example

char CurrentDisk;

/* return the current active disk (e.g. 'A',
CurrentDisk = Current Disk();

Page 11-7

lBl

14

'C', etc) */

DeskMate Technical Reference
File I/O Manager

Delete_File (pFilename)
char *pFilename;

Delete_File removes the directory entry for the specified filename, thus deleting the file.

Input Parameters

pFilename is a pointer to a character string containing the name of the file to be removed.

Retur 1

<int>
NULL if successtul.
DM ERROR if an error occurs.

Special Notes

Read-only files CANNOT be deleted by this call. Network Access Rights: Requires Create
access rights.
If DM_ERROR is returned, dmerrno will be set to one of the following:

Two (2) if the file was not found

Three (3) if the path was not found

Five (5) if access was denied.

Example

int ReturnCode;

/* delete the file "SAMPLE.TXT" */
ReturnCode = Delete File("SAMPLE.TXT");

Page 11-8

DeskMate Technical Reference
File I/O Manager

digbox_Generic (pExtension, pFilename, bFlag)
char *pExtension;

char *pFilename;

int bFlag;

digbox_Generic provides the application's with a consistent way to prompt the user for a
filename to OPEN, MERGE, or LOAD.

Input Parameters

pExtension is a pointer to the applications extension.

pFilename is a pointer to the buffer area to receive the filename.

bFlag is either FIO_OPEN, FIO MERGE, or FIO_LOAD depending upon what the application
wants the title of the box to read.

Return Val

TRUE and pFilename should point to a valid filename if successful.
FALSE if the user took the CANCEL action.

Special Notes

pFilename is usually defined by pDataFile->pFilename. The length of this field must be
defined as MAX FILE NAME SIZE because the full path is returned to the application.

If pFilename contains a full path the dialog box parses it and changes to the appropriate
directory and displays the filename in the edit field. Upon exit the dialog box builds a full path
(including drive) and puts it where pFilename points, then attempts to change the directory back
to what it was when digbox_Generic was called.

pExtension is usually defined by pDataFile->pExtension. This is used as a wildcard mask
when loading the files into the list box. It is also used as the default extension to append to the
end of the filename if the user does not specify an extension. If a period is specified at the end of
the filename no extension will be appended.

Example

char FileName [MAX FILE NAME SIZE];
int ReturnCode; -

/* put up a dialog box that allows the */
/* user to select a file from a list of */
/* files with the extension "DOC". The */
/* dialog box is titled for opening a */

/* file. The name of the file to open */

/* is returned in the buffer FileName. */

ReturnCode = dlgbox Generic ("DOC", &FileName[0], FIO_OPEN);
See Also

DATAFILE structure in dmguf.h

Page 11-9

DeskMate Technical Reference
File /0O Manager

digbox_Run ()

digbox_Run provides applications a consistent way to prompt the user for the program name
and data name they want to execute next.

Input Parameters

None.

Return Value

TRUE is returned if the user entered a valid program name and chose the OK action.
FALSE is returned if the user takes the CANCEL action.

Special Notes

The specified program name will be run instead of DESKTOP.PDM. Only programs with
extensions of COM, EXE, BAT and PDM are valid.

The full path and drive specified are registered with the core through dm_SetNextApp so the

program will be executed when the current program exits. The program name is converted to
uppercase but the datafile is not, since the user may want to pass flags, options, or switches.

Example

int ReturnCode;

/* display a dialog box that will prompt the user */
/* for the program name and data file name. */
ReturnCode = dlgbox Run();

See Also

digbox_Run_this()
dm_SetNextApp()

Page 11-10

DeskMate Technical Reference
File /O Manager

1989 DeskMate 03.03.0x ONLY
digbox_Run_this (pFilename, pDatatfile)
char *pFilename;

char *pDatafile;

digbox_Run_this performs the same function as digbox_Run, prompting the user for the
program name and data file name they wish to execute next. In addition, the strings pointed to
by pFilename and pDatafile are already displayed in the dialog box edit fields.

Input Parameters

pFilename is a pointer to a character string containing the path name of the executable file.
pDatafile is a pointer to a character string containing the data filename associated with the
program.

Return Value

TRUE is returned if the user entered a valid program name and chose the OK action.
FALSE is returned if the user takes the CANCEL action.

Special Notes

The specified program name will be run instead of DESKTOP.PDM. Only programs with
extensions of COM, EXE, BAT and PDM are valid.

The full path and drive specified are registered with DeskMate through dm_SetNextApp so the
program will be executed when the current program exits. The program name is converted to
uppercase but the datafile is not, since the user may want to pass flags, options, or switches.

Examp!g

int ReturnCode;
char *pFilename = {"TEXT.PDM"};
char *pDatafile = {"SAMPLE.DOC"};

/* display a dialog box with "TEXT.PDM" in the program edit field */
/* and "SAMPLE.DOC" in the data file edit field */
ReturnCode = dlgbox Run this(pFilename, pDatafile);

See Also

digbox_Run()
dm_SetNextApp()

Page 11-11

DeskMate Technical Reference
File I/O Manager

digbox_SaveAs (pDatafile, pFilename)
DATAFILE *pDatafile;
char *pFilename;

digbox_SaveAs provides the applications with a consistent way to prompt the user for the name
of the file to be saved.

Input Parameters

pDatafile is a pointer to a DATAFILE structure defining the data to be saved.

pFilename is a pointer to a character string to store the filename in, which must be at least
MAX FILE NAME SIZE bytes long.

Return Val

<int>

TRUE if the filename is successfully entered and accepted.

FALSE if the user selects CANCEL from the "Save As" dialog box or from the "File Already Exists,
Overwrite?" dialog box.

Special Notes

If a file already exists by the same name the user is prompted to overwrite with Yes, No, or
Cancel options.

If the file does not exist, a check is made to see if the file will fit on the disk. If it will fit, the file is
created and then closed. Therefore, a file of zero length was created and closed with the name
stored in pFilename, thus zeroing the FileSize element in the DATAFILE structure. The data
is not written to the file at this time. digbox_SaveAs is generally used by applications which do
their own file 110 via the low level calls. It is the responsibility of the application to close the file
associated with pDatafile and open up the new file and write to it. The required items in the
DATAFILE structure are: FileType, pEnd, pStart. pEnd and pStart are used to calculate
the amount of space needed on the disk.

Example

DATAFILE TEXTFILE;
DATAFILE *pTextFile;
char pTextFileName[MAX FILE NAME SIZE];

pTextFile = &TEXTFILE; _
dlgbox SaveAs (pTextFile, pTextFileName);

See Also

fil_menu_saveas()
DATAFILE structure in dmguf.h

Page 11-12

DeskMate Technical Reference
File I/O Manager

‘ 1989 DeskMate 03.03.0x ONLY
dosENDFIND ()

dosENDFIND restores the old Disk Transfer Area to the DTA specified before a
dosSTARTFIND was called.

In r r

None.

Return Value

None.
Special Notes
dosENDFIND must be called after dosSTARTFIND, dosFINDFIRST and dosFINDNEXT calls

are made. If a dosSTARTFIND call is made without a later dosENDFIND call, the DOS system
DTA will be incorrect.

Example

/* restore the DTA after find first and find next callsg */
dosENDFIND{) ;

@ sens

dosSTARTFIND()
dosFINDFIRST()
dosFINDNEXT()

Oy ks aon s sader D505 o ebr

Page 11-13

DeskMate Technical Reference
File /0 Manager

1989 DeskMate 03.03.0x ONLY

dosFINDFIRST (pPathname, Attribute)
char *pPathname;
int - Attribute;

dosFINDFIRST attempts to locate a file name match with the name pointed to by pPathname.

Input Parameters

pPathname is a pointer to either a full pathname or filename which will usually contain wildcards.
Attribute is the file attribute for which a match is being sought. When set to zero,
dosFINDFIRST locates normal files (files with no special attributes). If Attribute is set to 16
decimal, dosFINDFIRST will search for the first sub-directory match.

Return Value

DM_ERROR if no file (or directory, if specified) match was made or if a critical error was
encountered during the operation.

If no error occurred, the first file or directory match is stored as a null-terminated string in the Disk
Transfer Area (DTA) that was established by dosSTARTFIND.

Special Notes
Before calling dosFINDFIRST, the DTA must be set by calling dosSTARTFIND. Otherwise,
results may be unpredictable.

In order for this function to be useful, the pathname specified will usually contain ™" or "?"
wildcards.

Example #1

int ReturnCode;
char *pPathname = {"*.DOC"};
int Attribute = 0;

/* Find first filename with "DOC" extension */

ReturnCode = dosFINDFIRST(pPathname, Attribute); O”(/ Wafé'i uULU\ /‘UMI’AJ
Example #2 sader BM30S o (e

int ReturnCode;
char *pPathname = {"C:*"};
int Attribute = 16;

/* Find first sub-directory entry from the root */
ReturnCode = dosFINDFIRST(pPathname, Attribute);

See Also

dosSTARTFIND()
dosENDFIND()
dosFINDNEXT()

Page 11-14

DeskMate Technical Reference
File /0 Manager

1989 DeskMate 03.03.0x ONLY
dosFINDNEXT ()

dosFINDNEXT locates the next file or directory name match (if any) specified in the previous
dosFINDFIRST.

Input Parameters

None.

Return Value

DM ERROR if no file (or directory, if specified) match was made or if a critical error was
encountered during the operation.

If no error occurred, the first file or directory match is stored as a null-terminated string in the Disk
Transter Area (DTA) that was established by dosSTARTFIND.

Special Notes
Before calling dosFINDFIRST, the DTA must be set by calling dosSTARTFIND. Otherwise,
results may be unpredictable.

In order for this function to be useful, the pathname specified will usually contain "*" or "?"
wildcards.

Example

int ReturnCode;

/* Find the next filename match associated with dosFINDFIRST */
/* Be sure dosSTARTFIND and dosFINDFIRST have already been called */
ReturnCode = dosFINDNEXT () ;

See Also

dosSTARTFIND() 05 V[)’ wor < W'{UI ,»,Mm',qj Um:[c/‘

dosFINDFIRST() JL
dosENDFINDY() / or
MM30S or lorer

Page 11-15

DeskMate Technical Reference
File /O Manager

1989 DeskMate 03.03.0x ONLY .

dosSTARTFIND (pDTA)
char *pDTA;

dosSTARTFIND establishes a new Disk Transfer Area, necessary for calling dosFINDFIRST
(and subsequently dosFINDNEXT).

Input Parameters

pDTA is a pointer to the Disk Transfer Area to be used during dosFINDFIRST and
dosFINDNEXT.

Retur]
None.
ial

dosENDFIND must be called after a dosSTARTFIND, dosFINDFIRST and dosFINDNEXT. If
dosSTARTFIND is called without a later dosENDFIND the DOS system DTA will be incorrect.

xampl!

char AppDTA[128];

/* Establish the Disk Transfer Area for find first and find next */ ‘
doSSTARTFIND (AppDTA); X

Sce Also

dosENDFIND()
dosFINDFIRST() O‘JV works ko ,—U,anj under

dosFINDNEXTY()
HUZES or [aker.

Page 11-16

DeskMate Technical Reference
File /0 Manager

file_already_exists (pFilename)
char *pFilename;

file_already_exists verifies whether a file exists.

Input Parameters

pFilename is a pointer to a character string which contains the filename.
Return Value

<int>
TRUE if the file exists.
FALSE if the file does not exist.

Example
char *pFilename;

if(file already exists(pFilename) == FALSE)
{ /*the fil€ does NOT exist */

}

Page 11-17

DeskMate Technical Reference
File /0 Manager

FillWithDir (pWildcard, ppindex, pFiles, Max, Dirswi)
char *pWildcard;

char **pplndex;

char *pFiles;

int Max;

int Dirswi;

FillWithDir provides the applications a way to fill a list box with a grouped set of files.
In r

pWildcard is a character pointer to the wildcard mask to be searched upon.

pplindex is a pointer to a buffer area where the application wants the list of pointers to the files.
pFiles is a pointer to the buffer where the names of the files will actually reside.

Max is an integer of the number of files that you have room for, this is needed to calculate the
size of you buffer areas.

Dirswi is a flag when zero (0) then only files that match the wildcard are displayed. If Dirswi is
10 hex then directories that match the wildcard are displayed.

Return Value

<int>
The number of files found will never be more than Max.

Spesial Notes @

pWildcard should point to wildcards such as "*.*" to show all files on the disk, "*.c" to show all
files that have a "c" extension, etc.

ppindex is a pointer to a list of pointers that point into pFiles.

pFiles should provide enough room for all of the files that you expect to receive.

Max should be set to MAX FILES upon entry.

Dirswi when using this option pWildcard should point to "*.*" to get all directories. Directories
are displayed in brackets, "[..]" for example. The current directory “." is not displayed, but the
parent directory and any sub directories are displayed.

Example

char *FileIndex{MAX FILES]:;
char FileNames[MAX BUFFER SIZE FOR FILES];
int NumFilesFound; - -

/* £ill the buffer FileNames with all files *
/* that have the extension "c" and return x/
/* the number of files that match. FileIndex *
/* points to the beginning of each name in the */
/* FileNames buffer. *
NumFilesFound = FillWithDir ("*.c", &FileIndex[0],
&¢FileNames[0], MAX FILES, 0);

Page 11-18

DeskMate Technical Reference
File YO Manager

fil_access (pdmerrno, pDataFileName) WRING. Shold. b

int *pdmerrno; , @(m‘é'\gNW\&) ;
char *pDataFileName; @.\,occ%ﬁ(?B ‘

fil_access retums the file attributes of the file with the specified name.

Input Parameters

pdmerrno is the address of the dmerrno variable in which file /O errors are returned.
pDataFileName is a pointer to a null terminated string specifying the name of the file in which to
get the attributes. This string may be a complete or incomplete pathlist.

Return Value

<int>

The lower byte of the integer retumed contains the attributes of the file specified if the file exists
on the disk in the specified path and no error occurred.

DM_ERROR if an error occurred or if the file does not exist in the specified path.

Special Notes

A special use of fil_access may be to determine if the user has swapped disks while an
application is active and expects the data disk to remain in the drive. An important example of
this are applications that use the DeskMate database. They should check to make sure the data
file is still present in the drive before making database calls because the database assumes that
this is true without checking itself, and if the disk is swapped, then the database will write over
the top of whatever disk is in the drive, which can potentially destroy the contents of the swapped
disk.
If DM_ERROR is returned, dmerrno may have any one of the following values:

DMERR FILE NOT_FOUND if the file was not found.

DMERR INVALID FILENAME if the pathname was invalid.

a value of -1 or -2 if a critical error occurred.
The following is how to interpret the attribute byte:

bit 0 set if the file is read oniy

bit 1 set if the file is a hidden file

bit 2 set if the file is a system file

bit 3 set if the file is a volume label

bit 4 set if the file is a sub-directory

bit 5 set if the file has been written to and closed

Example

char FileAttribute;

/* get the file attributes for "SAMPLE.TXT" file. */
FileAttribute = fil access ("SAMPLE.TXT");

Page 11-19

BU{jf WM‘{' worHor Foo{* o{t}m[b(‘f'cs_

DeskMate Technical Refelf'ence
File VO Manager

fil_close (FileHandle)
int FileHandle;

fil_close closes the specified disk file.
In rameter

FileHandle is the handle of the desired file that was assigned to the file when the file was
opened with fil_open.

Return Value

<int>
DM_ERROR if an error occurred closing the disk file.

If DM_ERROR is returned, and the value of dmerrno is a -1 or -2 (critical error), then the application
must call fil_force_close to properly close the file and free up the DOS file resources.
If DM_ERROR is returned, dmerrno may have any one of the followmg values:

DMERR INVALID FILE HANDLE if the specified file handle has not been assigned.

a value of -1 or -2 if a critical error occurred.

Example

int ReturnCode;
int FileHandle;

/* close the file whose handle is FileHandle */
ReturnCode = fil close(FlleHandle) ;

See Also

fil_open()
fil_force_close()

(9

Page 11-20

.

DeskMate Technical Reference
File IO Manager

fil_close_error_msg ()

fil_close_error_msg displays the file close error message box after an error in fil_close.

Input Parameters

None.

fil_close_error_msg uses the current value of dmerrno to determine which error message to
display. fil_close_error_msg must be used immediately after the error occurred (before any
other file /O call is made) to insure that the error message reflects the actual condition.

If a critical error occurred, no message will be displayed because the critical error handler
displayed a message.

Example

/* display the error that just occurred */
/* when trying to close the file */
fil close error msg();

Page 11-21

DeskMate Technical Reference
File /0O Manager

fil_commit (pdmerrno, FileHandle)
int *pdmerrno;
int FileHandle;

fil_commit causes all buffered data, for a file, to be written to the device.

Input Parameters

pdmerrno is the address of the dmerrno variable in which file I/O errors are retumed.
FileHandle is a file handle which was returned from a fil_open, or fil_create call.

Return Value
None.
Special Notes

If the DOS version is 3.0 or greater, function 068h will be used. For DOS version less than 3.0
the calls to dup_fil (045h) and close_file (03eh) will be called. If dmerno is equal to DM_ERROR
upon entry, fil_commit does nothing since DM_ERROR indicates a critical error has occurred.

