Am486° Microprocessor
Software User’s

A DV A NICTETD

Rev. 1, 1994

M1 CR O

D EV I CE' S

pa |

© 1994 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products
without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited to implied warrants of merchantability or fithess for
a particular application. AMD® assumes no responsibility for the use of any circuitry other than the circuitry in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change without notice. AMD
assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences resulting from the use of the
information included herein. Additionally, AMD assumes no responsibility for the functioning of undescribed features or parameters.

Trademarks
AMD, Am486, and Am386 are registered trademarks of Advanced Micro Devices, Inc.

Microsoft is a registered trademark of Microsoft Corporation. Windows is a trademark of Microsoft Corporation.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

TABLE OF CONTENTS n

Chapter 1

Introduction

Am486 Microprocessor Register Set

L L OV VI EW o o et et e e 1-1
1.2 Detailed Register DesCriptions.o 1-1
1.3 AH Processor General Register 8 bits. i 1-3
1.4 AL Processor General Register 8 bits i 1-4
1.5 AX Processor General Register 16 bits i 1-5
1.6 BH Processor General Register 8 bits. i 1-6
1.7 BL Processor General Register 8bits i 1-7
1.8 BP Processor General Register/Base Pointer 16 bits 1-8
1.9 BX Processor General Register 16 bits i 1-9
1.10 CH Processor General Register 8 bits. i 1-10
1.11 CL Processor General Register 8 bits e 1-11
1.12 CRO Control Register 0 32 bits i e e e 1-12
1.13CR1 Control Register 1 32 bits i e e e 1-14
1.14 CR2 Control Register 2 32 bits i e e e 1-15
1.15 CR3 Control Register 332 bits i e e 1-16
1.16 CS Code Segment Register 16 bits. i e 1-17
1.17 CX Processor General Register 16 bits. i e 1-18
1.18 DH Processor General Register 8 hits 1-19
1.19 DI Processor General Register — Data Index 16 bits 1-20
1.20 DL Processor General Register 8 hits i 1-21
1.21 DRO Linear Breakpoint Address 0 Debug Register 32 bits 1-22
1.22 DRI Linear Breakpoint Address 1 Debug Register 32 bits 1-23
1.23 DR2 Linear Breakpoint Address 2 Debug Register 32 bits 1-24
1.24 DR3 Linear Breakpoint Address 3 Debug Register 32 bits 1-25
1.25 DR4 Debug Register 4 32 bitS oo 1-26
1.26 DR5 Debug Reqister 532 bits 1-27
1.27 DR6 Breakpoint Status Debug Register 32 bits. 1-28
1.28 DR7 Breakpoint Control Debug Register 32 bits 1-29
1.29 DS Data Segment Register 16 bits i 1-31
1.30 DX Processor General Register 16 bits. i 1-32
1.31 EAX Processor General Register 32 bits. 1-33
1.32 EBP Processor General Register — Base Pointer 32 bits. 1-34
1.33 EBX Processor General Register 32 bits. 1-35
1.34 ECX Processor General Register 32 bits. 1-36
1.35 EDI Processor General Register — Data Index 32 bits. 1-37
1.36 EDX Processor General Register 32 bits. 1-38
1.37 EFLAGS Extended Flags Register 32 bits. 1-39
1.38 EIP Extended Instruction Pointer Register 32 bits. 1-40
1.39 ES Data Segment Register 16 bits 1-41
1.40 ESI Processor General Register — Stack Index 32 bits 1-42
1.41 ESP Processor General Register — Stack Pointer 32 bits 1-43
142 FLAGS Flags Register 16 bits e e 1-44
1.43 FPUCR FPU Control Register 16 bits 1-45
1.44 FPUDP FPU Data Pointer 32 or 64 bits. 1-46
1.45 FPUIP FPU Instruction Pointer 32 or 64 bitso 1-47
1.46 FPUSR FPU Status Register 16 bits 1-48

Table Of Contents i

b‘l AMD

1.47 FPUTWR FPU Tag Word Register 16 bits. e e 1-50
1.48 FS Data Segment Register 16 bits. i e 1-51
1.49 GDTR Global Descriptor Table Register 48 bits 1-52
1.50 GS Data Segment Register 16 bits i e 1-53
1.51 IDTR Interrupt Descriptor Table Register 48 bits. 1-54
1.52 IP Instruction Pointer 16 bits 1-55
1.53 LDTR Local Descriptor Table Register 48 bits. 1-56
1.54 RO-R7 FPU Data Registers 0-7 80 bitseach 1-57
1.55 Sl Processor General Register — Stack Index 16 bits 1-58
1.56 SP Processor General Register — Stack Pointer 16 bits 1-59
1.57 SS Stack Segment Register 16 bits. e 1-60
158 TR Task Register 16 bits i e e e e 1-61
1.59 TR3 Cache Test Data Register 32 bitst 1-62
1.60 TR4 Cache Test Status Register 32 bits i e 1-63
1.61 TR5 Cache Test Control Register 32 bits 1-64
1.62 TR6 TLB Test Control Register 32 bits e e 1-65
1.63 TR7 TLB Test Status Register 32 bits e 1-66
Chapter 2 Am486 Microprocessor Instruction Set
2. L OVEIVIBW ot e e e e e 2-1
2.2 Detailed Instruction DesCriptionso e 2-1
2.3 AAA ASCII Adjusts AL after Addition e 2-4
2.4 AAD ASCII Adjusts AX before DIVISION e e e 2-5
2.5 AAM ASCII Adjusts AX after Multiply 2-6
2.6 AAS ASCII Adjusts AL after Subtraction 2-7
2.7 ADC Adds Integers with Carry e 2-8
2.8 ADD Adds INtBOEIS . .o vttt e e 2-9
2.9 AND Logical AND FUNCHON e e e e e e e e i e 2-10
2.10 ARPL Adjusts RPL Field of Selector i e 2-11
2.11 BOUND Checks Array Index Against Bounds i, 2-12
212 BSF Bit Scan FOrward e 2-13
2. 13 BSR Bit SCaN REVEISEttt 2-14
2. 14 BSWAP Byte SWap . . .ottt 2-15
2 S BT Bit TOS . . ottt e 2-16
2.16 BTC Bit Testand Complement i e 2-17
217 BTR Bit Test AnNd ReSet. e e 2-18
218 BTS Bt TESt AN Setl. . .o ot e e 2-19
2.19 CALL Calls ProCedureottt e e e e 2-20
220 CBW Converts Byte toWoOrd e e 2-25
2.21 CDQ Converts Doubleword to Quadword i 2-26
222CLC Clears Carry Flag. . . .o oo e e e e 2-27
223 CLD Clears Direction Flag oot e e e e e 2-28
2.24 CLI Clears Interrupt-Enable Flag e 2-29
2.25 CLTS Clears Task-Switched Flagin CRO i 2-30
226 CMC Complements Carry Flag e 2-31
2.27 CMP Compares TWO Operands.ottt ettt e e et 2-32
2.28 CMPS/CMPSB/CMPSD/CMPSW Compares Two String Operands 2-33
2.29 CMPXCHG Compares And EXchanges. 2-35
2.30 CWD Converts Word to Doubleword Using DX:AX Register Pair 2-36
2.31 CWDE Converts Word to Doubleword Using EAX Register 2-37
2.32 DAA Decimal Adjusts AL after Addition 2-38
2.33 DAS Decimal Adjusts AL after Subtraction 2-39
234 DEC Decrements by 1. 2-40
2.35DIVUnNsigned Divide 2-41
2.36 ENTER Makes Stack Frame for Procedure i 2-42
2.37 F2XML ComPULES 2% =L . . oot e e e e 2-43
238 FABS Absolute Value. 2-44
iv Table Of Contents