Example

int dmerrno;
int FileHandle;

fil commit (&dmerrno, FileHandle);

Page 11-22

DeskMate Technical Reference
File /O Manager

fil_create (pDataFileName)
char *pDataFileName;

fil_create creates a disk file of the specified name.

Input Parameters

pDataFileName is a pointer to a string specifying the name of the file to create. This string may
be a complete or incomplete pathlist.

Return Value

<int>
The handle of the created file if no error occurred.
DM _ERROR if an error occurred creating the specified file.

Special Notes

if the file is created without an error, then the file remains open for READ/WRITE access. The

READ/WRITE pointer is set to the first byte of the file.

If DM_ERROR is returned, dmerrno may have any one of the following values:
DMERR READ ONLY FILE if the file is a read only file.
DMERR FILE LOCKED if the file is locked.

DMERR INVALID FILENAME if the filename was invalid.

DMERR_TOO MANY OPEN FILES if the number of files currently open is the
same as the number of files specified by the "files="
command in CONFIG.SYS.

DMERR INVALID PATHNAME if the pathname was invalid.

DMERR DIRECTORY_ FULL if the directory is full.

a value of -1 or -2 if a critical error occurred.

Example

int FileHandle;

/* create the file "SAMPLE.TXT" and save the file handle */
FileHandle = fil create ("SAMPLE.TXT");

Page 11-23

DeskMate Technical Reference
File /O Manager

fil_create_error_msg ()

fil_create_error_msg displays the file create error message box after an error in fil_create.

Input Parameters

None.

Return Value

None.

Special Notes

fil_create_error_msg uses the current value of dmerrno to determine which error message to
display. fil_create_error_msg must be used immediately after the error occurred (before any
other file /0 call is made) to insure that the error message reflects the actual condition.

If a critical error occurred, no message will be displayed because the critical error handler
displayed a message.

Example

/* display the error that just occurred */
/* when trying to create the file */
fil create_error_msg();

Page 11-24

DeskMate Technical Reference
File /O Manager

fil_dup (FileHandle)
int FileHandle;

fil_dup takes an already opened file handle and returns a new handle that refers to the same file
at the same position.

Input Parameters

FileHandle is the handle of the file you wish to duplicate. The one which was assigned to the file
when the file was opened with til_open.

Return Value

<int>
An integer representing a new handle if successful.
DM _ERROR if unsuccessful.

Special Notes

If DM_ERROR is returned, dmerrno will be set to one of the following values:
DMERR INVALID FILE HANDLE if the specified file handle has not been assigned.
DMERR TOO MANY OPEN FILES if the number of files currently open is the

same as the number of files specified by the "files="
command in CONFIG.SYS.

Example

int FileHandle;
int DupFileHandle;

/* Duﬁlicate a handle whose filehandle is FileHandle */
DupFileHandle = fil dup (FileHandle);

See Also

fil_open()

Page 11-25

DeskMate Technical Reference
File IO Manager

fil_force_close (FileHandle)
int FileHandle;

fil_force_close forces DOS to close the specified file, even though DOS cannot access the file.

Input Parameters

FileHandle is the handle of the desired file that was assigned to the file when the file was
opened with fil_open.

Return Val

None.

fil_force_close should be called if a fil_close returns on a critical error, or if a fil_read or
fil_write returns on a critical error code and the application knows it must immediately close the
file.

fil_force_close may be called without first calling fil_close, but MUST NOT be called unless a
critical error has occurred.

Example
int FileHandle;
/* a critical error has occurred, force the file */

/* with the handle of FileHandle to close */
fil force_close(FileHandle);

See Also

fil_open()
fil_close()
fil_read()

til_write()

Page 11-26

om

DeskMate Technical Reference
File /0 Manager

int fil_lock_bytes (FileHandle, Offset, Length)
int FileHandle;
long Offset, Length;

fil_lock_bytes allows a user to keep other users from accessing a portion of a file for a
temporary period.

Input Parameters

FileHandle is a valid open file handle.
Offset is the offset into file to begin locking.
Length is the number of bytes to be locked.

Return Val

NULL if successful.
DM ERROR if an error occurred.

If DM ERROR is returned, dmerrno is set to normal DOS values or to a value of
DMERR INVALID LOCK_LENGTH if Length is 0.
fil_lock_bytes will make the DOS function locking call.

The lock and unlock functions should only be used when a file is opened using the DENY READ
or DENY NONE sharing modes. This is available with DOS versions 3.0 or greater.

Example

int FileHandle; /* open file handle */
long Offset = 100; /* file offset to begin locking */
long Length = 500; /* number of bytes to lock */

erc = fil lock bytes(FileHandle, Offset, Length);
if(erc == 0)~/* 500 characters beginning at 100 are now locked */

7
else /* dmerrno is set */

See Also

fil_unlock_bytes()
fil_open()

Page 11-27

DeskMate Technical Reference
File IO Manager

fil_Iseek (FileHandle, SeekOffset, StartOffset)
int FileHandle;

long SeekOffset;

int StartOffset;

fil_Iseek causes the disk drive to seek to the specified offset in the specified disk file.

Input Parameters

FileHandle is the handle of the desired file that was assigned to the file when the file was
opened with fil_open.

SeekOffset is the number of bytes from the StartOffset to seek to in the file. SeekOffset can be
negative or positive (although negative is not valid if StartOffset is equal to zero). If SeekOffset
is a negative number the seek is performed to that many bytes before the StartOffset.
StartOffset is a code specifying the offset from the start of the file that the SeekOffset is
calculated from. (See Special Notes section below)

Return Value

<long>
The number of bytes from the beginning of the file to the new file pointer location.
-1L if an error occurred seeking to the specified offset in the file.

Special Notes

The StartOftset may be one of the following:
Zero (0) starts seeking from the beginning of file.
One (1) starts seeking from the current file pointer location.
Two (2) starts seeking from the end of the file.
If DM_ERROR is returned, dmerrno may have any one of the following values:
DMERR INVALID START POINT if the StartOffset code is not one of the previously
specified values.
DMERR INVALID FILE HANDLE if the specified file handle has not been assigned.
a value of -1 or -2 if a critical error occurred.

Example

long fil lseek(int FileHandle, long SeekQOffset, int SeekOffset);
int FileHandle;
long NumBytes;

/* move the file pointer to an offset of 0 */
/* bytes from the beginning of the file with */
/* the handle FileHandle. */

NumBytes = fil lseek(FileHandle, 0L, 0);

See Also

fil_open()

Page 11-28

DeskMate Technical Reference
File /O Manager

fil_Iseek_error_msg ()

fil_lseek_error_msg displays the file Iseek error message box after an error in fil_lseek.
Input Parameters

None.

Return Value

None.
Special Notes

fil_lseek_error_msg uses the current value of dmerrno to determine which error message to
display. fil_lseek_error_msg must be used immediately after the error occurred (before any
other file I/0O call is made) to insure that the error message reflects the actual condition.

If a critical error occurred, no message will be displayed because the critical error handler
displayed a message.

Example

/* display the error that just occurred */
/* when trying to lseek into the file */
fil lseek error msg();

Page 11-29

DeskMate Technical Reference
File /0 Manager

fil_menu_merge (pDatafile, bDialogFlag)
DATAFILE *pDatafile;
int bDialogFlag;

fil_menu_merge displays the "file merge" (or "load file") dialog box allowing the user to specify
the name of the file to merge (or load), and reads the data into memory.

Input Parameters

pDatafile is a pointer to a DATAFILE structure which provides information about the area of
memory available for merging/loading a file and the application’s file type and extension.
bDialogFlag may have a value of MERGE WITH DIALOG, causing the "merge file" dialog box to
appear, or a value of LOAD WITH DIALOG causing the "load file" dialog box to appear, both
allowing the user to choose the filename to load. A value of MERGE NO DIALOG or
LOAD NO DIALOG cause the load to occur without prompting the user for the name of the file to
load, and instead use the file name specified in the DATAFILE structure.

Return Value

<unsigned int>

The number of bytes read into the data buffer if the data file was loaded successfully and the
filesize is greater than zero.

DM ERROR if an error occurred loading the data file from disk.

Special Notes

Whether fil_menu_merge is used to "Merge" or to "Load" a data file, the function performed is
identical. The only difference is the title of the dialog box which appears to the user.
fil_menu_merge prompts the user for the file name (if specified by bDialogFlag), opens the file,
loads the file into memory at the address specified by DATAFILE.pStart and closes the file.
The application is responsible for setting the pointers (DATAFILE.pStart and
DATAFILE.pTop) which identify the area of memory reserved for merging/loading a file. In the
case of merging, the application must manage data movement and pointer assignment to provide
for proper insertion of the merged file and prevent existing data from being overwritten by
merging in a file.

fiL_menu_open prompts the user to save changes, file_menu_merge does not.
fil_menu_open also leaves the file open after loading it, and fil_menu_merge closes the file

after loading.
If a value of DM_ERROR is returned, the application should check dmerrno to see if the abort
affected the data currently in memory. if dmermo is a value of

DMERR NONDESTRUCTIVE ABORT, then the data in memory was not destroyed by the read and

the appllcatlon may continue processing the data currently in memory. If dmerrno is a value of
DMERR DESTRUCTIVE ABORT, then the data in the application’s buffer may have been
destroyed by the read and the application should set itself to the NEW "untitled” state.

Page 11-30

DeskMate Technical Reference
File /0 Manager

‘Examnlﬂ

char DataBuffer[1000];
DATAFILE DataFileStruct;
long NumBytesRead;

/* merge data from a file into the last half of the buffer */
DataFileStruct.pStart = &DataBuffer([500];
DataFileStruct.pTop = &DataBuffer([999];

/* select a file to merge through a dialog box, read */
/* the file and fill the buffer with the data read. */
NumBytesRead = fil menu merge (&DateFileStruct, MERGE WITH DIALOG);

See Also

DATAFILE structure in dmguf.h
fil_menu_open()

Page 11-31

DeskMate Technical Reference
File /0O Manager

fil_menu_new (pDatafile)
DATAFILE *pDatafile;

fil_menu_new saves the application's data if it has been modified since the last time it was
saved. (after prompting: "Save changes?" YES/NO/CANCEL)

Input Parameters

pDatafile is a pointer to the DATAFILE structure for the application's current data file.

Return Value

<int>
TRUE if the data was saved successfully or did not need to be saved.
DM ERRCR is returned if an error occurred.

Special Notes

If the Modfied flag (in DATAFILE) is set to TRUE, the user will be prompted with "Save
changes?" YES/NO/CANCEL.

If the data is saved successfully, the file is closed, the Modified flag is set to FALSE, and the
datafile filename is set to NULL.

If TRUE is returned, the application has responsibility for performing the tasks to return to the
NEW default state.

If DM_ERROR is returned the datafile could not be saved. The filename will have been set to
NULL if the file could not be found to save to changes to it, and the file has been closed.

Example

char FileName[64] = "";

char FileExtension([4] = "DOC";
char TempName[64];

char TextBuffer([500];

int ReturnCode;

DATAFILE DataFileStruct =
{

PERSONAL TEXT FILE, /* what application owns the file */
FALSE, — - /*flag for save data prompt, TRUE/FALSE */
-1, /* file handle, -1 if no open file */
* (untitled)*/
0, * number of bytes in file */
&FileName[0], * ptr to filename string */
&FileExtension([0], * ptr to application's filename ext */
&§TextBuffer[0], /* ptr to beginning of data block to */
* write * _
&TextBuffer[499], * ptr to end of data block to write */
&TextBuffer[499], /* ptr to top of available memory */
&TempName [0] /* temporary filename pointer */

Page 11-32

‘

DeskMate Technical Reference
File I/0 Manager

/* create a new data file for the text application. */

/* since there is not a file currently opened, the user will */
/* not be prompted to save the file. */
ReturnCode = fil menu new (&DataFileStruct);

Page 11-33

DeskMate Technical Reference
File I/O Manager

fil_menu_open (pDatafile, bDialogFlag)
DATAFILE *pDatafile;
int bDialogFlag;

fil_menu_open saves the application data currently in memory to the disk if it has been changed
since the last save (after prompting: "Save changes?" YES/NO/CANCEL) prompts the user for
the name of the data file to open, if required, and opens the specified file and loads it into
memory.

Input Parameters

pDatafile is a pointer to the DATAFILE structure which provides information about the
application's data file currently in memory and the amount of memory available for a new file.
bDialogFlag may have a value of OPEN WITH DIALOG causing the open file dialog box to
appear allowing the user to choose the filename to open, or may have a value of
OPEN_NO DIALOG. '

Return Ya!ug‘

<unsigned int>

The number of bytes read into the data buffer if the open and read was successful and the
filesize is greater than zero.

DM ERROR if an error occurred during the open or read.

Special Notes

If the data file currently in memory when the function is called is successfully saved to the disk
before loading the new file, the Modified flag will be set to FALSE.

If a value of DM_ERRCR is returned, the application should check dmerrno to see if the error
affected the data file currently in memory. If dmerrno is a value of
DMERR_NONDESTRUCTIVE_ABORT, then the data in memory was not destroyed by the read and
the application may continue processing the data currently in memory. If dmerrno is a value of
DMERR DESTRUCTIVE_ABORT, then the data in the application’s buffer may have been
destroyed by the read, and the application should set itself to a NEW "untitled” state.

If the data file is loaded successfully, the Modified flag is set to FALSE, the buffer pointed to by
pDatafile->pFilename now contains the filename, and the file handle is set to the new file
handle. The data file will only be loaded into memory if the data file length is greater than zero.

If the new data file cannot be opened, locked, or read, the Modified flag will not be changed,
the previously opened file will be reopened, and DM_ERROR will be returned. If the previously
opened file cannot be reopened, then the filename will be reset to "untitled” (a null string).

bDialogFlag controls whether or not the "open file" dialog appears. In most instances the dialog
box is necessary to communicate with the user. However if the application is invoked from the
DeskMate DeskTop, or the Run dialog box, and is passed a file name, then the "open file" dialog
should not appear when the application calls fil_menu_open, to load the data file. It is in these
special instances when the application knows the name of the file to be opened before making
the call, bDialogFlag should be set to OPEN_NO DIALOG.

If an error occurs and dmerrno is set to DMERR INVALID FILE TYPE, it means the application's

data file extension or FileType parameter does not match.

Page 11-34

P

DeskMate Technical Reference
File I/0 Manager

;./‘v

char FileName[64] = "CURRENT";
char FileExtension[4] = "TXT";
char TempName [64];

char TextBuffer(500];

int ReturnCode;

long NumBytes;

int FileHandle;

?ATAFILE DataFileStruct =

PERSONAL TEXT FILE, /* what application owns the file */

TRUE, — /¥ flag for save data prompt, TRUE/FALSE */

0, /* file handle, -1 if no open file (untitled)*/

0L, /* number of bytes in file */

&¢FileName[0], /* ptr to filename string */

&FileExtension([0], /* ptr to application's filename */

* extension */

&TextBuffer (0], /* ptr to beginning of data block */
- * to write */

&TextBuffer(499], /* ptr to end of data block to write */

&TextBuffer([499], /* ptr to top of available memory */

&TempName [0] /* temporary filename pointer */

}i

/* set the file handle to the handle of the currently opened file */
DataFileStruct.FileHandle = FileHandle;

/* set the number of bytes in the file currently opened */
DataFileStruct.FileSize = NumBytes;

/* save the buffer to the current text file, prompt user for which */
/* file to open through a dialog box , and read the file into a */
/* buffer */

ReturnCode = file menu open (&DataFileStruct, OPEN_WITH DIALOG);

See Also

DATAFILE structure in dmguf.h
til_menu_merge()
fil_menu_run()

Page 11-35

DeskMate Technical Reference
File /0 Manager

fil_menu_hage ()

fil_menu_page runs the page setup accessory.

n meter,
None.
Return Value

Zero if the accessory failed to load.
RETURN_KEY (000Dh) if the OK push button was selected from the accessory.
ESC_KEY (001B) if the CANCEL push button was selected from the accessory.

fil_menu_page should be called when the user chooses "Page setup..." from the application's
file menu. ' ‘ '
fil_menu_page does not save the screen area where the accessory will be displayed, and
therefore it is the responsibility of the application to redraw the screen after calling
fil_menu_page.

Example

/* run the page setup accessory */
fil menu_page();

Page 11-36

DeskMate Technical Reference
File IO Manager

fil_menu_quit (pDatafile)
DATAFILE *pDatafile;

fil_menu_quit saves the application's data currently in memory if it has been modified since the
last time that it was saved (after prompting: "Save changes?" YES/NO/CANCEL), so that the
application may exit.

Input Parameters

pDatatile is a pointer to a DATAFILE structure which provides information about the application's
data file currently in memory.

Retur |

<int> .

TRUE if the applications data was saved successfully or did not need to be saved (Modified ==
FALSE).

DM ERROR if an error occurred saving the application's data to the disk.