2.39 FADD Adds Floating Point. e e 2-45
2.40 FADDP Adds Floating Point and Pops FPU Stack Top. oo 2-46
2.41 FBLD Loads Binary Coded Decimal i 2-47
2.42 FBSTP Stores Binary Coded Decimal and Pops FPU Stack Top 2-48
243 FCHS Changes Sign . ..o oo e e e e e e e 2-49
2.44 FCLEX Clears Exceptions after Checking for FPUError. 2-50
245 FCOM Compares Real.t e e 2-51
2.46 FCOMP Compares Real and Pops FPU Stack TOp. oo oo e 2-52
2.47 FCOMPP Compares Real and Pops FPU Stack TopTwice 2-53
248 FCOS COSINE . .« o ottt e e 2-54
2.49 FDECSTP Decrements Top-of-Stack Pointer iy 2-55
250 FDIV DIivides Real o e 2-56
2.51 FDIVP Divides Realand Pops FPU Stack Topo oo i 2-57
252 FDIVR Reverse Divides Real. 2-58
2.53 FDIVRP Reverse Divides Real and Pops FPU Stack Top.o 2-59
2.54 FFREE Free Floating-Point Register i i e 2-60
2.55 FIADD Adds INtEQEr. . .. oo e 2-61
2.56 FICOM Compares INtegerottt e e e e e 2-62
2.57 FICOMP Compares Integer and Pops FPU Stack Topo i i oo 2-63
2.58 FIDIV Divides INteger. . . . o oo e e e e 2-64
2.59 FIDIVR Reverse Divides INtegero e e e e e e e 2-65
2.60 FILD Loads INtEQerot e e e e e 2-66
2.61 FIMUL Multiplies Integer e e e e e 2-67
2.62 FINCSTP Increments Top-of-Stack Pointer. i, 2-68
2.63 FINIT Initializes FPU after Checking for Unmasked FPU Error 2-69
2.64 FIST StOres INteger . . oo 2-70
2.65 FISTP Stores Integerand Pops FPU Stack Top 2-71
2.66 FISUB Subtracts Integer 2-72
2.67 FISUBR Reverse Subtracts Integer. 2-73
268 FLD Loads Real. 2-74
2.69 FLD1 Loads Constant +1.0ttt e 2-75
2.70 FLDCW Loads Control WOrdot e e e 2-76
2.71 FLDENYV Loads FPU Environment. e 2-77
2.72 FLDL2E Loads Constant 10g,€. oottt e 2-78
2. 73 FLDL2T Loads Constant 109,10ottt e 2-79
2. 74 FLDLG2 Loads Constant 100,02 . .+« v oot v it e e 2-80
2. 75 FLDLN2 Loads Constant [0g,2. oottt e 2-81
2. 76 FLDPI Loads COoNStant TU.ottt ettt e e e e e e e e 2-82
277 FLDZ Loads Constant +0.0ottt 2-83
2.78 FMUL Multiplies Real. e e e e e e 2-84
2.79 FMULP Multiplies Real and Pops FPU Stack Top. oo oo oo e 2-85
2.80 FNCLEX Clears Exceptions without Checking for FPUError 2-86
2.81 FNINIT Initializes FPU without Checking for Unmasked FPU Error. 2-87
2.82 FNOP NO Operation. . .. oo e e e e e e e 2-88
2.83 FNSAVE Stores FPU State w/o Checking for Unmasked FPU Error. 2-89
2.84 FNSTCW Stores Control Word without Checking for FPUError. 2-90
2.85 FNSTENV Stores FPU Environment w/o Checking for FPU Error. 2-91
2.86 FNSTSW Stores Status Word w/o Checking for Unmasked FPU Error. 2-92
2.87 FPATAN Partial Arctangentt e e e 2-93
2.88 FPREM Partial Remainder (Non-IEEE 754 compliant) 2-94
2.89 FPREM1 Partial Remainder (IEEE 754 compliant) 2-95
2.90 FPTAN Partial Tangentttt e e e e e e 2-96
2.91 FRNDINT Rounds to INteger oottt e e e e e 2-97
292 FRSTOR Restores FPU State e 2-98
2.93 FSAVE Stores FPU State after Checking for Unmasked FPU Error 2-99
294 FSCALE Scalest 2-100
205 FSIN SINe. . oot 2-101
2.96 FSINCOS Sine and CoOSINEttt et e e e e e e 2-102

Table of Contents v

b‘l AMD

2.97 FSQRT Square ROOt e e e 2-103
298 FST Stores Real. 2-104
2.99 FSTCW Stores Control Word after Checking for FPUError 2-105
2.100 FSTENV Stores FPU Environment after Checking for FPU Error 2-106
2.101 FSTP Stores Real and Popsthe FPU Stack Top. oo oo 2-107
2.102 FSTSW Stores Status Word after Checking for Unmasked FPU Error 2-108
2103 FSUB Subtracts Real. 2-109
2.104 FSUBP Subtracts Real and Pops FPU Stack Top.ot 2-110
2.105 FSUBR Reverse Subtracts Real 2-111
2.106 FSUBRP Reverse Subtracts and Pops FPU Stack Top 2-112
2. 007 FT ST TSt .ttt e 2-113
2.108 FUCOM Unordered Compare Realt 2-114
2.109 FUCOMP Unordered Compare Real and Pop FPU Stack Top 2-115
2.110 FUCOMPP Unordered Compare Real and Pop FPU Stack Top Twice. 2-116
20100 FWAIT Wt . .o e e 2-117
2112 FXAM EXGMINE . .ottt et e e 2-118
2.113 FXCH Exchanges Stack Register Contents.t 2-119
2.114 FXTRACT Extracts Exponent and Significand. 2-120
2.115 FYL2X Computes Y [Iog,X . . . oot oottt e 2-121
2.116 FYL2XP1 Computes y LIog,(X+1) . ..ottt e e e e e e 2-122
2,007 HLT Halt. . .. 2-123
2118 IDIV Signed Divide.ot 2-124
2.119 IMUL Signed MUIIPlY oo e 2-125
2.120 IN Inputs Data from Port e 2-126
2121 INCINcrements By ONettt e 2-127
2.122 INS/INSB/INSD/INSW Inputs Data from Portto String 2-128
2.123 INT/INTO Call to Interrupt Procedure.t i e e 2-130
2.124 INVD Invalidates Cache. e e 2-134
2.125 INVLPG Invalidates TLB ENtry.ot e e 2-135
2.126 IRET/IRETD Interrupt RetUrn oo e e e 2-136
2.127 JAJumps If Above (see also JINBE) i 2-140
2.128 JAE Jumps If Above or Equal (see also INBand JNC). 2-141
2.129 JB Jumps If Below (see also JCand JNAE) i, 2-142
2.130 JBE Jumps If Below or Equal (see alsO JNA) i 2-143
2.131JC Jumps IfCarry (see also JBand JNAE)ttt e 2-144
2.132 JCXZ Jumps Short If CX Registeris0(see alsoJECXZ) v, 2-145
2.133JE Jumps ShortIf Equal (see als0 JZ).ot e e 2-146
2.134 JECXZ Jumps Short If ECX Registeris0 (see also JCXZ), 2-147
2.135JG Jumps If Greater (see alsOJNLE) e 2-148
2.136 JGE Jumps If Greater or Equal (see also JNL) i, 2-149
2.137JL JumpsIfLess(see also JNGE). i e 2-150
2.138 JLE Jumps If Less or Equal (see also ING)t 2-151
2039 IMP JUMID .ttt 2-152
2.140 JNA Jumps If Not Above (see also JBE) 2-156
2.141 JNAE Jumps If Not Above or Equal (see alsoJBandJC)....................... 2-157
2.142 JNB Jumps If Not Below (see also JAEand JNC). 2-158
2.143 JNBE Jumps If Not Below or Equal (see also JA) 2-159
2.144 JNC Jumps If Not Carry (see also JAEand JNB) 2-160
2.145 JNE Jumps If Not Equal (see alsO JNZ). e 2-161
2.146 JNG Jumps If Not Greater (see alsoJLE) 2-162
2.147 JNGE Jumps If Not Greateror Equal (see alsoJL)..........., 2-163
2.148 INL Jumps If NotLess (see also JGE) 2-164
2.149 JNLE Jumps If Not Less or Equal (see also JG) 2-165
2150 INO Jumps If Not Overflow 2-166
2.151 JNP Jumps If Not Parity (see also JPO) i 2-167
2152 INS Jumps IfFNOt SigN. 2-168
2153 INZ Jumps If Not Zero (see alsSOJINE) i 2-169
215430 Jumps If Overflow. 2-170

Vi

Table Of Contents

2.155 JP Jumps If Parity (see alsSO JPE) i 2-171
2.156 JPE Jumps If Parity Even (see also JP).t e 2-172
2.157 JPO Jumps if Parity Odd (see alsO JNP) i e 2-173
2158 IS JumpPs If SigN . .. e e 2-174
2.1593ZJumps IfO(seealsO JE)ttt e 2-175
2.160 LAHF Loads Flags into AH. e e e e 2-176
2161 LAR Loads Access Rights Bytet e e 2-177
2.162 LDS Loads Pointer Using DS.t e e 2-178
2.163 LEA Loads Effective AdAress. 2-179
2.164 LEAVE High Level Procedure EXit. ottt 2-180
2165 LES Loads Pointer USINg ES i e e 2-181
2.166 LFS Loads Pointer Using FS i e e 2-182
2.167 LGDT Loads GDTR ottt e e 2-183
2.168 LGS Loads Pointer Using GS e e e e 2-184
2169 LIDT Loads IDTR . . . oottt e e e e 2-185
2170 LLDT Loads LDTR . . .o oot e e 2-186
2.171 LMSW Loads Machine Status Word 2-187
2.172 LOCK Asserts LOCK Signal Prefixt e 2-188
2.173 LODS/LODSB/LODSD/LODSW Loads StringOperandcouun... 2-189
2.174 LOOP/LOOPE/LOOPNE/LOOPNZ/LOOPZ Loop Control CX Counter. 2-191
2.175LSL Loads Segment Limit e 2-192
2.176 LSS Loads Pointer UsiNg SSt e e 2-193
2177 LTR Loads Task Register e e e e e 2-194
2.178 MOV Moves Data/RegiSters.t e 2-195
2.179 MOVS/MOVSB/MOVSD/MOVSW Moves Data from Stringto String. 2-198
2.180 MOVSX Moves with Sign EXtension i e 2-200
2.181 MOVZX Moves with Zero EXtENSION e e 2-201
2.182 MUL Unsigned MURtIply e 2-202
2.183 NEG Twao’s Complement Negation e 2-203
2.184 NOP NO Operation.o e e e e e e e 2-204
2.185 NOT One’s Complement Negation i 2-205
2.186 OR Logical Inclusive OR e e e e e e 2-206
2.187 OUT OULPULS t0 POIt . . o e e e e 2-207
2.188 OUTS/OUTSB/OUTSD/OUTSW Output StringtoPort. 2-208
2.189 POP PopsWord from Stack. e e 2-210
2.190 POPA Pops All 16-Bit General Registers. e 2-212
2.191 POPAD Pops All 32-Bit General Registersttt 2-213
2.192 POPF/POPFD Pops Stack into FLAGS or EFLAGS Register. 2-214
2.193 PUSH Pushes Operand onto Stack.t i e 2-215
2.194 PUSHA Pushes All 16-Bit General Registerscuiiiiiiiienenn. 2-217
2.195 PUSHAD Pushes All 32-Bit General Registers 2-218
2.196 PUSHF/PUSHFD Pushes FLAGS Registerontothe Stack 2-219
2.197 RCL Rotates through Carry Left. e 2-220
2.198 RCR Rotates through Carry Right 2-221
2.199 REP/REPE/REPNE/REPNZ/REPZ Repeats Specified String Operation........... 2-222
2.200 RET Returns from Procedure.t e 2-224
2201 ROL Rotates Left.o e 2-228
2202 ROR Rotates Right e e 2-229
2,203 SAHF Stores AH INtO Flags oo oo e 2-230
2.204 SAL Shifts Arithmetic Left 2-231
2.205 SAR Shifts Arithmetic Right 2-232
2.206 SBB Integer Subtract with Borrow 2-233
2.207 SCAS/SCASB/SCASD/SCASW Compares StringData. 2-234
2.208 SETcc Sets Byteon Condition i 2-236
2.209 SGDT Store Global Descriptor Table Register 2-237
2210 SHL Shift Left. . ..o 2-238
2.211 SHLD Double Precision Shift Left 2-239
2212 SHR Shift Right e e 2-241