Special Notes

If the application's data was saved to the disk successfully, the DATAFILE .Modified flag will be
reset to a value of FALSE, and it is the application's responsibility to perform the tasks required to
exit the application.

Example

DATAFILE DataFileStruct;
int ReturnCode;

/* prompt user to see if they want to */

/* save the changes made to the file */
DataFileStruct.Modified = TRUE;

/* save the buffer in memory to the */

/* current data file and close the file */
ReturnCode = fil menu quit (&DataFileStruct);

See Also

DATAFILE structure in dmguf.h
filLmenu_run()

Page 11-37

DeskMate Technical Reference
File /O Manager

fil_menu_run (pDataFile)
DATAFILE *pDataFile;

fil_menu_run saves the application's data currently in memory if it has been modified since the
last save (after prompting: "Save changes?" YES/NO/CANCEL), and then displays the run dialog
box and allowing the user to specify a program and data file to run after exiting the application
rather than returning to the DeskMate DeskTop.

Input Parameters

pDataFile is a pointer to a DATAFILE structure which provides information about the
application's data file currently in memory.

Return Value

TRUE if the application’s data was saved successfully (or did not need to be saved), and the user
entered a valid program name and chose OK.

DM _ERROR if an error occurred saving the application’s data to the disk, or if the user chose the
CANCEL option from from the "Save Changes" message box or from the "Run" dialog box.

Special Notes

fil_menu_run functions the same way as fil_menu_quit, except the "Run" dialog box appears
for the user to specify the next application to run. The specified application and data file are
registered automatically with the desk executive through dm_SetNextApp.

Example

DATAFILE DataFileStruct;
int ReturnCode;

/* prompt user to see if they want to */

/* save the changes made to the file */
DataFileStruct.Modified = TRUE;

/* save the buffer in memory to the current file */

/* and close the file. then run another application */
/* specified by the user. */

ReturnCode = fil menu_run (&DataFileStruct);

See Also
DATAFILE structure in dmguf.h

fil_menu_quit()
dm_SetNextApp()

Page 11-38

DeskMate Technical Reference
File /O Manager

fil_menu_save (pDatafile)
DATAFILE *pDatafile;

fil_menu_save saves the application's current data file in memory.
Input Parameters

pDatafile is a pointer to the DATAFILE structure which provides information about the
application's data file currently in memory.

Return Value

<int>
TRUE if the applications data was saved successfully.
DM_ERROR if an error occurred saving the application's data to the disk.

Special Notes

If the file exists on the disk and the data in memory is now smaller than the file on the disk, the
file is closed and reopened with truncation to recapture disk space. Regardless of the file size,
the file is written out to the disk, then closed to flush the read/write buffer, and then reopened. As
long as the process is not interrupted by an I/O error or by another user getting access to the file,
the filename will remain the same. Otherwise it will be set to “untitled" (a null string). If the lock
on the file is lost in this process, then the filename is changed to NULL.

If an error occurs or there is not enough disk space to save the data, dmerrno is set to
DMERR NONDESTRUCTIVE_ABORT. If the file is not found on the disk the user is prompted to
swap disks, create a new file on the current disk, or cancel the save function. If cancel is chosen
the filename is set to a null string and dmerrno is set to DMERR_NONDESTRUCTIVE_ABORT.

Example

DATAFILE DataFileStruct;
int ReturnCode;

/* save the buffer in memory to the current data file */
ReturnCode = fil menu_save (&DataFileStruct);

See Also

DATAFILE structure in dmguf.h

Page 11-39

DeskMate Technical Reference
File /O Manager

fil_ menu_saveas (pDatafile)
DATAFILE *pDatafile;

fil_menu_saveas displays the "save as" dialog box prompting the user for the name of the new
file to save the data to and saves the application's data currently in memory to the disk under that
new file name.

Input Parameters

pDatafile is a pointer to the DATAFILE structure which provides information about the
applications data file currently in memory.

Return Value

<int> :
TRUE if the applications data was saved successfully.
‘DM _ERROR if an error occurred saving the application’s data to disk.

If an error occurs or there is not enough disk space on the disk to save the data, then dmerrno is
setto DMERR NONDESTRUCTIVE ABORT.

If the save was successful the new filename is copied to the buffer pointed to by the
DATAFILE.pFilename pointer.

If the file already exists, the user will be prompted whether or not to over write the file.

Example

DATAFILE DataFileStruct;
int ReturnCode;

/* save the buffer in memory to a new filename specified by the user */
ReturnCode = fil menu saveas (&DataFileStruct);

See Also

digbox_SaveAs()
DATAFILE structure in dmguf.h

Page 11-40

‘

DeskMate Technical Reference
File /O Manager

fil_open (pDataFileName, Mode)
char *pDataFileName;
int Mode;

fil_open opens the specified file with the specified access attributes.
Input Parameters

pDataFileName is a pointer a string specifying the name of the file to open. This string may be a
complete or incomplete pathlist.

Mode is an integer specifying the access and sharing attributes for the file.
Return Value

<int>
The file handle of the file which was opened if no error occurred.
DM ERROR if an error occurred opening the specified file.

Special Notes

The Mode specifies the access and sharing attributes for the file to be opened. the mode value
is determined by ORing together an access code and a sharing code. These codes are defined
in dmguf.h.
The access code may be one of the following values:
OPEN_FOR_READ if the file is to have read-only access.
OPEN FOR WRITE if the file is to have write-only access.
OPEN_FOR_UPDATE if the file is to have both read and write access.
The sharing codes may be one of the following values:
EXCLUSIVE to specify other processes cannot open a file for READ or WRITE,
DENY WRITE to specify other processes can open the file for READ only.
DENY READ to specify other processes can open the file for WRITE only.
DENY NONE to specify other processes can open the file for READ, WRITE or both.
If DM_ERROR is returned, dmerrno may have any one of the following values:
DMERR READ ONLY FILE if the file is a read only file.
DMERR FILE LOCKED if the file is locked.
DMERR FILE | . NOT _FOUND if the file was not found.
DMERR TOO MANY OPEN FILES if the number of files currently open is the
same as the number of files specified by the "files="
command in CONFIG.SYS.
DMERR INVALID PATHNAME if the pathname was invalid.
DMERR INVALID ACCESS_CODE if the specified file access attribute code is not one
of the previously specified values.
a value of -1 or -2 if a critical error occurred.

Page 11-41

DeskMate Technical Reference
File /O Manager

Exam

int FileHandle;

/* open the file "SAMPLE.TXT" to read data and save the file handle */
/* lock out all other processes from accessing this file */
FileHandle = fil_open("SAMPLE.TXT", OPEN__FOR__READ | EXCLUSIVE);

See Also

fil_open_error_msg()

Page 11-42

DeskMate Technical Reference
File /O Manager

fil_open_error_msg ()

fil_open_error_msg displays the file open error message box after an error in fil_open.

Input Parameters

None.

Retur 1
None.

Special Notes

fil_open_error_msg uses the current value of dmerrno to determine which error message to
display. fil_open_error_msg must be used immediately after the error occurred (before any
other file /O call is made) to insure that the error message reflects the actual condition.

If a critical error occurred, no message will be displayed because the critical error handler
displayed a message.

Example

/* display the error that just occurred */
/* when trying to open the file */
fil open error msg();

Page 11-43

DeskMate Technical Reference
File /O Manager

fil_read (FileHandle, pDataBuffer, Length)
int FileHandle;

char *pDataBuffer;

unsigned int Length;

fil_read reads the specified number of bytes from the specified disk file into the specified data
buffer.

In rameter

FileHandle is the handle of the desired file that was assigned to the file when the file was
opened with fil_open.

pDataBuffer is a pointer to the buffer to read the file data into, must be at least Length bytes
long.

Length specifies the maximum number of bytes to read from the file.

Return Val

<unsigned>
The number of bytes that were actually read.
DM_ERROR if an error occurred reading from the disk file.

Special Notes

If the number of bytes to read is greater than the length of the disk file, then the file will be read to
the END OF FILE and no error will be returned. fil_read will return the actual length of the file.
If DM_ERROR is returned, dmerrno may have any one of the following values:

DMERR INVALID PATHNAME if the specified path cannot be found.

DMERR INVALID FILE HANDLE if the specified file handle has not been assigned.

a value of -1 or -2 if a critical error occurred.
Due to the small memory model, the maximum number of bytes which can be read at one time is
65,534.

Example

int FileHandle;

char FileBuffer[100];

int ReturnCode;

/* fill FileBuffer by reading 100 bytes */

/* from the file with the handle FileHandle */
ReturnCode = fil read(FileHandle, &FileBuffer[0], 100);

See Also

fil_open()

Page 11-44

DeskMate Technical Reference
File /O Manager

fil_read_error_msg ()

fil_read_error_msg displays the file read error message box after an error in fil_read.

Input Parameters

None.
Retur]

None.

fil_read_error_msg uses the current value of dmermo to determine which error message to
display. fil_read_error_msg must be used immediately after the error occurred (before any
other file I/0 call is made) to insure that the error message reflects the actual condition.

If a critical error occurred, no message will be displayed because the critical error handler
displayed a message.

Example

/* display the error that just occurred */
/* when trying to read from the file */
fil read error msg();

Page 11-45

DeskMate Technical Reference
File IO Manager

1989 DeskMate 03.03.0x ONLY

fil_read_far (FileHandle, pDataBuffer, Length, ReadSegment)
int FileHandle;

char *pDataBuffer;

unsigned int Length;

unsigned int ReadSegment;

fil_read_far reads the specified number of bytes from the specified disk file into the specified
data buffer pointed to by pDataBuffer, within the segment ReadSegment.

Input Parameter

FileHandle is the handle of the deswed file that was assigned to the file when the file was
opened with fil_open.

pDataBuffer is a pointer to the buffer to read the file data into, must be at least Length bytes
long.

Length specifies the maximum number of bytes to read from the file.

ReadSegment is the segment portion of the far address specified by ReadSegment and offset
by pDataBuftfer.

Retur]

<unsigned>
The number of bytes that were actually read.
DM _ERROR if an error occurred reading from the disk file.

Special Notes

In order to call fil_read_far, a far pointer must point to the segment and offset of the read buffer
area. This is accomplished by performing a fmalloc, allocating memory referenced by a far
pointer. Using 'C; library calls FP_SEG and FP_OFF, the values for ReadSegment and
pDataBuffer can be obtained (see example).
If the number of bytes to read is greater than the length of the disk file, then the file will be read to
the END OF FILE and no error will be returned. fil_read_far will return the actual length of the
file.
If DM_ERROR is returned, dmerrno may have any one of the following values:

DMERR INVALID PATHNAME if the specified path cannot be found.

DMERR INVALID FILE HANDLE if the specified file handle has not been assigned.

DM ERROR or DMERR WRITE PROTECT if a critical error occurred.
Due to the small memory model, the maximum number of bytes which can be read at one time is
65,534.

Page 11-46

DeskMate Technical Reference
File I/0 Manager

Example

/* read 45000 bytes into another segment */
int FileHandle;

char *pDataBuffer;

unsigned int Length;

unsigned int ReadSegment;

char far *1pBuffer;

int ReturnCode;

/* allocate 45000 byte buffer */

lpBuffer = fmalloc(45000);

/* initialize the segment */

ReadSegment = FP SEG(lpBuffer);

/* initialize thé offset */

pDataBuffer = FP QOFF(lpBuffer);

Length = 45000; —

ReturnCode = fil read far(FileHandle,pDataBuffer, Length,ReadSegment);

See Also

fil_read()
til_write_far()

Page 11-47

DeskMate Technical Reference
File IO Manager

int fil_unlock_bytes (FileHandle, Offset, Length)
int FileHandle;
long Offset, Length;

fil_unlock_bytes allows a user to let other users access a portion of a file that was previously
locked using fil_lock_bytes.

Input Parameters

FileHandle is a valid open file handle.
Offset is the offset into file to begin unlocking.
Length is the number of bytes to be unlocked.

Retur |

NULL if successful.
DM ERROR for errors.

Special Notes

If DM _ERROR is returned, dmerrno is set to normal DOS error values or to a value of
DMERR INVALID LOCK LENGTH if Length is zero.

til_uniock_bytes will make the DOS function unlocking call.

The lock and unlock functions should only be used when a file is opened using the DENY READ

or DENY NONE sharing modes. This is available with DOS versions 3.0 or greater.

Example

int handle; /* open file handle */ . ,
long offset = 100; /* file offset to begin unlocking */
long Length = 500; /* number of bytes to unlock */

erc = fil unlock bytes{ FileHandle, Offset, Length);
if (erc == 0) 7* 500 characters beginning at 100 are now unlocked */

?
else /* dmerrno is set */

See Also

fil_lock_bytes()
fil_open()

Page 11-48

DeskMate Technical Reference
File I/O Manager

fil_write (FileHandle, pDataBuffer, Length)
int FileHandle;

char *pDataBuffer;

unsigned int Length;

fil_write writes the specified number of bytes from the specified data buffer to the specified disk
file.

Input Parameters

FileHandle is the handle of the desired file that was assigned to the file when the file was
opened with fil_open.

pDataBuffer is a pointer to the buffer to write the file data from.

Length specifies the number of bytes to write to the file.

Return Value

<unsigned>
The number of bytes actually written to the file if no disk error occurred.
DM_ERROR if an error occurred writing to the disk file.

Special Notes

If DM_ERROR is returned, dmerrno may have any one of the following values:
DMERR_INVALID PATHNAME if the specified path cannot be found.
DMERR INVALID FILE_HANDLE if the specified file handle has not been assigned.
DMERR OUT_OF _] DISK SPACE if the disk is full.
DMERR READ ONLY FILE if the file access is read only.
a value of -1 or -2 if a critical error occurred.
Due to the small memory model, the maximum number of bytes which can be written at one time
is 65,534.

Example

int FileHandle;

char FileBuffer[100];

int ReturnCode:;

/* write 100 bytes from FileBuffer to */

/* the file with the handle FileHandle */
ReturnCode = fil write(FileHandle, &FileBuffer (0], 100);

See Also

fil_open()

Page 11-49

DeskMate Technical Reference
File /0 Manager

fil_write_error_msg ()

fil_write_error_msg displays the file write error message box after an error in fil_write.

Input Parameters

None.

Return Valye

None.

fil_write_error_msg uses the cument value of dmerrno to determine which error message to
display. fil_write_error_msg must be used immediately after the error occurred (before any
other file I/O call is made) to insure that the error message reflects the actual condition.

If a critical error occurred, no message will be displayed because the critical error handler
displayed a message.

Example

/* display the error that just occurred */
/* when trying to write to the file */
fil write error msg();

Page 11-50

DeskMate Technical Reference
File I/O Manager

1989 DeskMate 03.03.0x ONLY

fil_write_far (FileHandle, pDataBuffer, Length, WriteSegment)
int FileHandle;

char *pDataBuffer;

unsigned int Length;

unsigned int WriteSegment;

fil_write_far writes the specified number of bytes from the specified data buffer to the specified
disk file within the segment specified by WriteSegment.
fil_write_far allows for a data buffer which is outside the default data segment of the application.

Input Parameters

FileHandle is the handle of the desired file that was assigned to the file when the file was
opened with fil_open.

pDataButfer is a pointer to the buffer containing the data to be written.

Length specifies the number of bytes to write to the file.

WriteSegment is the segment portion of the far address specified by WriteSegment and offset
by pDataBuffer.

Return Value

<unsigned>
The number of bytes that were actually written to the file if no disk error occurred.
DM _ERROR if an error occurred writing to the disk file.

Special Notes

In order to call fil_write_far, a far pointer must point to the segment and offset of the write buffer
area. This is accomplished by performing an fmalloc, allocating memory referenced by a far
pointer. Using 'C' library calls FP_SEG and FP_OFF, the values for WriteSegment and
pDataBuffer can be obtained (see Example).
If DM_ERROR is returned, dmerrno may have any one of the following values:
DMERR INVALID PATHNAME if the specified path cannot be found.
DMERR_INVALID FILE HANDLE if the specified file handle has not been assigned.
DMERR__OUT_OF_DISK_SPACE if the disk is full.
DM _ERROR or DMERR_WRITE_PROTECT if a critical error occurred.
Due to the small memory model, the maximum number of bytes which can be written at one time
is 65,534.

Page 11-51

DeskMate Technical Reference
File /O Manager

Example

/* write 45000 bytes from another segment */
int FileHandle;

char “*pDataBuffer;

unsigned int Length;

unsigned int ReadSegment;

char far *1pBuffer;

int ReturnCode;

/* allocate 45000 byte buffer */

lpBuffer = fmalloc(45000);

/* initialize the segment */

ReadSegment = FP SEG(lpBuffer);

/* initialize the offset */

pDataBuffer = FP OFF(lpBuffer);

Length = 45000; —

ReturnCode = fil write far(FileHandle,pDataBuffer,Length,ReadSegment);

See Also

fil_write()
fil_read_far()

Page 11-52

DeskMate Technical Reference
File /0 Manager

Get_Directory (Drive, pPath)
char Drive;
char *pPath;

Get_Directory returns the current directory for the specified drive.

Input Parameters

Drive is a character and must be in the form A, B, C, etc.
pPath must be defined as a pointer to a character string at least MAX FILE NAME SIZE bytes
long.

Return

Zero (0) means the current directory will be returned in the pPath parameter. The directory
name will begin with a slash.
DM ERROR if an invalid drive is specified, with dmerrno set to 15.

Example
char CurrentPath[MAX FILE NAME SIZE]

/* get the current pathlist for drive C */
Get Directory ('C', &CurrentPath(0]);

Page 11-53

DeskMate Technical Reference
File IO Manager

get_drive_map ()

get_drive_map returns a bitmap which identifies all valid drives in the system.

Input Parameters
None
Retur |

<unsigned long>

a bit map of the 26 drives, where A: = bit 0 (LSB), Z: = bit 25. If the bit is set it means a physical
or redirected drive is mapped. If the bit is cleared then the drive is not mapped. Bits for "Virtual”
drives are cleared.

Special Notes

ON DOS 3.0 OR HIGHER:

get_drive_map calls DOS function IOCTL, subfunction OxOE (Get Logical Drive Map) for each
of the 26 possible drives, to determine whether a physical or redirected drive exists. DOS
"virtual” drives are disallowed.

ON DOS 2.x OR LOWER:

get_drive_map uses DOS Select Disk function to determine highest drive assigned. The
equipment flag is checked specifically for B: only, so that we disallow the DOS virtual drive on
single drive systems.

Example

unsigned long get drive map();
unsigned long ValidDrives;

/* get a bitmap of the current system's valid drives. */

/* the drives are returned as drive A = bit 0, drive Z = bit 25. */
ValidDrives = get drive map();

See Also
DOS technical reference manual.

DOS 2.x or Lower Select Disk call.
DOS 3.0 or Higher IOCTL call.

is_floppy()

Page 11-54

ot O ben

DeskMate Technical Reference
File-1/O Manager

get_free_space (Drive)

int Drive;

get_free_space returns a long number indicating the number of bytes free on the disk.
Input Parameters

Drive is an integer in the format 1=A, 2=B, etc.

Return Value

A long integer indicating the number of free bytes on the disk.

Example

long get free space();
long FreéeBytes;

/* get the amount of free space on drive A */
FreeBytes = get_free space (1);

T/p/s fonction can fl o /a/’je fard

/ !
(Ilﬂ'vcs7 /E/w’ﬂ./h;; a /u’jaullve AVMDER

Page 11-55

DeskMate Technical Reference
File I/O Manager

guf_bind_end () ' ’
In DeskMate 03.03.0x guf_bind_end terminates the applications bindings to both the low-level,

(PRGUF.RES) and high-level, (DMGUF.RES) GUF resources.
In DeskMate 03.02.0x guf_bind_end terminates the applications bindings to the GUF resource.

Input Parameters

None.

Return Val

guf_bind_end should be made when termination to the GUF resource(s) is desired by the
application. Usually just prior to csr_end.
if the application makes this call it should not make the call to prguf_bind_end.

Page 11 -56

DeskMate Technical Reference
File /O Manager

guf_bind_init ()
In 1989 DeskMate 03.03.0x guf_bind_init sets up the applications bindings to both the low-level,
(PRGUF.RES) and high-level, (DMGUF.RES) GUF resources.

In 1988 DeskMate 03.02.00 guf_bind_init sets up the applications bindings to the the GUF
resource.

Input Parameters

None.
Retur]

DM _ERROR if the high-level GUF resource, DMGUF.RES could not be loaded.
Special Notes

guf_bind_init should be called when the user wishes to use any of the calls in either of the GUF
resources, usually right after esr_init.

If the application makes this call it should not make the call to prguf_bind_init.

See the General Description/Notes for a list of fileio manager calls contained in the GUF
resource.

Page 11-57

DeskMate Technical Reference
File /0 Manager

is_floppy (Drive)
char Drive;

is_floppy determines if the specified drive is removable.

Input Parameters

Drive is a character and must be in the form A,B,C etc.
Return Val

DM_ERROR if the drive is invalid.

TRUE if the drive is removable.
Zero (0) if the drive is fixed.

Example

if (is floppy (Drive))
/¥ do floppy processing */

See Also

get_drive_map()

Page 11-58

DeskMate Technical Reference
File I/O Manager

msgbox_SaveChanges ()

msgbox_SaveChanges displays a standard message box which states "Save Changes",
YES/NO/CANCEL, and returns the users selection.

Input Parameters

None.

Return Value

MSG_YES if the user selected YES.
MSG_NO if the user selected NO.
MSG_CANCEL if the user selected CANCEL.

Example

if (msgbox SaveChanges() == MSG_YES)
/* sa¥e the data */ -

Page 11-59

DeskMate Technical Reference
File IO Manager

Path_Expand (pSource, pExpPath)
char *pSource;
char *pExpPath;

Path_Expand takes a partial path, which may include "..", and expands it to a full pathname
including drive specification. The filename portion of the path need not exist. Path_Expand also
verifies that the filename portion does not contain too many characters in the base or extension,
the drive specified is valid, and the expanded pathname is not longer than 64 characters.

If a filename alone is specified it is appended to the end of the current expanded path.

Input Parameters

pSource is a pointer to a character string containing the filename or pathname to be expanded.
pPExpPath is a pointer to a buffer at least MAX FILE _NAME_ SIZE, which will contain the fully-
expanded pathname.

Return Value

<int>
If the path was expanded without an error, the expanded pathname is returned at pExpPath and
NULL is returned.
If DM_ERROR is returned, dmerrno may have any one of the following values:
DMERR _INVALID DRIVE if the specified drive is not valid.
DMERR_! EXTENSION TOO_LONG if a sub-directory or filename extension is longer
than 3 characters.
DMERR_NO_BASE if no basename was specified upon entry.
DMERR BASE _TOO_LONG if a sub-directory or flename base is longer than 8
characters.
DMERR_INVALID PATHNAME if pSource pomts to a path which cannot be
expanded as specified or contains non-exlstmg sub-directories.
DMERR_EXPANDED_ PATH_TOO_LONG if the expanded pathname would become
longer than 64 characters.
DM_ERROR Or DMERR_WRITE_PROTECT if a critical error occurred.

N
Snecial Notes =7 ok i

The bufter pointed to by pExpPath should be at least MAX FILE_NAME_SIZE bytes long. The
partial path may include "..".

Path_Expand will not display any error messages to the user. All error messages are the
responsibility of the application.

Path_Expand attempts to change and set directories while executing. If a floppy is not properly
inserted in the drive specified or some other critical error occurs in Path_Expand, no message is
given to the user and dmerrno will contain the appropriate error.

Page 11-60

o

DeskMate Technical Reference
File IO Manager

Example

char *pSource = "..\\SAMPLE.DOC"};

char pExpPath[MAX FILE NAME SIZE];

int ReturnCode; - -

/* expand from the current director of C:\PATH1\PATH2 */
/* and qualify the path */

ReturnCode = Path Expand(pSource, &ExpPath([0]);
/* upon return ExpPath will contain "C:\PATH1\PATH2\SAMPLE.DOC" */

See Also

afn()

Page 11-61

DeskMate Technical Reference
File I/O Manager

1989 DeskMate 03.03.01 ONLY
prguf_bind_end ()

prguf_bind_end terminates the applications bindings to the low-level GUF resource
PRGUF.RES.

prguf_bind_end should be made when termination to the low-level GUF resource, PRGUF.RES
is desired by the application. Usually just prior to csr_end.
prguf_bind_end() is automatically made by guf_bind_end.

Page 11-62

DeskMate Technical Reference
File /0 Manager

1989 DeskMate 03.03.01 ONLY
prguf_bind_init ()

prguf_bind_init sets up the bindings from the application to the low-level GUF resource,
PRGUF.RES.

Input Parameters

None.

Return Value

DM _ERRCR if the low-level GUF resource, PRGUF.RES could not be loaded.

Special Notes

prguf_bind_init should be called when the user wishes to use any of the calls in the low-level

GUF resource, PRGUF.RES, usually right after csr_init.
prguf_bind_init() is automatically made by guf_bind_init.

Page 11-63

DeskMate Technical Reference
File /0 Manager

1989 DeskMate 03.03.0x ONLY

afn (pSource, pExpPath)
char *pSource;
char *pExpPath;

qfn qualifies a path as existing in the specified drive and sub-directories and fully expands the
path. The filename portion of the path need not exist. qfn also verifies that the filename portion
does not contain too many characters in the base or extension, the drive specitied is valid, and
the expanded pathname is not longer than 64 characters.

If a filename alone is specified it is appended to the end of the current expanded path.

Input Parameters

pSource is a pointer to a character string containing the filename or pathname to be expanded.
pExpPath is a pointer to a buffer at least MAX FILE NAME SIZE, which will contain the fully-
expanded pathname.

Return Value

<int>

if the path was expanded without an error, the expanded pathname is returned at pExpPath and

NULL is returned.

If DM_ERROR is returned, dmerrno may have any one of the following values:

DMERR INVALID DRIVE if the specified drive is not valid.

DMERR EXTENSION_TOO_LONG if a sub-directory or filename extension is longer than 3
characters.

DMERR BASE TOO LONG if a sub-directory or filename base is longer than 8 characters.

DMERR INVALID PATHNAME if pSource points to a path which cannot be expanded as specified
or contains non-existing sub-directories.

DMERR EXPANDED PATH TOO LONG if the expanded pathname would become longer than 64
characters.

DM ERROR or DMERR WRITE_ PROTECT if a critical error occurred.

Special Notes

The buffer pointed to by pExpPath should be at least MAX FILE NAME SIZE bytes long. The

partial path may include "..".

afn will not display any error messages to the user. All error messages are the responsibility of
the application.

qfn attempts to change and set directories while executing. If a floppy is not properly inserted in
the drive specified or some other critical error occurs in gfn, no message is given to the user and
dmerrno will contain the appropriate error.

Page 11-64

DeskMate Technical Reference
File I/O Manager
Example

char *pSource = "..\\SAMPLE.DOC"};
char pExpPath[MAX FILE NAME SIZE];
int ReturnCode; — - -

/* expand from the current director of C:\PATH1\PATH2 */

/* and qualify the path */

ReturnCode = gfn(pSource, &ExpPath[0]);

/* upon return ExpPath will contain "C:\PATH1\PATH2\SAMPLE.DOC" */

See Also

Path_Expand()

?14((S W/W /Oc,é Uf 754/:& S)/S/cm oder oezol/%zle S'OZ/
vse [rpand ()

Page 11-65

DeskMate Technical Reference
File /0 Manager

Rename_File (pOldname, pNewname)
char *pOldname;
char *pNewname;

Rename_File renames a file from pOldname to pNewname. Both files must reside on the
same drive.

Input Parameters

pOldname is a pointer to a character string containing the old file name.
pNewname is a pointer to a character string containing the new file name.

Return Val

NULL if successtul.
DM ERROR if an error occurs.

Special Notes

Either or both pathnames may contain a drive specified in the form A:, B, etc,and may contain a
directory path, but both drives MUST be the same.
If DM_ERROR is returned, dmerrno will be set to one of the following:

Three (3) if the path was not found,

Five (5) if access was denied,

Seventeen (17) if the files are not on the same device.

Example

int ReturnCode;

/* rename the file "SAMPLE.TXT" to "NEW.TXT" */
ReturnCode = Rename File("SAMPLE.TXT", "NEW.TXT");

Page 11-66

DeskMate Technical Reference
File /0 Manager

Select_Disk (Drive)

char Drive;

Select_Disk makes the specified drive the current drive.
In meter

Drive is a character in the form of A, B, C, etc.

Retur]
None.
Special Notes

Because there is no way to test for errors, it is useful to call valid_drive or get_drive_map to
verify the drive exists before calling Select_Disk.

Example
char NewDrive;

Select Disk (NewDrive);

See Also

get_drive_map()
valid_drive()

Page 11-67

DeskMate Technical Reference
File I/O Manager

Set_CPU_Speed (Speed)
int Speed;

Set_CPU_Speed allows for setting of the CPU speed.

Input Parameters

Speed is an integer with the value of "F" for fast and any other value for slow.

Return Value

The default speed setting for machines with two speed CPU's is fast. It is suggested that slow
only be used when an application requires a slower CPU speed.

Example
int FAST = 'F';

/* set CPU speed to FAST */
Set CPU_Speed (FAST);

Page 11-68

DeskMate Technical Reference
File /O Manager

Set_Directory (pPathname)

char pPathname;

Set_Directory sets the current directory to the specified pathname.
Input Parameters

pPathname is a pointer to a character string containing the new current directory. It may contain
a leading drive specification in the form A:, B:, etc.

Return Value

<int>
NULL if successful.
DM_ERROR if an error occurs.

Special Notes
It an error occurs dmerrno will be set to three (3) indicating the pathname is invalid.

Example

int ReturnCode;

/* change the current directory to c:\pathl\path2 */
ReturnCode = Set Directory ("C:\\PATHI1\\PATH2");

Thes ﬁ”mcﬁm may svecead p }/e% refurn an error,

ﬂ(z f&%’lm& a’Aou/o/ 6’ Convm[m/ 7[0 u//)mase .
j/}ec:%/n l'ule & drive //(i?) W/// @ SUCC@(,// hot
retum. D EREOR.

ﬂc /ﬂ%ﬂ%c shoulyl fe 6/'(/)({/!0/80/ with
/it Et/;zma/([febore us/m7 Hhis fnchon |

Page 11-69

DeskMate Technical Reference
File /0 Manager

valid_drive (pDriveBuf)
char *pDriveBuf;

valid_drive takes a pointer to a drive specification (which may be followed by a pathname) and
determines if the drive is valid.

Input Parameters

pDriveBuf is a pointer to a character string which contains the drive letter or a complete path.
Return Val

<int>
TRUE if the specified drive exists.
FALSE if the drive does not exist.

Special Notes

If the drive does not exist a message box is displayed stating "Invalid Drive” before returning
FALSE.
The string pointed to by pDriveBuf is converted to uppercase.

Example

char *pDrive;
if (valid drive (pDrive) == TRUE)

/* drive does exist in the system */

Page 11-70

DeskMate Technical Reference
File I/O Manager

valid_filename (pFilename, pExtension)
char *pFilename;
char *pExtension;

valid_filename verifies all characters, and the form of a file name are correct. It appends the
extension pointed to by pExtension to the file name, unless an extension is not desired,
specified by file names ending with a period.

In r

pFilename is a pointer to a character string that contains the filename to be verified.
pExtension is a pointer to a character string that contains the default extension to be appended.

Return

<int>
TRUE if the filename is valid.
FALSE if the filename is invalid.

Special Notes

If the filename is invalid, before returning FALSE, a message box will be displayed stating the
error condition:

Invalid drive.

Invalid Filename (Contains invalid characters).

Filename base more than eight characters.

Extension more than three characters.
pFilename may point to a full path including drive and directories.
The strings pointed to by pFilename and pExtension are converted to upper case.
If pFilename does not have an extension, and pExtension points to an empty string,
valid_filename will still append a dot onto the string pointed to by pFilename.

Example

DATAFILE TEXTFILE;
DATAFILE *pTextFile;

pTextFile = &TEXTFILE;

if (valid filename ((pTextFile->pFile)3name, pTextFile->pExtension)
- == TRUE

/* the filename is valid */

}
Sce Also

DATAFILE structure in dmguf.h

Page 11-71

DeskMate Technical Reference
File /O Manager

1989 DeskMate 03.03.0x ONLY

valid_filename_wild (pFilename, pExtension)
char *pFilename;
char *pExtension;

valid_filename_wild performs the same function as valid_filename with the exception that the
wildcard characters "*" and "?" are accepted as valid filename characters.

In IS

pFilename is a pointer to a character string that contains the filename to be verified.
pExtension is a pointer to a character string that contains the default extension to be appended.

Return Value

<int>
TRUE if the filename is valid.
FALSE if the filename is invalid.

ial

If the filename is invalid, before returning FALSE, a message box will be displayed stating the

error condition:
Invalid drive. .
Invalid Filename (Contains invalid characters). ‘
Filename base more than eight characters.
Extension more than three characters.

pFilename may point to a full path including drive and directories.

The strings pointed to by pFilename and pExtension are converted to upper case.

If pFilename does not have an extension, and pExtension points to an empty string,

valid_filename will still append a dot onto the string pointed to by pFilename.