Table of Contents Vii

b‘l AMD

Appendices
A

2.213 SHRD Double Precision Shift Right. e 2-242
2.214 SIDT Stores Interrupt Descriptor Table Register. 2-244
2.215 SLDT Stores Local Descriptor Table Register. 2-245
2.216 SMSW Stores Machine Status Word 2-246
2217 STCSetsCarry Flago e e e e 2-247
2.218 STD Sets Direction Flag. oottt e e 2-248
2.219 STl Sets Interrupt-Enable Flag. o e 2-249
2.220 STOS/STOSB/STOSD/STOSW Stores StringData., 2-250
2.221 STR Stores Task RegiSterot e e e e e e e 2-252
2.222 SUB Integer Subtraction e 2-253
2.223 TEST Logical COmMPAreottt e e e e e 2-254
2.224 VERR/VERW Verifies Segment for Read/Write. i .. 2-255
2,225 WAIT Walt . . oo e 2-256
2.226 WBINVD Writes Back and Invalidates Cache 2-257
2.227 XADD Exchanges and Adds e 2-258
2228 XCHG EXChangeo e e 2-259
2.229 XLAT/XLATB Table Look-Up Translation i, 2-260
2.230 XOR Logical EXClusive OR e e e e e 2-261

General Guidelines for Programming

AL General . ..o A-1
ALLBIOS SOftWAreo A-1
AL.2 08 SOfWAIEt A-2
A.1.3 Application Software. e A-2
A L4 SOftware OVEIVIEW oottt et e e e A-2

A.2 Basic Programming Model. e A-2
A.2.1 0perating Modeso e A-3
A.2.2 Memory Organization vttt e A-3

A.2.2.1 Segmentation. e A-4
A.2.2.1.1 Simple Memory Architecture A-4
A.2.2.1.2 Partial Segmentation Use i A-4
A.2.2.1.3 Full Segmentation Implementation A-4

A2.2.2 Paging . .. A-4

A.2.2.3 Selecting a Segmentation Model A-5
A223.1FlatModel A-5
A.2.2.3.2 Protected FlatModel A-6
A.2.2.3.3 Multisegment Model A-7

A2.2.4 SegmentTranslation A-8
A.2.2.4.1 Segment RegiSters A-10
A.2.2.4.2 Segment Selectors A-11
A.2.2.4.3 Segment DesCriptors.o A-12
A.2.2.4.4 Segment Descriptor Tables. A-15
A.2.2.4.5 Descriptor Table Base Registers., A-16

A2.25Page Translation A-17
A2251PGBitEnablesPaging i A-18
A2.25.2Linear AdAresst A-18
A2253PageTables A-19
A2254PageTable Entriesot A-20
A.2.255Page Frame Address.ot A-20
A2.256PresentBit. A-20
A.2.2.5.7 Accessed and Dirty Bits. A-21
A.2.2.5.8 Read/Write and User/Supervisor Bits A-21
A.2.2.5.9 Page-Level Cache Control Bits A-21
A.2.2.5.10 Translation Lookaside Buffer (TLB). A-21

A.2.2.6 Combining Segment and Page Translation A-22
A226.1FlatModel A-22

viii

Table Of Contents

A.2.2.6.2 Segments Spanning Several Pages A-22

A.2.2.6.3 Pages Spanning Several Segments A-23

A.2.2.6.4 Non-Aligned Page and Segment Boundaries A-23

A.2.2.6.5 Aligned Page and Segment Boundaries A-23

A.2.2.6.6 Page-Table Per Segment, A-23

A.2.3 Internal System Protection e A-24
A.2.3.1 Segment-Level Protection i A-24
A.2.3.2 Segment Descriptors and Protection A-24
A2.3.2.1Type ChecKing.ot e A-26
A2.322LIMItChecking.t A-27
A2.3.23Privilege Levels. e A-28

A.2.3.3 Restricting AccesstoData.t e A-29
A.2.3.4 Restricting Control Transfers e A-30
A.2.3.5 Gate DESCHPIONS . ..ttt e A-32
A.2.35.1Stack Switching. e A-34

A.2.3.5.2 Returning froma Procedure, A-37

A.2.3.6 Instructions Reserved for the Operating System A-38
A.2.3.6.1 Privileged Instructions e A-38

A.2.3.6.2 Sensitive INStructions. A-38

A.2.3.7 Instructions for Pointer Validation, A-38
A.2.3.7.1 Descriptor Validation i A-40

A.2.3.7.2 Pointer Integrityand RPL A-40

A.2.3.8 Page-Level Protection i A-41
A.2.3.8.1 Page-Table Entries Hold Protection Parameters. A-41

A.2.3.8.2 Combining Protection of Both Levels of Page Tables........... A-42

A.2.3.8.3 Overrides to Page Protection A-43

A.2.3.9 Combining Page and Segment Protection. A-43
A2 A Data TYPOS . . ottt A-43
A2.4.1Data TypesSin MemOIYt e e A-43
A2.420perand FOrmats. A-46
A.2.5 Application RegIStErS e A-47
A.2.5.1 General Registers A-49
A.2.5.2 Segment Registers. A-49
A.2.5.3 Status and Control Registers. i i e A-52
A253.1Flags Register e A-53
A.2.5.3.21Instruction Pointer e A-54