Example

DATAFILE TEXTFILE;
DATAFILE *pTextFile;

pTextFile = &TEXTFILE;

if (valid filename wild ((pTextFile—)>pFilename, pTextFile->pExtension)
- - == TRUE
/* the filename is valid */

See Also

DATAFILE structure in dmguf.h

Page 11-72-

Form Resources

Table of Contents

Near Form Resource General Description/Notes.........ccovvivunns 12- 1
Structures/Defines ...vuiiiiiii i rinereenneecaeraatocaanrnaans 12- 4
form add element ..Adds the specified element to the form...... 12-13
form add_stroke ...Adds a stroke definition to the form........ 12-14
form break_object .Reduces one object to constituent objects...12-15
form clear Clears the form's display and stroke lists..12-16
form compress Compress free space from the form........... 12-17
form copy_element .Copies element to the clipboard............. 12-18
form copy_group ...Copies group of elements to clipboard....... 12-19
form cut_element ..Cuts the form element to the clipboard...... 12-20
form cut_groupCuts a group of elements to clipboard....... 12-21

form define group ...Defines a group of elements for the form..12-22

form delete element .Deletes element definition from form...... 12-23
form delete group ...Deletes all group elements from form...... 12-24
form delete stroke ..Deletes stroke character from form........ 12-25
form delete unused strokes ...Deletes non-required strokes..... 12-26
form display region .Displays form elements in a region........ 12-27
form dup elementCreates a scaled copy of an element....... 12-28
form dup group Creates a scaled copy of a group.......... 12-29
form element to_bottom Moves element to bottom of defs....12-30
form element to_top Moves element to top of defs....... 12-31
form expand Expands the form display listeseeeennnn. ..12-32
form find element ...Finds an element in a rectangle........... 12-33
form find strokeFinds a stroke character.................. 12-34-
form get pointerGets a pointer to element definition...... 12-35
form get xy extents .Gets maximum x,y values for all elements..12-36
form group_to bottom Moves group to bottom of defs...... 12-37
form group to_top Moves group to top of defs......... 12-38
form make objectMakes an object from elements in group....12-39
form mod attr Modifies element attributes............... 12-40

form mod grp attr ...Modifies element attributes in the group..12-41
form move element ...Moves and resizes an element.............. 12-42
form move_group Moves and resizes a group of elements..... 12-43

XY & AP

form open Initializes the form buffer............... 12-44
form paste Adds the clipboard display to the form....12-45
form region empty ...Determines if the form contains elements..12-46

form replace_element Replaces an element definition..... 12-47
form scroll downScrolls the form down............ccvunennn 12-48
form scroll leftScrolls the form to the left.............. 12-49
form_scroll right ...Scrolls the form to the right............. 12-50
form scroll up Scrolls the formup........cvvvvenieenn, 12-51
form specify group...Makes a list of element tags into a group.12-52
form update Draws/redraws the current form............ 12-53

General Description/Notes

The forms resource calls are used to create pictures which are to be printed, manipulated, or
stored for later use. Each "form" is a list of the graphic and text primitives which make up a
picture. A form is made up of four contiguous parts, a header, a list of tags for each element
entry, the element definitions themselves, and a list of definitions for any stroke font characters
which are used in the form.

Each form header contains information used by the forms resource to maintain the form.
Included are the size of the buffer allotted for the tag list and element definitions, and the size of
the buffer allotted for the stroke definitions. Also included are pointers and counters used for the
manipulation of the form, and a flag to allow or suppress output to the video display whenever
elements are added or manipulated.

The tag list, or entry list, contains identifying tags for each of the elements in the form, along with
the offset from the beginning of the buffer to the associated element's definition. The order of the
entries in the entry list determines the order in which each element will be rendered to the display
device. The entry list begins at the top of the buffer specified in the form header, and grows
downward in memory. The element definitions begin at the bottom of the buffer specified in the
form header, and grow upward towards the entry list.

Each element definition contains all information necessary to render the element onto a display
device. All element's posses a bounding rectangle which specifies the upper left and lower right
corner of the region in which the element will be displayed. All form coordinates are expressed in
terms of world coordinates, allowing a form to encompass an area of 32K by 32K points.
Element types include lines, rectangles, ellipses, polylines, and text strings. Text strings can be
in either the system text font, or in application defined stroke fonts. In the case of stroke font text
strings, the ASCI| representation of the string will be stored in the element definition. The actual
definition for the stroke characters will be stored in the form's stroke list.

. The stroke list holds the definitions for all of the stroke font characters used in the form. This

avoids storing duplicate definitions for characters in the element definition portion of the form.
Each stroke character is defined as a series of lines (or strokes) drawn on a 128 by 128 point
grid. The definition for the character is mapped into the bounding rectangle of the corresponding
text element definition to allow the display of stroke text at any size or rotation (in 90 degree
increments).

Enhanced Form Manager

The Enhanced Form Manager contains all of the functionality of the original form manager as well
as font support. It will have its own set of bindings called eform_bind_init and eform_bind_end.
The near form calls are still supported, using the csr_bind_init call, however they do not support
fonts. The eform calls expect all pointer parameters to be far.

The eform_bind_init call contains a parameter that allows the font support to be turmed off. If
the flag is set to NULL the form manager will not be able to support fonts. If the flag is set to 1,

then fonts are supported and applications will also have the ability to access the font engine or
the enhanced video driver directly.

Deskmate Display List Format

The display list contains all of the information necessary to generate the form. The display list
consists of two parts, the entries and the element definitions.

Page 12-1

DeskMate Technical Reference
Forms Resource

The form entries are simply an array of two-word entries. The first form entry contains the
number of renderable elements in the form. All subsequent entries are an offset from the start of
the form to the element definitions, and a tag which identifies the entry.

pFormList -> number of entries, offset element1, tag 1, . .. offset elementntagn

The element definitions are graphic primitives and groups of primitives known as objects.

A temporary group of primitives can be created by the form manipulation calls in order to perform
operations on an area of the form. This special element is consumed by any subsequent form
manipulation call.

Display List Memory Model

The display list will exist in a contiguous region of memory immediately after the form header.

The form entries will begin at the lowest memory location and will grow towards high memory.
The element definitions will begin at the high end of the region and grow towards the form.

number of elements

offset element 1

tag ‘element 1

offset element n

tag element n
free gpace

element n

element 2
element 1

Stroke font definitions will be stored in a stroke definition list immediately following the form
display list.

Form Stroke List Definition
The forms resource supports user defined stroke font characters in the following manner:
Associated with each form is a stroke font definition list which contains the stroke characters

defined for the form. This list is empty when a form is created, and can be added to through the
use of form_add_stroke, and removed via form_delete_stroke.

Page 12-2

.

DeskMate Technical Reference
Forms Resource

in order to add a definition to the list, a structure containing the character definition must first be
built. The format of a stroke character definition is as follows:

STROKE. size int - the size of the definition in bytes.

STROKE.ID.font# char - the font number of this character.
STROKE.ID.char char - the ASCII code for the character this

character represents.

Immediately following the font# should be an array of characters which make up the definition of
the character. All stroke characters are defined as a series of strokes on a 128 by 128 point grid
with columns 1 thru 128 and rows 1 thru 128. Each stroke is defined by the coordinates of the
polyline which make up the stroke. The value zero delineates strokes from each other.

For example:
The following is the stroke definition for a Roman character set capital A:

char ROMA{] = {

30, 0, 2, 65 /* font 2 'A' */

28, 100, 67, 16, 106, 100, O, /* sides of A */

67, 28, 100, 100, O, /* thick side */

39, 76, 89, 76, O, /* cross bar */

17, 100, 50, 100, O, /* serif */

83, 100, 117, 100 }; /* serif */
67,28

A

28,100 106,100

The size of the entire definition is 30 bytes, the font number is 2, and the character is ASCII
character 65 (which is 'A"). Each stroke is designated by the end points of the lines making up
the stroke. Zeroes are used to indicate a ‘pen-up’ between individual strokes.

The calls listed below do not require a binding to the Forms Resource:

form_display_region
form_get_xy_extents
form_scroll_down
form_scroll_left
form_scroll_right
form_scroll_up
form_update

The following binding calls allow for utilization of the forms resource:

csr_form_bind_end
csr_form_bind_init

Page 12-3

DeskMate Technical Reference
Forms Resource

Structures/Defines.
/* */
/* */
/: CSRFORM.H contains the Form structures and defines :;
/* */
/* Forms Resource */
struct form hdr defn
char bNewList; /* new list flag */ :
char bVideo; /* video output flag */
int list size; /* size of form in words */
int stroke size; /* size of the stroke section in bytes */
int next entry; /* for internal use only */
int last™def; 4 /* for internal use only */
int tag €nt; /* for internal use only */
int *pGroup; /* pointer to group header */
int *pFormlList; /* pointer to the form buffer */
int *pStrokes; /* pointer to the stroke list */

}i
typedef struct form hdr defn FORM HDR;.

form_hdr structures contain the information the forms resource needs to manipulate a given
form. The application must possess one such structure for each form concurrently open.
Multiple forms can be dealt with at any time, since each form possesses its own FORM_HDR
structure and display list buffer. Each form's FORM_HDR structure contains the information the
forms resource needs to manipulate the display list. The first step in building a form is to allocate
a form header structure of type FORM_HDR. ‘

FORM_HDR.bNewList
If set to zero, the forms resource will clear the display list buffer. If a previously created list is in
the buffer, this should be set to 1 so the forms resource will calculate its internal pointers.

FORM_HDR.bVideo: ‘
If set to 1 the forms resource will update the screen, if zero, no video output will take place. If
set, a form window must be initialized before making any form manipulation calls.

FORM_HDR.list_size:
The size of the display list buffer in words.

FORM_HDR.stroke size: _
The size of the stroke definition list in bytes. This MUST be set to at least two bytes.

FORM_HDR.next_entry: ‘
The offset in words from the start of the display list to whereithe next entry can be stored.

FORM_HDR.last_def:
The word offset to the last element definition stored in the display list.

FORM_HDR.tag_cnt:
Holds the last element tag assigned.

FORM_HDR.pGroup:
A pointer to the current element group. Zero if no valid group exists.

Page 12-4

e e ‘,L‘.,_....u_l_.,.gu . _‘ l .- JEPPRPET SN sk

DeskMate Technical Reference
Forms Resource

FORM_HDR.pFormList:
A pointer to a contiguous region of memory where the display list will be built.

FORM_HDR.pStrokes:
A pointer to the stroke font definition buffer.

struct form size buf defn

int list; /* size of list */
int strokes; /* size of strokes */

}i
typedef struct form size buf defn FORM_SIZE BUF;

struct form dst defn

int x0; /* x origin integer */
int x0f; /* x origin fraction */
int y0; * y origin integer */
int y0f; /* y origin fraction */
int x1; * x end integer */
int x1f; * x end fraction */
int yl; * y end integer */
int ylf; /* y end fraction */

}i
typedef struct form dst defn FORM DST;

form_dst structures are used to pass coordinate information to the forms resource.

FORM_DST.x0:
The integer portion of the x axis world coordinate for the top left hand corner of the bounding
rectangle.

FORM_DST.x0f:
The fractional portion of the x axis world coordinate for the top left hand corner of the bounding
rectangle.

FORM_DST.y0:
The integer portion of the y axis world coordinate for the top left hand corner of the bounding
rectangle. '

FORM_DST.y0f:
The fractional portion of the y axis world coordinate for the top left hand corner of the bounding
rectangle.

FORM_DST.x1:
The integer portion of the x axis world coordinate for the bottom right hand corner of the bounding
rectangle. '

FORM_DST.x1f:
The fractional portion of the x axis world coordinate for the bottom right hand corner of the
bounding rectangle. ‘

FORM_DST.yl:

The integer portion of the y axis world coordinate for the bottom right hand corner of the bounding
rectangle.

Page 12-5

DeskMate Technical Reference
Forms Resource

FORM_DST.ylf:

The fractional portion of the y axis world coordinate for the bottom right hand corner of the
bounding rectangle.

struct element defn

char type; /* element type */

char mod; /* element attribute */
int x0; /* x origin integer */
int x0f; /* x origin fraction */
int y0; /* y origin integer */
int y0f; /* y origin fraction */
int x1; /* x end integer */
int x1f; /* x end fraction */
int yl; /* y end integer */
int ylf; /* y end fraction */

};
typedef struct element defn ELEMENT;

When adding or replacing elements to a form it is necessary to construct the element definition
within the proper structure type. All element, object, and group definitions, as well as
CLIP DRAW information on the clipboard, begin with data in a structure of type ELEMENT. When

deﬁniﬁg elements, the fractional portion of the element coordinates should be set to zero. The
fractional portion is used internally when scaling elements in order to maintain accuracy.
The x0, y0, x1, y1 define the bounding box for a group of elements.

ELEMENT.type:
One byte type identifiers: FORM POLY TYPE, FORM ELLIP_TYPE, FORM LINE TYPE,
FORM BEV TYPE, FORM RECT ' TYPE, FORM TEXT TYPE, FORM "OTHER. Further rendenng of

the element definition is totally dependent on this belng correct.
FORM POLY TYPE 'p

FORM ELLIP TYPE B!
FORM LINE TYPE 'L
FORM BEV TYPE 1B
FORM RECT TYPE 'R
FORM TEXT TYPE T
FORM_OTHER 'y
ELEMENT.mod:

Used differently by each element type. See form_add_element for specific cases.

ELEMENT.x0:
The integer portion of the x axis world coordinate for the top left hand corner of the element's
bounding rectangle.

ELEMENT.x0f:
The fractional portion of the x axis world coordinate for the top left hand corner of the element's
bounding rectangle.

ELEMENT.yO0:
The integer portion of the y axis world coordinate for the top left hand corner of the element's
bounding rectangle.

ELEMENT.yOf:

Page 12-6

DeskMate Technical Reference
Forms Resource

The fractional portion of the y axis world coordinate for the top left hand corner of the element's
bounding rectangle.

ELEMENT.x1:

The integer portion of the x axis world coordinate for the bottom right hand corner of the
element's bounding rectangle.

ELEMENT.x1f:

The fractional portion of the x axis world coordinate for the bottom right hand corner of the
element's bounding rectangle.

ELEMENT.y1:

The integer portion of the y axis world coordinate for the bottom right hand corner of the
element's bounding rectangle.

ELEMENT.y1f:

The fractional portion of the y axis world coordinate for the bottom right hand corner of the
element'’s bounding rectangle.

FORM U ARC TYPE I\
FORM U_IMAGE TYPE '
FORM U POLYLINE TYPE 'P’

struct form line defn
ELEMENT element;
char color; /* line color */
char width; /* line width */

} .
tggpedef struct form line defn FORM LINE;

In the special case of FORM LINE elements, the coordinates specify the end points of the line
rather than a bounding rectangle.

FORM_LINE.element:

The element definition.
FORM_LINE.element.type: FORM LINE TYPE.
FORM_LINE.element .mod: specifies the line style.

FORM_LINE.color:
The color of the line specified by COLOR1 - COLOR16.

FORM_LINE.width:
Line width defined type; LINE WIDTH1 - LINE WIDTHS.

struct form rect_defn

ELEMENT element;

char 1ncolor; /* rectangle color */

char lnwidth; /* rectangle width */

char lnstyle; /* rectangle line style */

char bgnd color; /* background color of pattern */
char fgnd color; /* foreground color of pattern */
char pad;™

}; ‘
typedef struct form rect defn FORM RECT;

Page 12-7

DeskMate Technical Reference
Forms Resource

struct fo rm bev_defn

{

®

ELEMENT element;

char Incolor; /* rectangle color */

char lnwidth; /* rectangle width */

char lnstyle; /* rectangle line style */

char bgnd color; /* background color of pattern */
char fgnd color; /* foreground color of pattern */
char pad; ™

}i
typedef struct form bev defn FORM BEV;
struct form ellipse defn

ELEMENT element;

char Incolor; /* rectangle color */

char lnwidth; /* rectangle width */

char lnstyle; rectangle line style */

char bgnd color; /* background color of pattern */
char fgnd~color; /* foreground color of pattern */
char pad;™

}i
typedef struct form ellipse defn FORM ELLIPSE;

~
*

FORM_RECT, FORM_BEV, and FORM_ELLIPSE are similar structures containing the following
variables where (XXXX) is RECT, BEV, or ELLIPSE.

FORM_(XXXX).element :

ELEMENT definition.

FORM_(XXXX).element .type: FORM BEV_TYPE, FORM ELLIPSE TYPE, FORM RECT TYPE. ‘
FORM_(XXXX).element .mod: specifies the fill pattern. N

FORM_(XXXX}.1ncolor:
The color of the line as defined by: COLOR1 - COLORL16.

FORM_(XXXX).1lnwidth:
Line width defined type: LINE_WIDTH1 - LINE WIDTHS.

FORM_(XXXX).1nstyle:
Line type definition: LINE SOLID, LINE INVISIBLE, LINE DOTTED, LINE DASHED,
LINE DOT DASHED, and LINE DENSE DOTTED.

FORM_(XXXX).fgnd color:
Foreground color of the fill pattern as defined by: COLOR1 - COLOR16.

FORM_(XXXX).bgnd color:
Background color of the fill pattern as defined by: COLOR1 - COLOR16.

FORM_(XXXX).pad:

Null.

struct form text defn
ELEMENT element;

char attr; /* character attribute for the string */
char color; /* foreground color of string */ ‘

Page 12-8

DeskMate Technical Reference
Forms Resource

char nChars; /* number of characters in the string */
char rot; /* character rotation */
char *pString; /* pointer to the string */

}i
typedef struct form text defn FORM TEXT;

FORM_TEXT.element:

ELEMENT definition.

FORM_TEXT.element.type: FORM TEXT TYPE.
FORM_TEXT.element .mod: specifies the font number.

FORM_TEXT.attr:
Character attribute defined type: NORMAL, BOLD, ITALIC, and UNDERLINE.

FORM_TEXT.color:
The text color as specified by: COLOR1 - COLOR16.

FORM_TEXT.nChars:
Number of characters in the string: 0 to 132.

FORM_TEXT.rot :
The orientation of the text string as defined by: FORM_ROT0, FORM ROT90, FORM ROT180, and
FORM ROT270. Rotation is ignored for system font.

FORM ROTO
FORM ROT90 1
FORM ROT180 2

. FORMROT270 3

FORM_TEXT.pString:
A pointer to an ASCII character string nChars long. Only printable characters should be in the

string.
struct form u defn .
- event
. 2] ’ ‘

FrEHENT giig‘fnt '« ize of exhie P, mc{w(/n7 baa&r/ "t ¢_uarc[s

}i

typedef struct form u defn FORM U;

struct form gattr defn
char line fgnd color; /* line pattern foreground color */
char line bgnd color; /* line pattern background color */
char linestyle; /* line style */
char line width; /* line width */
char pattern; /* line pattern/fill pattern */
char bgnd color; /* fill pattern background color */
char fgnd color; /* fill pattern foreground color */
char pad; ™ /* padding */

}i
typedef struct form gattr defn FORM GATTR;
struct form tattr defn

char color;
char attr;

char rot;
char font;

Page 12-9

DeskMate Technical Reference
Forms Resource

}:
typedef struct form tattr defn FORM TATTR;
/* the ARC structure is from csrbase.h */

/* graphic primitive structures */
struct arc_defn

int basel x; /* first base point x */
int basely; /* first base point y */
int base2”x; /* second base point x */
int base27y; /* second base point y */
int apoge€ Xx; /* apogee x */
} int apogee’ y; /* apogee y */
t&pedef struct arc_defn ARC;
struct form u arc defn
FORM U u header; /* type U mod A */
FORM GATTR afttr;
int xext; /* Original x extent of bounding rect */
int yext; /* Original y extent of bounding rect */
| ARC arc; /* arc definition */
t&pedef struct form u arc defn FORM U ARC;
struct form u polyline defn
FORM U u header; /* type U mod P */
FORM GATTR attr;
int Xext; /* original x extent of bounding rect */
int yext; /* original y extent of bounding rect */
char bFill; /* fill flag for polygon */
char bConnect; /* 1st & last point connect flag */
int nPoints; /* number of points in polygon */

}i
typedef struct form u polyline defn FORM U POLYLINE;

The points that make up the POLYLINE follow the FORM_U_POLYLINE structure. These points
are relative to the origin of the element, NOT relative to the screen origin or active window.

The polyline is defined within a region with origin 0,0 and extents xorgext, yorgext. This definition
will be rendered into the bounding rectangle of the ELEMENT when the element is displayed.

FORM_U_POLY.element .type char - FORM_POLY_TYPE.
FORM_U_POLY .element .mod char - specifies the fill pattern.
FORM_U_POLY.color: line color of the polyline.
FORM_U_POLY.width: line width of the polyline.
FORM_U_POLY.nPoints: length of pointlist in words.
FORM_U_POLY.pPoints :pointers to array of points.

struct form u_image_defn

{

FORM U u header; /* type U mod B */

FORM GATTR attr;

char— bTransparent; /* transparency flag for COLORI */
int bitmap xext; /* x extent of image in pels */
int bitmap yext; /* y extent of image in pels */
char nColors; /* number of colors in image */

Page 12-10

DeskMate Technical Reference
Forms Resource

typedef struct form u image_defn FORM U IMAGE;

FORM_U_IMAGE.u_header.FORM_U_element .type: FORM U IMAGE TYPE.
FORM_U_IMAGE.u_header.FORM_U_element .mod: not used.

FORM_U_IMAGE.attr: not used.

FORM_U_IMAGE.pTransparent : indicates if the background will be solid.
FORM_U_IMAGE.bitmap xext : pel width of bitmap, must fall on even byte boundary.
FORM_U_IMAGE.bitmap yext: pel height of bitmap.

FORM_U_IMAGE.nColors: number of bits per pel. (1 for 2 colors, 2 for 4 colors and 4 for 16
colors)

The following a sample which is an 8 * 8 rectangle which would be rendered into the rectangle
from 100,200 to 1000, 2000.

db FORM U IMAGE type ;type

db 0 -~ - ;mod

dw 100, 0,200,0,1000,0,2000,0 boundlng rectangle

dw 20 ;size in words (fom sharb of bmdmj re@g,,\jlg)
db 0,0,0,0,0,0,0,0 ;attributes

db Transparent ;transparent background
dw 8 ;X ext

dw 8 iy ext

db 1 ;1 bit per pixel

db 11111111b ;first row of definition
db 10000001b

db 10000001b

db 10000001b

db 10000001b

db 10000001b

db 10000001b

db 11111111b ;last row of definition

?truct form attr defn

char text color;

char text attr; -
char text rot;

char font7

char line fgnd color;
char line”style;

char line width;

char fill pattern;
char bgnd color;
char fgnd color;
char bev pad;

char liné bgnd color;
char pad;™

}i
typedef struct form attr defn FORM_ATTR;

FORM_ATTR.text_color:
Color defined type: COLOR1 - COLOR16.

FORM_ATTR.text attr:
Character attribute defined type: NORMAL, BOLD, ITALIC, UNDERLINE, INVERSE, GRAYED, and
TRANSPARENT.

FORM_ATTR.text rot:

Page 12-11

DeskMate Technical Reference
Forms Resource

Character rotation defined type: FORM ROTO, FORM ROT90, FORM ROT180, and FORM ROT270.

FORM_ATTR.font:

Font number: FORM SYS TEXT or 2 - 255.
FORM SYS TEXT ~— 1

FORM_ATTR.line fgnd color:
Color defined type: COLOR1 - COLOR16.

FORM_ATTR.1line style:

Line type definition: LINE SOLID, LINE INVISIBLE, LINE DOTTED, LINE DASHED,

LINE DOT DASHED, and LINE DENSE DOTTED.

FORM_ATTR.line width:
Line width defined type: LINE WIDTH1 - LINE WIDTHS.

FORM_ATTR.fill pattern:
Fill pattern defined type: PATTERN1 - PATTERNZ20.

FORM_ATTR.fgnd color:
Color defined type: COLOR1 - COLOR16.

FORM_ATTR.bgnd color:
Color defined type: COLOR1 - COLOR16.

FORM_ATTR.bev pad:

Rectangle bevel defined type: VID NO BEVEL, VID BEVEL1, VID BEVEL2, or VID_BEVEL3.

FORM_ATTR.line bgnd color:
Color defined type: COLOR1 - COLOR16.

FORM_ATTR.pad:
Null.

struct form grp defn
ELEMENT element;
int num parts;
int parts;

}i
typedef struct form grp defn FORM GRP;

Page 12-12

—

-
N

DeskMate Technical Reference
Forms Resource

form_add_element (pFORM_HDR, pFORM_Element)
FORM_HDR *pFORM_HDR;
FORM_Element *pFORM_Element;

form_add_element adds the element specified by pFORM_Element to the indicated form. The
supported elements are FORM BEV, FORM ELLIPSE, FORM LINE, FORM RECT, FORM_TEXT,
FORM U ARC, FORM U IMAGE, and FORM U POLY.

Input Parameters

pFORM_HDR is a pointer to the form header structure of the form to be modified.
pFORM_Element points to a structure for one of the types listed above.

Return Value

<int>
The tag of the new element if successful.
DM _ERROR it insufficient buffer space remains to store the new element definition.

Special Notes
If a stroke font is specified, all stroke definitions must be added using form_add_stroke.

See Also

FORM_BEV structure.
FORM_ELLIPSE structure.
FORM LINE structure.
FORM RECT structure.
FORM_TEXT structure.
FORM U _ARC structure.
FORM U _IMAGE structure.
FORM U POLY structure.
form_add_stroke()
vid_put_image()

Page 12-13

DeskMate Technical Reference
Forms Resource

form_add_stroke (pFORM_HDR, pFORM_STROKE)
FORM_HDR *pFORM_HDR;
FORM_STROKE *pFORM_STROKE;

form_add_stroke adds the stroke definition to the form's stroke definition list.

Input Parameters

pFORM_HDR is a pointer to the form header structure of the form to be modified.
pFORM_STROKE is a pointer to the stroke font character definition for the new entry.

Return Value

<int>
DM_ERROR if insutficient space remains in the stroke definition list to store the new entry.

Special Notes

The stroke definitions should be in DeskMate format. The first word of the definition is the total
size of the definition in bytes. The next byte of the definition is the ASCI! code for the character
which the definition represents. Following the ASCIl code is a one byte font I.D. to identify the
font style of the definition. The actual point by point stroke definition of the character follows. All
points lie between 1 and 128, with zero specifying a pen up instruction. For instance, a simple A
could be defined as follows:

15,0, 65, 2,1, 128, 64, 1, 128, 128, 0, 32, 64, 64, 64

Page 12-14

‘

-DeskMate Technical Reference
Forms Resource

form_break_object (pFORM_HDR, ElementTag)
FORM_HDR *pFORM_HDR;
int ElementTag;

form_break_object reduces the object into its constituent objects and elements by removing the
pointer to the object from the form and inserting pointers to all of the object's parts.

Input Parameters

pFORM_HDR points to the form to be modified.
ElementTag should be an object tag.

Return Value

<int>
DM_ERROR if the indicated element is not an object or if insufficient space remains to break the
object.

form_break_object deletes the object definition, and inserts pointers in the form list to its
previous elements. If the element is not an object, nothing will happen. Tags for the objects
parts can be located by using form_find_element.

Page 12-15

DeskMate Technical Reference
Forms Resource

form_clear (pFORM_HDR)
FORM_HDR *pFORM_HDR,;

form_clear clears the indicated form's display list and stroke list.
n meter,

pFORM_HDR is a pointer to the form to be modified.

Return Value

None.

Special Notes

When the form is cleared, the memory allocated for the display list and the memory allocated for
the stroke list will be initialized to all zeros.

Bugs

The actual size of the stroke list buffer within a form must be one byte greater than the byte
specified for that buffer in the form header. form_clear will clear one byte too many based on
the size indicated in the form header.

Page 12-16

DeskMate Technical Reference
Forms Resource

form_compress (pFORM_HDR)
FORM_HDR *pFORM_HDR,;

form_compress compresses the display list to eliminate any free space between the form and
element definitions. Updates the form header to reflect the new size.

In r

pFORM_HDR is a pointer to the form to be compressed.

Once a form has been compressed, no further calls which make additions can be made unless
sufficient space is created by form_delete. form_compress destroys the current group pointer.
FORM_HDR.1list size and FORM_HDR.strokes size will be updated to their new values
by form_delete. All form tags are invalidated by form_compress.

Page 12-17

DeskMate Technical Reference
Forms Resource

form_copy_element (pFORM_HDR, ElementTag)
FORM_HDR *pFORM_HDR;
int ElementTag;

form_copy_element copies the designated element onto the clipboard.

Input Parameters

pFORM_HDR points to the form to be copied from.
ElementTag is the tag of the element to be copied.

Return Value

<int>
DM_ERROR if the element definition is too large to fit on the clipboard.

Special Notes

The clipboard length will always be 2 bytes too small. To work around this the application must
copy an extra two bytes when manually copying from the clipboard.

See Also

get_clipboard_info()
set_clipboard_info()

Page 12-18

DeskMate Technical Reference
Forms Resource

form_copy_group (pFORM_HDR)
FORM_HDR *pFORM_HDR;

form_copy_group copies the current group of elements onto the clipboard.
Input Parameters
pFORM_HDR is the form to be copied from.

Retur 1

DM ERROR if the group definition is too large to be copied onto the clipboard.

Page 12-19

DeskMate Technical Reference
Forms Resource

form_cut_element (pFORM_HDR, ElementTag)
FORM_HDR *pFORM_HDR;
int ElementTag;

form_cut_element moves the element definition onto the clipboard and delete it from the form.

Input Parameters

pFORM_HDR points to the form to be cut from.
ElementTag is the tag of the element to be cut.

Retur 1

<int>
DM ERROR if the element is too large to fit on the form.

Page 12-20

DeskMate Technical Reference
Forms Resource

form_cut_group (pFORM_HDR)
FORM_HDR *pFORM_HDR;

form_cut_group moves the group of elements onto the clipboard and delete them from the
form.

Input Parameters
pFORM_HDR is the form to be clipped from screen.

Return Value

DM _ERROR if the group will not fit on the clipboard.

Page 12-21

DeskMate .Technical Reference
Forms Resource

form_define_group (pFORM_HDR, pFORM_DST)
FORM_HDR *pFORM_HDR;
FORM_DST *pFORM_DST,;

form_define_group creates a temporary list from all elements of the form which are wholly
contained within the specified bounding region.

Input Parameters

pFORM_HDR is a pointer to the form to be accessed.
pFORM_DST points to the structure which holds (x0, y0, x1, y1) which define the bounding
rectangle of the group. Only elements totally within the region are included.

Return Val

<int>

The number of elements in the group.

DM ERROR if insufficient space remains in the form to create a group.
NULL if no elements can be found in the region.

Special Notes

The application may specify a temporary group of elements on which some operation may be
performed. Only one group exists at a time, and will be destroyed if any elements operations are
performed.

The coordinates of the group bounding box must be specified with x0,y0 as the top left hand
corner of the region and x1,y1 as the lower right hand corner.

The bounding rectangle of the group will be set to the minimum region which encompasses its
elements.

Page 12-22

DeskMate Technical Reference
Forms Resource

form_delete_element (pFORM_HDR, ElementTag)
FORM_HDR *pFORM_HDR,;
int ElementTag;

form_delete_element removes the element definition from the form.

Input Parameters

pFORM_HDR is a pointer to the form to be modified.
ElementTag defines the element to be deleted.

Retur 1

<int>
DM _ERRCR if an invalid element tag is specified.

Special Notes

form_delete_element removes the element definition from the form. If the element is an object,
all elements of the object will be deleted. The tag for the deleted element will no longer be valid.

Page 12-23

DeskMate Technical Reference
Forms Resource

form_delete_group (pFORM_HDR)
FORM_HDR *pFORM_HDR;

form_delete_group deletes all group elements from the form. Destroys the group element.

Input Parameters

pFORM_HDR points to the form to be modified.
Return Value

<int>

DM _ERROR if no group exists.

Specia] Notes

Operates exactly as form_delete_element with the group treated as an object.

Page 12-24

DeskMate Technical Reference
Forms Resource

form_delete_stroke (pFORM_HDR, StrokelD)
FORM_HDR *pFORM_HDR;
int StrokelD;

form_delete_stroke deletes the definition for the indicated stroke font character from 4the form's
stroke definition list.

Input Parameters

pFORM_HDR is a pointer to the to be modified.
StrokelD is the identifier of the stroke character definition to be removed.

Return Value

<int>
DM_ERROR if an invalid StrokelD is specified.

Special Notes

The StrokelD's are of the form ASCII character, font number. For instance, the character A of
font three (3) would be identified by 4103 hex.

Page 12-25

DeskMate Technical Reference
Forms Resource

form_delete_unused_strokes (pFORM_HDR)
FORM_HDR *pFORM_HDR,;

form_delete_unused_strokes deletes any of the form's stroke definitions which are not required
by existing form text element definitions.

Input Parameters

pFORM_HDR points to the form to be modified.
rn Val

None.

Special Notes

form_delete_unused_strokes examines all of the form's text elements to determine which
stroke definitions are used. It then deletes the unused definitions to free space in the stroke list
buffer.

Page 12-26

DeskMate Technical Reference
Forms Resource

form_display_region (pFORM_HDR, pMAPRECT)
FORM_HDR *pFORM_HDR,;
MAPRECT *pMAPRECT;

form_display_region displays any of the form's elements which intersect the specified region.
I meter
pFORM_HDR points to the form to be displayed.

pMAPRECT points to a MAPRECT structure which holds the coordinates of the points that define
the region to be displayed.

xorg holds x0, xext holds x1, yorg holds y0, yext holds y1.
form_display_region does not require loading of the forms resource.

Page 12-27

DeskMate Technical Reference
Forms Resource

form_dup_element (pFORM_HDR, ElementTag, pFORM_DST)
FORM_HDR *pFORM_HDR;

int ElementTag;

FORM_DST *pFORM_DST;

form_dup_element makes a scaled copy of the element in the specified bounding rectangle.

Input Parameters

pFORM_HDR is a pointer to the form to be modified.

ElementTag is the element tag.

pFORM_DST is a pointer to a structure which contains the (x0, y0) and (x1, y1) to define the
bounding box to move the element into.

Return Value

<int>
The tag of the new element definition.
DM ERROR is returned if insufficient space exist to copy the element or an invalid tag is specified.

Special Notes

form_dup_element creates new element definitions, and inserts pointers in the form list. If the
element is an object, all elements of the object will be affected.