A2 5.4 FPU REQIStErS . . . oo e A-55
A2541FPURegisterStack. A-55

A.2.5.4.2 FPU Status and Control Registers A-56
A2543ControlWord A-58
A2544FPUTagWord.o e A-59

A.2.5.4.5 Numeric Instruction and Data Pointers A-59

A.2.5.4.6 Opcode Field of Last Instruction A-62

A.2.6 InStruction FOrmat. A-62
A.2.6.1 Instruction Prefixes. A-66
A.2.6.20pcode Fields e A-67
A.2.6.3 Address SpecCifier. A-67
A.2.6.4 Immediate Operand e A-68
A.2.70perand Selection e A-68
A2.7.1 Immediate OPerandsottt A-69
A2.7.2 Register Operands.ttt e e A-69
A2.7.3Memory OPerandsttt A-70
A2.7.3.1Segment Selection A-70

A.2.7.3.2 Effective-Address Computation., A-71

A.2.8 Interrupts and EXCePLioNS. oo A-72
A2.9 INpUt/OULPUL oo e A-74
A2.9.1 /O ADAresSSINg . . o vttt e A-75
A2.9.1.1 /O AdAreSS SPaCE . ..o v ittt A-75

Table of Contents iX

b‘l AMD

A.2.9.1.2 Memory-Mapped /O A-76

A2.9.2 /0 INSIIUCIONS o A-77

A.2.9.3 Register /O INStructions. it e A-77

A2.9.4Block /O INSrUCIONSo A-77

A295Protectionand /O A-78

A.2.95.11/0 Privilege Level e A-78

A2.9521/0PermissionBitMap i A-79

A3 DEbUGgINGo e e A-80

A.3.1 Debugging SUPPOIt. e A-81

A.3.2Debug Registers. A-81

A.3.2.1 Debug Address Registers (DR3-DRO)iiiiinnan.n. A-81

A.3.2.2 Debug Control Register (DR7).ot e e A-81

A.3.2.3 Debug Status Register (DR6) it A-83

A.3.2.4 Breakpoint Field Recognition. i A-83

A.3.3 Debug EXCEptioNS A-84

A.3.3.1 Interrupt 1—Debug EXCeptions A-84

A.3.3.1.1 Instruction-Breakpoint Fault. A-85

A.3.3.1.2 Data-Breakpoint Trapt e A-85

A3.3.1.3General-Detect Fault. i A-85

A3.3.1.4Single-Step Trapottt e A-86

A3.3.15Task-Switch Trap. e e A-86

A.3.3.2 Interrupt 3—Breakpoint Instruction i A-86

A4 Caching . ..o e e A-86

A4l Introduction to Caching. A-87

A.4.2 Operation ofthe InternalCache A-88

A4.21CacheDisabling Bits e A-88

A.4.2.2 Cache Management INStructions it A-88

A.4.2.3 Self-Modifying Code. e A-88

A.4.3 Page-Level Cache Management i A-89

A4S LPCD Bit .. e A-89

A4S 2 PWT Bit .. A-89
Opcode Map

B.l General B-1

B.2 Key to Abbreviations e B-1

B.3 Codes for Addressing Method e B-1

B.4 Codes for Operand TYPeo oo i e B-1

B.5 Register Codes e e e B-1

Flag Cross-Reference
C.LKEY 10 COUS. . . ettt e C-1

Condition Codes
D.1 Condition Codes for Conditional Jump and Set Instructions. D-1

Instruction Format and Timing

E.1 Instruction Encoding and Clock Count Summarycuiiiiiiiinne... E-1
E.2 Factors that Affect Instruction Clock Counts E-1
E.3 General Instruction Encoding E-36
E.4 Encoding of Floating-Point Instruction Fields E-40

Numeric Exception Summary

Code Optimization

G.1 Addressing MOOeS.ot e G-1
G.2 Prefetch Unito e G-2
G.3 Cache and Code AlIgnment e e G-2
G.ANOP INStIUCHONSt e e e e e e G-3

Table Of Contents

G.5Integer INStrUCIONS e e G-3
G.6 CoNndition COUESttt G-4
G.7 String INStrUCHIONSo o e e G-5
G.8 Floating-Point INStrUCtiONS.t e e e e G-5
GO PrefiXx OpCOdESot e e G-6
G.10 Overlapped ClOCKS oo G-6
G.11 Miscellaneous GUIdENINES o e e G-6

BIOS Data Area Map
Typical CMOS RAM Map
Standard I/O Port Addressing

Glossary

LIST OF FIGURES

Figure A-1 Flat Memory Model. A-5
Figure A-2 Protected Flat Memory Model i e A-6
Figure A-3 Multisegment Memory Model A-7
Figure A-4 Tl Bit Selects Descriptor Table. e e A-9
Figure A-5 Segment Translation A-10
Figure A-6 Segment Registers. A-10
Figure A-7 Segment Selector. e A-11
Figure A-8 Segment DesCriptor oo A-12
Figure A-9 Segment Descriptor (Segment Not Present), A-15
Figure A-10 Descriptor Tables. A-16
Figure A-11 Pseudo-Descriptor Format. e A-16
Figure A-12 Linear Address Format. A-18
Figure A-13 Page Translation e e e e A-19
Figure A-14 Page Table Entry Format. e A-20
Figure A-15 Page Table Entry Format for a Not-PresentPage A-20
Figure A-16 Combining Segment and Page Address Translation....................... A-22
Figure A-17 Separate Page Tables forEach Segment A-23
Figure A-18 Description Fields Used for Protection. A-25
Figure A-19 Protection RiNGS.o oo it e e e A-28
Figure A-20 Privilege Check for Data ACCESS oottt e A-29
Figure A-21 Privilege Check for Control Transfer Without Gate A-31
Figure A-22 Call Gate Format e A-32
Figure A-23 Call Gate Mechanism. e A-33
Figure A-24 Privilege Check for Control Transfer with CallGate. A-33
Figure A-25 Initial Stack Pointers in a TSS i e e A-35
Figure A-26 Stack Frame During Interlevel CALL i A-36
Figure A-27 Protection HOIOSo A-41
Figure A-28 Data TypesS iNn MemMOIYt e A-43
Figure A-29 Bytes, Words, and Doublewords in Memoryc ... A-44
Figure A-30 Data TYPeS . . o ottt e e e e e e e A-45
Figure A-31 Application Register Set. A-48
Figure A-32 Unsegmented MemoOryottt e e e A-50
Figure A-33 Segmented MemMOrYot e e A-50
Figure A-34 StacKs.o e A-52