Except for the special case of a line element, the destination coordinates must be specified with
x0,y0 as the top left hand corner of the region and x1,y1 as the lower right hand corner.

Page 12-28

,/.’ .

DeskMate Technical Reference
Forms Resource

form_dup_group (pFORM_HDR, pFORM_DST)
FORM_HDR *pFORM_HDR;
FORM_DST *pFORM_DST;

form_dup_group creates a scaled copy of the group in the bounding box. Destroys the old
group, replacing it with a new group containing the new elements.

Input Parameters
pFORM_HDR points to the form to be modified.

pFORM_DST points to the structure which contains the (x0, y0) and (x1, y1) which define the
area to copy the group into.

Return Value

<int>
DM_ERROR if no group exists.

Special Notes

Operates exactly as form_copy_element with the group treated as an object.

Page 12-29

DeskMate Technical Reference
Forms Resource

form_element_to_bottom (pFORM_HDR, EIementTag)
FORM HDR *pFORM_HDR,;
int ElementTag;

form_element_to_bottom moves the element definition to the bottom of the element definitions
so that the element will be drawn "under” the other elements.

Input Parameters

pFORM_HDR points to the form to be modified.
ElementTag is the tag.

Return Val

<int>
DM _ERROR if an invalid element tag is specified.

Special Notes
form_element_to_bottom shifts all element definitions up by the size of the moved element and
then inserts the element definition under all other definitions. If the element is an object, all

elements of the object will be affected. form_element_to_bottom will alter all element offsets,
but will not affect element tags.

Page 12-30

DeskMate Technical Reference
Forms Resource

form_element_to_top (pPFORM_HDR, ElementTag)
FORM_HDR *pFORM_HDR;
int ElementTag;

form_element_to_top moves the element definition to the top of the element definitions so that
the element will be drawn "over" the other elements.

Input Parameters

pFORM_HDR points to the form to be modified.
ElementTag is a pointer to the element.

Return Val

<int>
DM_ERROR if an invalid element tag is specified.

Special Notes

form_element_to_top performs the equivalent actions of copy_element followed by deleting
the original. If the element is an object, all elements of the object will be affected.

Page 12-31

DeskMate Technical Re_ference
Forms Resource

form_expand (pFORM_HDR, HowMuchList, HowMuchStroke)
FORM_HDR *pFORM_HDR,;
int HowMuchList, HowMuchStroke;

form_expand expands the form display list to create free space between the form and element
definitions, and adds additional room to the stroke list.

Input Parameters

pFORM_HDR is a pointer to the form to be modified.

HowMuchList is an integer indication of the number of additional bytes allocated for the display
list.

HowMuchStroke is an integer indication of the number of additional bytes allocated for the
stroke list.

form_expand destroys the current group pointer.

Page 12-32

DeskMate Technical Reference
Forms Resource

form_find_element (pFORM_HDR, x,y,n)
FORM_HDR *pFORM_HDR;
intx,y,n;

form_find_element searches for elements (an object is also an element) which contain the point

(x, y) within their bounding region. Returns a pointer to the nth satisfying element in the display
list.

Input Parameters
pFORM_HDR points to the form to be searched.

n is which satisfying element to be returned.
x, y is the point from which to search.

Return Value

<int>
The tag of the nth satisfying element.
NULL if no element satisfies the search.

Special Notes

form_find_element examines the bounding boxes of the element definitions. If the element is an
object, only the bounding box of the object will be considered.

Page 12-33

DeskMate Technical Reference
Forms Resource

form_find_stroke (pFORM_HDR, StrokelD)
FORM_HDR *pFORM_HDR;
int StrokelD;

form_find_stroke returns a pointer to the stroke character definition stored in the form stroke
list.

Input Parameters

pFORM_HDR is a pointer to the Forms header structure.
StrokelD is the stroke definition identifier.

Return Val

A pointer to the corresponding stroke definition.
DM_ERROR if the StrokelD can't be matched.

Special Notes

Generally the StrokelD should consist of a one byte ASCII value and the font number.

Page 12-34

DeskMate Technical Reference
Forms Resource

form_get_pointer (pPFORM_HDR, ElementTag)
FORM_HDR *pFORM_HDR;
int ElementTag;

form_get_pointer retums a pointer to the beginning of the element definition.

Input Parameters

pFORM_HDR is a pointer to the form header structure of the form to be modified.
ElementTag is the tag of the element to be located.

Return Value

A pointer to the element definition. The first byte of the definition indicates the definition type.
DM _ERROR will be returned if an invalid tag is specified.

ial
The element definitions are stored exactly as the structures used to specify them with the
following exception. Variable length definitions such as text and polyline do not hold a pointer to

their elements, instead their elements are stored beginning contiguously with the definition,
beginning at the location which would have been the element array pointer.

Page 12-35

DeskMate Technical Reference
Forms Resource

form_get _xy_extents (pFORM_HDR)
FORM_HDR *pFORM_HDR,;

form_get_xy_extents examines the bounding rectangles of all of the elements in a form, and
returns the maximum x and y values.

n r T
pFORM_HDR is a pointer to the form to be examined.
Return Value

<long integer>
The most significant word is the x extent. The least significant word is the y extent.

Special Notes

The form should be opened before calling form_get_xy_extents.
form_get_xy_extents does not require loading of the form resource.

Page 12-36

DeskMate Technical Reference
Forms Resource

form_group_to_bottom (pFORM_HDR)
FORM_HDR *pFORM_HDR;

form_group_to_bottom moves the element definitions of the group to the bottom of the element
definitions so that the elements will be drawn "under” the other elements.

Input Parameters
pFORM_HDR is a pointer to the form to be modified.

Return Value

<int>
DM _ERROR if no group exists.

Special Notes
form_group_to_bottom shifts all element definitions up by the size of the moved elements and
then inserts the group element definitions under all other definitions. If the any element is an

object, all elements of the object will be affected. form_group_to_bottom will alter all element
pointers.

Page 12-37

DeskMate Technical Reference
Forms Resource

form_group_to_top (pFORM_HDR)
FORM_HDR *pFORM_HDR;

form_group_to_top moves the element definitions of the group to the top of the element
definitions so that the elements will be drawn "over" the other elements.

Input Parameters

pFORM_HDR points to the form to be modified.

Return Value

<int>
DM ERROR if no group exists.

form_group_to_top performs the equivalent actions of a copy_group followed by deleting the

original. If the element is an object, all elements of the object will be affected.
form_group_to_top will alter all element pointers above the original group element definitions.

Page 12-38

DeskMate Technical Reference
Forms Resource

form_make_object (pFORM_HDR)
FORM_HDR *pFORM_HDR;

form_make_object creates an object from all of the elements in the group. Removes all tags to

the individual elements from the form, replacing them with a single pointer to the object element.
Destroys the group element.

Input Parameters

pFORM_HDR points to the form to be modified.
rn Val

<int>

The tag for the new element definition.
DM ERROR is returned if no valid group exists.

Special Notes

Converts the group definition to an object definition. Inserts a pointer to the new object into the
form. Deletes any references to the elements of the new object.

Page 12-39

DeskMate Technical Reference
Forms Resource

form_mod_attr (pFORM_HDR, ElementTag, pFORM_ATTR)
FORM_HDR *pFORM_HDR,;

int ElementTag;

FORM_ATTR *pFORM_ATTR,;

form_mod_attr modifies the specified attributes of the element.

Input Parameters

pFORM_HDR is a pointer to the form to be modified.

ElementTag is an element tag.

pFORM_ATTR points to the structure which contains the new attributes. Any attributes which
have the value DM_ERROR will be unchanged.

Retur]

<int>
DM_ERROR if the element definition structure type does not match the element type.

Special Notes
form_mod_attr modifies the attributes of the elements definitions, but does not have to change

the pointers in the form list. If the element is an object, all elements of the object which are of the
element definition type will be affected.

Page 12-40

DeskMate Technical Reference
Forms Resource

form_mod_grp_attr (pFORM_HDR, pFORM_Element)
FORM_HDR *pFORM_HDR,;
FORM_Element *pFORM_Element;

form_mod_grp_attr modifies the specified attributes of the element within the group.

Input Parameters

pFORM_HDR is a pointer to the form to be modified.

pFORM_Element points to the element definition structure of type FORM BEV, FORM ELLIPSE,
FORM_LINE, FORM RECT, FORM_TEXT, FORM U._. ARC, FORM U IMAGE, or FORM U POLY which
contains the new attributes. Any attributes of the element definition which contain DM ERROR will
be unchanged.

Return Value

<int>
DM _ERROR if the element definition structure type does not match any of the element types in the

group.
Special Notes

form_mod_grp_attr modifies the attributes of the group element definitions which are of the
same type as the element definition. It does not have to change the pointers in the form list.

See Also

FORM BEV structure.
FORM ELLIPSE structure.
FORM LINE structure.
FORM RECT structure.
FORM TEXT structure.
FORM U_ARC structure.
FORM U IMAGE structure.
FORM U . " POLY structure.

‘Page 12-41

DeskMate Technical Reference
Forms Resource

form_move_element (pPFORM_HDR, EIementTag pFORM_DST)
FORM_HDR *pFORM_HDR,; .

int ElementTag;

FORM_DST *pFORM_DST;

form_move_element moves and re-sizes the element into the new bounding rectangle.
Updates the coordinate values of the element.

Input Parameters
pFORM_HDR points to the form to be modified.
ElementTag is the element tag.

pFORM_DST points to the destination structure which contains the coordinates (x0, y0) and
(x1,y1) to define the bounding box to move the element into.

Return Value

<int>
DM ERROR if an invalid tag is specified.

Special Notes

form_move_element modifies the coordinates of the elements definitions, but does not have to
change the pointers in the form list. If the element is an object, all elements of the object will be
affected.

Except for the special case of a line element, the destination coordinates must be specified with
x0,y0 as the top left hand corner of the rectangle and x1, y1 as the lower right corner.

Page 12-42

|

DeskMate Technical Reference
Forms Resource

form_move_group (pFORM_HDR, pFORM_DST)
FORM_HDR *pFORM_HDR;
FORM_DST *p_destination;

form_move_group moves and re-sizes the group into the new bounding box. Updates the
coordinate values of all of the group elements.

Input Parameters

pFORM_HDR is a pointer to the form to be modified.
pFORM_DST points to the structure which holds (x0, y0) and (x1, y1) which define the area to
move the group into.

Return Value

<int>
DM_ERROR if no group exists.

Special Notes

Operates exactly as form_move_element with the group treated as an object.
x0,y0 must be the top left hand corner of the destination region, x1,y1 must be the lower right
hand region.

Page 12-43

[T o e R it < 5,

DeskMate Technical Reference
Forms Resource

form_open (pFORM_HDR)
FORM_HDR *pFORM_HDR,;

form_open initializes the indicated form buffer. It sets initial pointers to the element definition
and the stroke character definitions.

Input Parameters

pFORM_HDR pointer to the header of the bufter for the list.

Prior to issuing form_open, the caller must create a form header structure for the form. In this
structure the following must be set by the user:
FORM_HDR.bNewList:
If this is set to zero, the forms resource will clear the display list buffer. If a previously created list
is in the buffer, this should be set to 1 so the forms resource will calculate its internal pointers.
FORM_HDR.bvideo:
if this is 1 the forms resource will update the screen, if zero, no video output will take place.
FORM_HDR.1ist_size:
The size of the display list buffer in words
FORM_HDR.stroke_size:
The size of the stroke list.
The remainder of the FORM_HDR elements will either be calculated by the forms resource or set
by subsequent calls. These elements may be read, but should not be written to by the caller.
When the form is opened, the memory allocated may already contain a pre-created form display
list. If so, the routine must determine the bottom of the form list and the top of the element
definitions. If no display list is present, the buffer is initialized to all zeros.
WARNING: DO NOT MODIFY THE FOLLOWING ForM_HDR STRUCTURE ELEMENTS:
next_entry
last_def
pGroup
pFormList
pStrokes

Bugs

The actual size of the stroke list buffer within a form must be one byte greater than the byte
specified for that butfer in the form header. form_open will clear one byte too many based on
the size indicated in the form header.

Page 12-44

L

DeskMate Technical Reference
Forms Resource

form_paste (pFORM_HDR)
FORM_HDR *pFORM_HDR;

form_paste adds the clipboard display list to the form.

Input Parameters

pFORM_HDR is a pointer to the form to be modified.

Return Value

<int>

The tag of the object which contains the elements from the clipboard.

Six (6) if non-form data is in the clipboard, the tag will not be incremented.
DM _ERROR if insufficient space.

Special Notes

The elements pasted from the clipboard will be contained in an object.

Page 12-45

DeskMate Technical Reference
Forms Resource

form_region_empty (pFORM_HDR, pMAPRECT)
FORM_HDR *pFORM_HDR;
MAPRECT *pMAPRECT;

form_region_empty determines if the form contains any elements which intersect the indicated
region.

Input Parameters

pFORM_HDR is a pointer to the form header structure of the form to be modified.
PMAPRECT is a pointer to a MAPRECT structure which contains the coordinates of the area to
be searched.
|
Return Val ‘

NULL if the region is empty.
One (1) if the form intersects the region specified by pMAPRECT.

Page 12-46

DeskMate Technical Reference
Forms Resource

form_replace_element (pFORM_HDR, ElementTag, pFORM_Element)
FORM_HDR *pFORM_HDR;

int ElementTag;

FORM_Element *pFORM_Element;

form_replace_element replaces the definition of the element specified by ElementTag with the
definition pointed to by pFORM_Element. The new definition will be rendered in the same order
as the replaced element.

Input Parameters

PFORM_HDR is a pointer to the form header structure of the form to be modified.

ElementTag is the tag of the element to be replaced.

pFORM_Element points to an element definition structure of type FORM BEV, FORM ELLIPSE,
FORM LINE, FORM RECT, FORM TEXT, FORM U ARC, FORM U IMAGE, or FORM U POLY.

Return Value

DM _ERROR if the ElementTag specified is not implemented or insufficient buffer space remains to
store the new element definition.

Special Notes

form_replace_element is used to preserve rendering order. A typical use is when replacing one
text string with another.

See Also

FORM_BEV structure.
FORM ELLIPSE structure.
FORM LINE structure.
FORM_RECT structure.
FORM TEXT structure.
FORM U . ARC structure.
FORM U IMAGE structure.
FORM_U_POLY structure.

Page 12-47

DeskMate Technical Reference
Forms Resource

form_scroll_down (pFORM_HDR, WorldCordY)
FORM_HDR *pFORM_HDR;
int WorldCordY;

form_scroll_down scrolls the indicated form down by the indicated number of world
coordinates. The form will scroll within the window.

Input Parameters

pFORM_HDR is a pointer to the header structure of the desired form.
WorldCordY is the number of world coordinates to scroll the form.

form_scroll_down activates the form's window, scrolls the information within that window, and
then redraws the new data into the window. It then reactivates the caller's window.
form_scroll_down does not require loading of the forms resource.

Page 12-48

DeskMate Technical Reference
Forms Resource

form_scroll_left (pPFORM_HDR, WorldCordX)
FORM_HDR *pFORM_HDR,;
int WorldCordX;

form_scroll_left scrolls the indicated form to the left by the indicated number of world
coordinates. The form will scroll within the window.

Input Parameters

pFORM_HDR is a pointer to the header structure of the desired form.
WorldCordX is the number of world coordinates to scroll the form.

None.
form_scroll_left activates the form's window, scrolls the information within that window, and

then redraws the new data into the window. It then reactivates the caller's window.
form_scroll_left does not require loading of the forms resource.

Page 12-49

DeskMate Technical Reference
Forms Resource

form_scroll_right (pPFORM_HDR, WorldCordX)
FORM_HDR *pFORM_HDR,;
int WorldCordX;

|

form_scroll_rigﬁt scrolls the indicated form to the right by the indicated number of world
coordinates. The form will scroll within the window.

Input Parameters

pFORM_HDR is a pointer to the header structure of the desired form.
WorldCordX is the number of world coordinates to scroll the form.

Return]
None.
Special Notes

form_scroll_right activates the form's window, scrolls the information within that window, and
then redraws the new data into the window. It then reactivates the caller's window.
form_scroll_right does not require loading of the forms resource.

Page 12-50

DeskMate Technical Reference
Forms Resource

form_scroll_up (pFORM_HDR, WorldCordY)
FORM_HDR *pFORM_HDR;
int WorldCordY;

form_scroll_up scrolls the indicated form up by the indicated number of world coordinates. The
form will scroll within the window.

Input Parameters

pFORM_HDR is a pointer to the header structure of the desired form.
WorldCordY is the number of world coordinates to scroll the form.

rn Val
None
Special Notes

form_scroll_up activates the form's window, scrolls the information within that window, and then
redraws the new data into the window. It then reactivates the caller's window.
form_scroll_up does not require loading of the forms resource.

Page 12-51

DeskMate Technical Reference
Forms Resource

1989 DeskMate 03.03.0x ONLY

form_specify_group (pFORM_HDR, pTagList, nTags)
FORM_HDR *pFORM_HDR;

int *pTagList;

int nTags;

form_specify_group makes the list of element tags into a group.

Input Parameters

pFORM_HDR is a pointer to the header structure of the desnred form.
pTagList is a pointer to an integer tag list.
nTags is the number of tags pointed to by pTagList.

Return Value

DM_ERROR if the group would not fit.

Page 12-52

DeskMate Technical Reference
Forms Resource

form_update (pFORM_HDR, ClearScreen)
FORM_HDR *pFORM_HDR;
int ClearScreen

form_update draws (or redraws) the current contents of the form into the currently defined form
window.

Input Parameters

pFORM_HDR is a pointer to the form to be displayed.
ClearScreen indicates whether or not the window will be cleared prior to update. |f ClearScreen
is ENABLED the screen will be cleared; if DISABLED the screen will not be cleared.

rn Val

None.
Special Notes

form_update does not require loading of the forms resource.

Page 12-53

DeskMate Technical Reference
Forms Resource

This page intentionally left blank

Page 12-54

®

Thest calls are available th He
203 SDK under ﬂ//#éfw[names,
Cﬂaﬂ?e " to /'7[‘”/ Viz.:
otorm_bind it ()
- #ormf bind_ ()

Far Form Resource

®

Table of Contents

Far Form Resource General Description/Notescoceeeiu.an 12-55
eform add element ..Adds a specified element to the form....... 12-56
eform_add_stroke ...Adds a stroke definition to the form....... 12-57
eform bind end Terminates forms resource loaded........... 12-58
eform bind initBinds to far forms resource................ 12-59

eform break object .Reduces one object to constituent objects..12-60

eform calc_ form size .Calculates memory needed for form........ 12-61
eform clear Clears the form's display and stroke lists.12-62
eform compress Cémpress free space from the form.......... 12-63
eform copy element .Copies element to the clipboard............ 12-64
eform copy_group ...Copies group of elements to clipboard...... 12~65
eform _cut_element ..Cuts the form element to the clipboard..... 12-66
eform cut_groupCuts a group of elements to clipboard...... 12-67

eform_define_group .Defines a group of elements for the form...12-68

eform _delete_element .Deletes element definition from form..... 12-69
eform _delete group ...Deletes all group elements from form..... 12-70
eform delete stroke ..Deletes stroke character from form....... 12-71
eform delete_unused_strokes .Deletes non-required strokes...... 12-72
eform display region .Displays form elements in a region....... 12-73
eform _dup elementCreates a scaled copy of an element...... 12-74
eform dup group Creates a scaled copy of a group......... 12-75
eform element_ to_bottomMoves element to bottom of defs....12-76
eform element_to_top Moves element to top of defs....... 12-77
eform expand Expands the form display list.............. 12-78
eform find element .Finds an element in a rectangle............ 12-79
eform_find stroke ..Finds a stroke character................... 12-80

eform get extents ..Gets maximum x,y values for all elements...12-81

eform get_pointer ..Gets a pointer to element definition....... 12-82
eform group_to_bottom Moves group to bottom of defs...... 12-83
eform group _to_top Moves group to top of defs......... 12-84
eform make object ..Makes an object from elements in group..... 12-85
eform mod attr Modifies element attributes................ 12-86

eform mod grp_attr .Modifies element attributes in the group...12-87

eform move element .Moves and resizes an element............... 12-88
eform move_group ...Moves and resizes a group of elements...... 12-89
eform open Initializes the form buffer................ 12-90
eform paste Adds the clipboard display to the form..... 12-91
eform region_empty .Determines if the form contains elements...12-92
eform replace_element Replaces an element definition..... 12-93
eform_scroll down ..Scrolls the formdown..........c.cevvvunnn, 12-94
eform scroll left ..Scrolls the form to the left............... 12-95
eform scroll right .Scrolls the form to the right.............. 12-96
eform scroll upScrolls the form up........... esseres e 12-97
eform specify group.Makes list of element tags into a group....12-98
eform update Draws/redraws the current form............. 12-99

i ' ; I bt

®

.

DeskMate Technical Reference
Far Forms Resource

General Description/Notes
The calls in this section are only available when using 1989 DeskMate 03.03.0x or later.

For calling the enhanced forms resource routines require a prefix of "e" on each of the form calls
and to provide a far pointer to the FORM_HDR structure.

The Enhanced Form Manager will contain all of the functionality of the original form manager as
well as font support. The near form calls are still supported, using the esr_bind_init, however
they do not support fonts. The eform calls expect all pointer parameters to be far.

See the beginning of this section for a more complete General Description/Notes section. The
structures and defines are the same as those used in the forms resource at the beginning of this
section.

in order for the application to use the calls listed in this section, it must make a binding call,
eform_bind_init and eform_bind_end. See the Desk Executive section, for a list of all of the
DeskMate initialization calls. The enhanced forms resource initialization calls are listed here for
your convenience.

The eform_bind_init call contains a parameter that allows the font support to be tumed off. If
the flag is set to NULL the form manager will not be able to support fonts. If the flag is set to
TRUE, then fonts are supported and applications will also have the ability to access the font
engine or the enhanced video driver directly. See the Font Manager section for a list of Font
calls.

The calls listed below do not require a binding to the Enhanced (Far) Forms Resource:

eform_display_region
eform_get_extents
eform_scroll_down
eform_scroll_left
eform_scroll_right
eform_scroll_up
eform_update

Page 12-55

DeskMate Technical Reference
Far Forms Resource

eform_add_element (fpFORM_HDR, fpFORM_Element)
FORM_HDR far *fpFORM_HDR,;
FORM_Element far *fpFORM_Element;

eform_add_element adds the element specified by pFORM_Element to the indicated form.
The supported elements are FORM BEV, FORM ELLIPSE, FORM LINE, FORM RECT,
FORM_TEXT, FORM_U_ARC, FORM_U_IMAGE, and FORM U_POLY.

n I T

fpFORM_HDR is a far pointer to the form header structure of the form to be modified.
fpFORM_Element is a far points to a structure for one of the types listed above.

Return Value

<int>
The tag of the new element if successful.
DM _ERROR if insufficient buffer space remains to store the new element definition.

Special Notes
If a stroke font is specified, all stroke definitions must be added using form_add_stroke.

See Also

FORM_BEV structure.
FORM_ELLIPSE structure.
FORM_LINE structure.
FORM_RECT structure.
FORM_TEXT structure.
FORM_U_ARC structure.
FORM_U_IMAGE structure.
FORM _U_POLY structure.
form_add_stroke()
vid_put_image()

Page 12-56

[PSRN : : L SRV = NS I

@

DeskMate Technical Reference
Far Forms Resource

eform_add_stroke (fpFORM_HDR, fpFORM_STROKE)
FORM_HDR far *{pFORM_HDR;
FORM_STROKE far *f{pFORM_STROKE;

eform_add_stroke adds the stroke definition to the form's stroke definition list.

Input Parameters

fpFORM_HDR is a far pointer to the form header structure of the form to be modified.
fpFORM_STROKE is a far pointer to the stroke font character definition for the new entry.

Return Value

<int>
DM_ERROR if insufficient space remains in the stroke definition list to store the new entry.

Special Notes

The stroke definitions should be in DeskMate format. The first word of the definition is the total
size of the definition in bytes. The next byte of the definition is the ASCII code for the character
which the definition represents. Following the ASCII code is a one byte font |.D. to identify the
font style of the definition. The actual point by point stroke definition of the character follows. All
points lie between 1 and 128, with zero specifying a pen up instruction. For instance, a simple A

could be defined as follows:
15,0, 65,2, 1, 128, 64, 1, 128, 128, 0, 32, 64, 64, 64

Page 12-57

DeskMate Technical Reference
Far Forms Resource

eform_bind_end ()

eform_bind_end terminates the forms resource loaded by eform_bind_init and unbinds any
resources loaded by the enhanced (far) forms resource.

Input Parameters

None.

eform_bind_end requires the application to link with DeskMate 03.05 or later libraries (DM.LIB
or DMMED.LIB).

Page 12-58

@

DeskMate Technical Reference
Far Forms Resource

eform_bind_init (Font)

eform_bind_init loads and links to the forms resource as an enhanced (far) forms resource.
This functionality is only available in for use in DeskMate 03.05 and later.

Input Parameters

<char>

If Font is FALSE the enhanced form manager will not support fonts. The font resource and
enhanced video driver will not be loaded into memory.

If Font is TRUE the enhanced form manager will support fonts, and the enhanced video driver will
be loaded into memory.

Return Value

<int>
DM_OK if everything was loaded correctly.
DM_ERROR if the forms resource could not be loaded.

ial

eform_bind_init requires the application to link with DeskMate 03.05 or later libraries (DM.LIB or
DMMED.LIB).

Page 12-59

DeskMate Technical Reference
Far Forms Resource

eform_break object ({pFORM_HDR, ObjectTag)
FORM_HDR far *fpFORM_HDR,;
int ObjectTag;

eform_break_object reduces the object into its constituent objects and elements by removing
the pointer to the object from the form and inserting pointers to all of the object's parts.

Input Parameters

fpFORM_HDR is a far pointer to the form to be modified.
ObjectTag should be an abject tag.

Return Value

<int>
DM _ERROR if the indicated element is not an object or if insufficient space remains to break the
object.

ial

eform_break_object deletes the object definition, and‘ inserts pointers in the form list to its
previous elements. If the element is not an object, nothing will happen. Tags for the objects
parts can be located by using eform_find_element.

Page 12-60

DeskMate Technical Reference
Far Forms Resource

eform_calc_form_size (int DisplayList, int StrokeList)

eform_calc_form_size calculates the amount of memory needed to create the form. The form
must not exceed 64K.

Input Parameters

DisplayList determines the amount of memory allocated for elements.
StrokeList determine the amount of memory allocated for stroke fonts. If stroke fonts are not
used, StrokeL.ist should be set to zero.

Return Value
Size of form required (in bytes).

Page 12-61

DeskMate Technical Reference
Far Forms Resource

eform_clear (ipFORM_HDR)
FORM_HDR far *f{pFORM_HDR,;

eform_clear clears the indicated form's display list and stroke list.

Input Parameters

tpFORM_HDR is a far pointer to the form to be modified.

Return Value

None.

Special Notes

When the form is cleared, the memory allocated for the display list and the memory allocated for

the stroke list will be initialized to all zeros.

Page 12-62

@

o

DeskMate Technical Reference
Far Forms Resource

eform_compress (fpFORM_HDR)
FORM_HDR far *f{pFORM_HDR,;

eform_compress compresses the display list to eliminate any free space between the form and
element definitions. Updates the form header to reflect the new size.

Input Paramlgigrs

tpFORM_HDR is a far pointer to the form to be compressed.

Return Value

None.
ial

Once a form has been compressed, no further calls which make additions can be made unless
sufficient space is created by eform_delete. eform_compress destroys the current group
pointer.

FORM_HDR.1ist_size and FORM_HDR.strokes size will be updated to their new values
by eform_delete. All form tags are invalidated by eform_compress.

Page 12-63

DeskMate Technical Reference
Far Forms Resource

eform_copy_element (pFORM_HDR, ElementTag)
FORM_HDR far *ipFORM_HDR;
int ElementTag; :

eform_copy_element copies the designated element onto the clipboard.

!n pu t Earamg;g;:&

fpFORM_HDR is a far pointer to the form to be copied from.
ElementTag is the tag of the element to be copied.

Return Value

<int>
DM_ERROR if the element definition is too large to fit on the clipboard.

Special Notes

The clipboard length will always be 2 bytes too small. To work around this the application must

copy an extra two bytes when manually copying from the clipboard.

See Also

get_clipboard_info()
set_clipboard_info()

Page 12-64

o

®

DeskMate Technical Reference
Far Forms Resource

eform_copy_group (fpFORM_HDR)
FORM_HDR far *fpFORM_HDR,;

eform_copy_group copies the current group of elements onto the clipboard.

n ram | o

tpFORM_HDR is a far pointer to the form to be copied from.

Return Value

DM_ERROR if the group definition is too large to be copied onto the clipboard.

Page 12-65

DeskMate Technical Reference
Far Forms Resource

eform_cut_element (fpFORM_HDR, ElementTag)
FORM_HDR far *f{pFORM_HDR;
int ElementTag;

eform_cut_element moves the element definition onto the clipboard and delete it from the form.

Input Parameters

tpFORM_HDR is a far pointer to the form to be cut from.
ElementTag is the tag of the element to be cut.

Return Value

<int>
DM_ERROR if the element is too large to fit on the form.

Page 12-66

DeskMate Technical Reference
Far Forms Resource

eform_cut_group (fpFORM_HDR)
FORM_HDR far *f{pFORM_HDR;

eform_cut_group moves the group of elements onto the clipboard and delete them from the
form.

In rameter

fpFORM_HDR is a far pointer to the form to be clipped from screen.

Return Value

DM_ERROR if the group will not fit on the clipboard.

Page 12-67

DeskMate Technical Reference
Far Forms Resource

eform_define_group ({pFORM_HDR, fpFORM_DST)
FORM_HDR far *fpFORM_HDR;
FORM_DST far *{(pFORM_DST,;

eform_define_group creates a temporary list from all elements of the form which are wholly
contained within the specified bounding region.

Input Parameters

fpFORM_HDR is a far pointer to the form to be accessed.
fpFORM_DST is a far pointer to the structure which holds (x0, y0, x1, y1) which define the
bounding rectangle of the group. Only elements totally within the region are included.

Return Value

<int>

The number of elements in the group.

DM_ERROR if insufficient space remains in the form to create a group.
NULL if no elements can be found in the region.

Special Notes
The application may specify a temporary group of elements on which some operation may be

performed. Only one group exists at a time, and will be destroyed if any elements operations are
performed.

The coordinates of the group bounding box must be specified with x0,y0 as the top left hand
corner of the region and x1,y1 as the lower right hand corner.

The bounding rectangle of the group will be set to the minimum region which encompasses its
elements.

Page 12-68

DeskMate Technical Reference
Far Forms Resource

eform_delete_element ({pFORM_HDR, ElementTag)
FORM_HDR far *fpFORM_HDR;
int ElementTag;

eform_delete_element removes the element definition from the form.

Input Parameters

tpFORM_HDR is a far pointer to the form to be modified.
ElementTag defines the element to be deleted.

Return Value

<int>
DM_ERROR if an invalid element tag is specified.

Special Notes
eform_delete_element removes the element definition from the form. If the element is an

object, all elements of the object will be deleted. The tag for the deleted element will no longer
be valid.

Page 12-69

DeskMate Technical Reference
Far Forms Resource

eform_delete_group (fpPFORM_HDR) .
FORM_HDR far *fpFORM_HDR; : |

eform_delete_group deletes all group elements from the form. Destroys the group element.

Input Parameters

tpFORM_HDR is a far pointer to the form to be modified.

Return Value

‘<int>
DM_ERROR if no group exists.

Special Notes

Operates exactly as eform_delete_element with the group treated as an object.

o

Page 12-70

@

DeskMate Technical Reference
Far Forms Resource

eform_delete_stroke (fpFORM_HDR, StrokelD)
FORM_HDR far *fpFORM_HDR;
int StrokelD;

eform_delete_stroke deletes the definition for the indicated stroke font character from the form's
stroke definition list.

Input Parameters

fpFORM_HDR is a far pointer to the form to be modified.
StrokelD is the identifier of the stroke character definition to be removed.

Return Value

<int>
DM_ERROR if an invalid StrokelD is specified.

ial

The StrokelD’s are of the form ASCII character, font number. For instance, the character A of
font three (3) would be identified by 4103 hex.

Page 12-71

DeskMate Technical Reference
Far Forms Resource

eform_delete_unused_strokes ({pFORM_HDR)
FORM_HDR far *fpFORM_HDR;

- eform_delete_unused_strokes deletes any of the form's stroke definitions which are not
required by existing form text element definitions.

Input Parameters

fpFORM_HDR is a far pointer to the form to be modified.

eform_delete_unused_strokes examines all of the form's text elements to determine which
stroke definitions are used. It then deletes the unused definitions to free space in the stroke list
buffer.

Page 12-72

L

DeskMate Technical Reference
Far Forms Resource

eform_display_region (fpFORM_HDR, fpMAPRECT)
FORM_HDR far *{pFORM_HDR,; '
MAPRECT far *fpMAPRECT

eform_display_region displays any of the form's elements which intersect the specified region.
In rameter
fpFORM_HDR is a far pointer to the form to be displayed.

fpMAPRECT is a far pointer to a MAPRECT structure which holds the coordinates of the points
that define the region to be displayed.

Return Value

None.
Special Notes

xorg holds x0, xext holds x1, yorg holds y0, yext holds y1.
eform_display_region does not require loading of the far forms resource.

Page 12-73

DeskMate Technical Reference
Far Forms Resource

eform_dup_element ({pFORM_HDR, ElementTag, fpFORM_DST)
FORM_HDR far *f{pFORM_HDR,;

int ElementTag;

FORM_DST far *fpFORM_DST;

eform_dup_element makes a scaled copy of the element in the specified bounding rectangle.

n rametier

fpFORM_HDR is a far pointer to the form