Table of Contents Xi

b‘l AMD

Figure A-35 EFLAGS ReQiSter.ot ii eeee eeee
Figure A-36 Am486 Microprocessor FPU Register Set
Figure A-37 FPU Status Wordo e e
Figure A-38 FPU Control Word Format i e e
Figure A-39 Tag Word Format e

Figure A-40 Protected Mode Numeric Instruction and Data Pointer Image in Memory,
B2-Bit FOMMaAL. . ..o

Figure A-41 Real Mode Numeric Instruction and Data Pointer Image in Memory,
B2-Bit FOMMaAL. . ..ot e

Figure A-42 Protected Mode Numeric Instruction and Data Pointer Image in Memory,
16-Bit FOrMAL.o

Figure A-43 Real Mode Numeric Instruction and Data Pointer Image in Memory,
16-Bit FOrmMaAL. . ..o

Figure A-44 Opcode Field e
Figure A-45 General Instruction Format.
Figure A-46 Floating-Point Instruction Formats i
Figure A-47 mod R/IMand s-i-b Byte Formats i
Figure A-48 Effective Address Computation
Figure A-49 Memory Mapped /0.
Figure A-50 I/O Permission Bit Map. e e
Figure A-51 Debug RegiSters.t e
Figure E-1 General Instruction Format. e
Figure E-2 Floating-Point Instruction Format.

LIST OF TABLES

Table A-1 Application Segment TYPeS.ttt e e e e
Table A-2 System Segment and Gate TYPeS.ottt e
Table A-3 Interlevel Return Checks.
Table A-4 Valid Descriptor Types for LSL Instruction
Table A-5 Combined Page Directory and Page Table Protection
Table A-6 Real Number Notation. e e
Table A-7 Register Names.o e e e
Table A-8 Status Flags.
Table A-9 Condition Code Interpretation i i e
Table A-10 Correspondence between FPU Flags and Processor Flag Bits
Table A-11 Address Mode Field (mod/rm) Definitions (no s-i-b present).
Table A-12 Scale Field (ss) Definitions i e
Table A-13 Index Field (index) Definitions e
Table A-14 Base Field (base) Definitions.
Table A-15 Default Segment Selection Rules i
Table A-16 Exceptions and INterruptsttt e
Table A-17 Breakpoint EXamples. e
Table A-18 Debug Exception Conditions i e
Table A-19 Cache Operating Modes e e e e e
Table E-1 Instruction Clock Count SUMMaArYttt e e e
Table E-2 Instruction Fields e
Table E-3 Operand Length Field (w) Definitions
Table E-4 Direction Field (d) Definitions e
Table E-5 Sign-Extend Field (s) Definitions.

Xii

Table Of Contents

Table E-6 General Register Field (reg) Definitions, E-37
Table E-7 Address Mode Field (mod/rm) Definitions (no s-i-b present). E-38
Table E-8 Scale Field (ss) Definitionst e e E-39
Table E-9 Index Field (index) Definitionst e e E-39
Table E-10 Base Field (base) Definitions. E-39
Table F-1 Exception Summary for Floating-Point Instructions. F-1
Table H-1 BIOS Map CONteNtSttt e e e e e e e e H-1
Table I-1 Example CMOS RAM Mapottt e e e e e -1
Table J-1 Standard I/O POrt AddresSesS oot e e J-1

Table of Contents Xiii

INTRODUCTION n

The Am486° Microprocessor Software User’s Manual is designed to support system soft-
ware engineers developing BIOS and application software for use with products from the
Am486 microprocessor family. Because, typically, such engineers are already familiar with
basic personal computer system programming requirements, this book focuses on provid-
ing information about the basic processor instruction set and the programmable registers.

Each chapter begins with an overview diagram of registers or instructions organized by
operational category with cross-references to the detailed description page for each item.
The detailed descriptions are listed alphabetically on the subsequent pages in the chapter.

Supplementary information is provided in Appendices A through J. A glossary of terms is
included after the appendices. For convenience, a basic ASCII cross-reference is on the
inside back cover of this manual.

Xiv

Introduction

~

1 Am486 MICROPROCESSOR REGISTER SET

1.1

1.2

OVERVIEW

The Am486 Microprocessor Register Set includes the same basic system architecture as
other 486-based microprocessors. Page 1-2 provides a roadmap to these registers using
functional categories. For each register, the roadmap lists the page on which the detailed
register description appears. In the detailed description section that follows the Am486

microprocessor register roadmap, the registers appearin alphabetical order using the name
listed in the roadmap.

DETAILED REGISTER DESCRIPTIONS
Register descriptions begin on page 1-3, using the following format:

Register Name/s General Description Bit Size
Bit(s) Bit Set Name Description
nn xx XXX Function

Addressing

Description of register addressing method.
Default Value

Factory/default register setting.
Functional Description

Verbal description of register function by bit or bit set.

Note: Standard compiler programs convert the register names into opcode. This chapter
references the registers by name. Appendix E includes the opcodes used to address the
registers as part of the ‘Instruction Format and Timing’ descriptions.

Am486 Microprocessor Register Set 1-1

b‘l AMD

Am486 Microprocessor Register Roadmap

General Segment Memory Test
Management
AH 1-3 CS 1-17 TR3 1-62
AL 1-4 DS 1-31 GDTR 1-52 TR4 1-63
AX 1-5 ES 1-41 IDTR 1-54 TR5 1-64
BH 1-6 FS 1-51 LDTR 1-56 TR6 1-65
BL 1-7 GS 1-53 TR 1-61 TR7 1-66
BP 1-8 SS 1-60
BX 1-9
gE iig Status and Control Debug FPU
CX 1-18 EFLAGS 1-39 DRO 1-22 CRO 1-12
DH 1-19 EIP 1-40 DR1 1-23 CR1 1-14
DI 1-20 FLAGS 1-44 DR2 1-24 CR2 1-15
DL 1-21 IP 1-55 DR3 1-25 CR3 1-16
DX 1-32 DR4 1-26 FPUCR 1-45
EAX 1-33 DR5 1-27 FPUDP 1-46
EBP 1-34 DR6 1-28 FPUIP 1-47
EBX 1-35 DR7 1-29 FPUSR 1-48
ECX 1-36 FPUTWR 1-50
EDI 1-37 RO 1-57
EDX 1-38 R1 1-57
ESI 1-42 R2 1-57
ESP 1-43 R3 1-57
Sl 1-58 R4 1-57
SP 1-59 R5 1-57
R6 1-57
R7 1-57
1-2 Am486 Microprocessor Register Set

AMDH

1.3

AH Processor General Register 8 bits
Bit(s) Bit Set Name Description
7-0 AH Register Processor general register, High byte of AX.

Addressing

Specify by nhame as instruction operand.
Default Value
Undefined

Functional Description

One of the eight, 8-bit general processor registers used to hold 8-bit operands for logical

and arithmetic operations.

Am486 Microprocessor Register Set

1-3

i"l AMD

1.4 AL Processor General Register 8 bits
Bit(s) Bit Set Name Description
7-0 AL Register Processor general register, Low byte of AX.
Addressing
Specify by nhame as instruction operand.
Default Value
Undefined
Functional Description
One of the eight, 8-bit general processor registers used to hold 8-bit operands for logical
and arithmetic operations.
1-4 Am486 Microprocessor Register Set

AMDH

AX Processor General Register 16 bits
Bit(s) Bit Set Name Description
15-0 AX Register Processor general register, Low word of EAX; see also AL, AH.
Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

One of the eight, 16-bit general processor registers used to hold 16-bit operands for logical
and arithmetic operations.

Am486 Microprocessor Register Set 1-5

i"l AMD

1.6 BH Processor General Register 8 bits
Bit(s) Bit Set Name Description
7-0 BH Register Processor general register, High byte of BX.
Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

One of the eight, 8-bit general processor registers used to hold 8-bit operands for logical
and arithmetic operations.

1-6 Am486 Microprocessor Register Set

AMDH

1.7

BL Processor General Register 8 bits
Bit(s) Bit Set Name Description

7-0 BL Register Processor general register, Low byte of BX.

Addressing

Specify by nhame as instruction operand.
Default Value
Undefined

Functional Description

One of the eight, 8-bit general processor registers used to hold 8-bit operands for logical

and arithmetic operations.

Am486 Microprocessor Register Set

1-7

i"l AMD

1.8 BP Processor General Register/Base Pointer 16 bits
Bit(s) Bit Set Name Description
15-0 BP Register Processor general register, base pointer register.
Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

One of the eight, 16-bit general processor registers used to hold 16-bit operands for logical
and arithmetic operations. When using 16-bit addressing, you can copy the stack pointer
(SP — see page 1-59) into BP before pushing anything onto the stack, and access data
structures using fixed offsets from the BP value.

1-8 Am486 Microprocessor Register Set

AMDH

1.9

BX Processor General Register 16 bits
Bit(s) Bit Set Name Description
15-0 BX Register Processor general register, Low word of EBX; see also BH and BL.
Addressing

Specify by nhame as instruction operand.
Default Value
Undefined

Functional Description

One of the eight, 16-bit general processor registers used to hold 16-bit operands for logical

and arithmetic operations.

Am486 Microprocessor Register Set

1-9

i"l AMD

1.10 CH Processor General Register 8 bits
Bit(s) Bit Set Name Description
7-0 CH Register Processor general register, High byte of CX.
Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

One of the eight, 8-bit general processor registers used to hold 8-bit operands for logical
and arithmetic operations.

1-10 Am486 Microprocessor Register Set

AMDH

1.11 CL Processor General Register 8 bits
Bit(s) Bit Set Name Description
7-0 CL Register Processor general register, Low byte of CX.
Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

One of the eight, 8-bit general processor registers used to hold 8-bit operands for logical
and arithmetic operations.

Am486 Microprocessor Register Set 1-11

b‘l AMD

1.12 CRO Control Register 0 32 bits
Bit(s) Bit Set Name Description
31 PG 0 = Paging disabled.
1 = Paging enabled.
30 CD 0 = Internal cache enabled.
1 = Internal cache disabled.
29 NW 0 = Enables write-throughs and invalidation cycles.
1 = Disables write-throughs and invalidation cycles.
28-19 N/A Reserved
18 AM 0 = Alignment checking disabled.
1 = Alignment checking allowed.
17 N/A Reserved
16 WP 0 = Supervising process can write read-only user-level pages.
1 = User-level pages protected against supervisor mode access.
15-6 N/A Reserved
5 NE 0 = No error since last clear.
1 = Numeric error occurred.
4 ET 0 = No 387 coprocessor support.
1 = 387 coprocessor support.
3 TS 0 = No task switch since last clear.
1 = Task switched.
2 EM 0 = No emulation.
1 = Numeric emulation.
1 MP 0 = No coprocessor.
1 = Coprocessor present.
0 PE 0 = No protection.
1 = Segment level protection.

Addressing

Specify by hame as instruction operand.

Default Value

Undefined

Functional Description

CRO configures several system level controls, as follows:

m PG (bit 31) enables paging when set and disables paging when clear.

m CD (bit 30) enables the internal cache when clear and disables the cache when set.
Cache misses do not cause cache line fills when the bitis set. Cache hits are not disabled;
you must flush the cache to disable it completely.

m NW (bit 29) enables write-throughs and cache invalidation cycles when clear and dis-
ables invalidation cycles and write-throughs when hit in the cache when set. Disabling
write-throughs can allow stale data to appear in the cache.

m AM (bit 18) allows alignment checking when set and disables alignment checking when
clear. Alignment checking occurs only when this bit is set, the AC flag is set, and CPL
is 3 (user mode).

1-12 Am486 Microprocessor Register Set

AMDH

WP (bit 16) protects user-level pages against supervisor-mode access when set. When
clear, a supervisor process can write read-only user-level pages. This feature is useful
for implementing the copy-on-write method of creating a new process (forking) used by
some operating systems, such as UNIX.

NE (bit 5) enables the standard mechanism for reporting floating-point errors when set.
When NE is clear and the IGNNE input is active, numeric errors are ignored. When NE
is set and IGNNE is inactive, a numeric error causes the processor to stop and wait for
an interrupt from the FERR pin.

ET (bit 4) is set to support 387 coprocessor functions.

TS (bit 3) is set whenever a task switch occurs. The processor checks this bit when
interpreting floating-point arithmetic instructions to allow delaying save/restore of nu-
meric content until the numeric data is actually used. The CLTS instruction clears this bit.

EM (bit 2) is used when set (along with TS) to generate a coprocessor-not-available
exception when a WAIT or numeric instruction is executed. EM can be set to cause
exception 7 on any WAIT or numeric instruction. When clear, the bit does not cause the
exception.

MP (bit 1) indicates, when set, that a coprocessor is present. When clear, the floating-
point capability is not present.

PE (bit 0) enables segment-level protection when set. Clearing this bit removes the
protection.

The remaining bits are undefined and reserved.

Am486 Microprocessor Register Set 1-13

i"l AMD

1.13

CR1 Control Register 1

32 bits

Bit(s) Bit Set Name Description

31-0 CR1 Reserved

Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

Register reserved

1-14

Am486 Microprocessor Register Set

AMDH

1.14

CR2 Control Register 2 32 bits
Bit(s) Bit Set Name Description

310 CR2 Page fault linear address
Addressing

Specify by nhame as instruction operand.
Default Value
Undefined

Functional Description

When an exception occurs during paging, CR2 stores the 32-bit linear address that caused

the exception.

Am486 Microprocessor Register Set

1-15

b‘l AMD

1.15 CR3 Control Register 3 32 bits
Bit(s) Bit Set Name Description
31-12 PDBR Page directory base register contains the 20 most significant bits
of the page directory (first-level page table) address.
11-5 N/A Reserved
4 PCD Page-level cache disable bit. 1=Paging disabled; 0=Paging enabled.
3 PWT Page-level writes transparent. 1=Write-through to external cache
enabled; 2=Write-through disabled.
2-0 N/A Reserved

Addressing

Specify by nhame as instruction operand.

Default Value

Undefined

Functional Description

CR3 configures some of the page-level controls, as follows:

m PDBR (bits 31-12) is the page directory table address system control register. It contains
the 20 most significant bits of the page directory (first-level page table) address. Because
the page directory must be aligned to a page boundary, the lower 12 address bits are
ignored.

m PCD (bit 4) is driven on the PCD pin during bus cycles that are not paged, such as
interrupt acknowledge cycles, when paging is enabled. Itis driven on all bus cycles when
pagingis not enabled. The PCD pinis one of the write-through cache controls for external
cache and is used on a cycle-by-cycle basis.

m PWT (bit 3) is driven on the PWT pin during bus cycles that are not paged, such as
interrupt acknowledge cycles, when paging is enabled. Itis driven on all bus cycles when
paging is notenabled. The PWT pinis one of the write-through cache controls for external
cache and is used on a cycle-by-cycle basis.

Bits 11-5 and 2—0 are undefined and are reserved.

1-16 Am486 Microprocessor Register Set

AMDH

1.16

CS Code Segment Register 16 bits
Bit(s) Bit Set Name Description
15-0 CS Code segment register holds the base address for the code segment of

memory, that area containing the instructions being executed.

Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

The processor organizes memory into segments as one of the possible ways to access
memory. There are six segments (tables within memory) accessed through the segment
registers. Each register stores the base address for its segment. The segment containing
the instructions being executed is called the code segment. Its segment selector (base
address) is stored in the CS register. The processor fetches instructions from the code
segment, using the contents of the EIP or IP register as an offset into the segment. The
CSregister value changes as aresult of interrupts, exceptions, and instructions that transfer
control between segments (see CALL, IRET, and JMP instructions).

Am486 Microprocessor Register Set 1-17

i"l AMD

1.17 CX Processor General Register 16 bits
Bit(s) Bit Set Name Description
15-0 CX Register Processor general register, Low word of ECX; see also CL, CH.
Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

One of the eight, 16-bit general processor registers used to hold 16-bit operands for logical
and arithmetic operations.

1-18 Am486 Microprocessor Register Set

AMDH

1.18 DH Processor General Register 8 bits
Bit(s) Bit Set Name Description
7-0 DH Register Processor general register, High byte of DX.
Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

One of the eight, 8-bit general processor registers used to hold 8-bit operands for logical
and arithmetic operations.

Am486 Microprocessor Register Set 1-19

b‘l AMD

1.19 DI Processor General Register — Data Index 16 bits
Bit(s) Bit Set Name Description
15-0 DI Processor general register;
used as a destination index for string operations.
Addressing
Specify by nhame as instruction operand.
Default Value
Undefined
Functional Descriptions
One of the eight, 16-bit general processor registers used to hold 16-bit operands for logical
and arithmetic operations. For string operations the DI register points to destination oper-
ands and increments or decrements between operations, depending on the DF setting in
the EFLAGS register (see page 1-39). The DI register can only point to operands in the
memory space specified by the ES segment register.
1-20 Am486 Microprocessor Register Set

AMDH

1.20 DL Processor General Register 8 bits
Bit(s) Bit Set Name Description
7-0 AL Register Processor general register, Low byte of DX.
Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

One of the eight, 8-bit general processor registers used to hold 8-bit operands for logical
and arithmetic operations.

Am486 Microprocessor Register Set 1-21

1.21 DRO Linear Breakpoint Address 0 Debug Register 32 bits
Bit(s) Bit Set Name Description
310 DRO Stores the address of a debug breakpoint.
Addressing
Specify by nhame as instruction operand.
Default Value
Undefined
Functional Description
Access the built-in debugging features of the microprocessor through the eight Debug
Registers. The linear breakpoint address registers (DRO to DR3) store addresses for as
many as four breakpoints. These breakpoints invoke debugging software. Whenever an
operation accesses one of these addresses, it generates an exception that initiates the
referenced debugging subroutine. You must specify the form of memory access thattriggers
the breakpoint; for example, select an instruction fetch or a doubleword write operation.
The debug registers support instruction breakpoints and data breakpoints.

1-22 Am486 Microprocessor Register Set

AMDH

1.22

DR1 Linear Breakpoint Address 1 Debug Register 32 bits
Bit(s) Bit Set Name Description

310 DR1 Stores the address of a debug breakpoint.
Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

Access the built-in debugging features of the microprocessor through the eight Debug
Registers. The linear breakpoint address registers (DRO to DR3) store addresses for as
many as four breakpoints. These breakpoints invoke debugging software. Whenever an
operation accesses one of these addresses, it generates an exception that initiates the
referenced debugging subroutine. You must specify the form of memory access thattriggers
the breakpoint; for example, select an instruction fetch or a doubleword write operation.
The debug registers support instruction breakpoints and data breakpoints.

Am486 Microprocessor Register Set 1-23

1.23 DR2 Linear Breakpoint Address 2 Debug Register 32 bits
Bit(s) Bit Set Name Description
310 DR2 Stores the address of a debug breakpoint.
Addressing
Specify by nhame as instruction operand.
Default Value
Undefined
Functional Description
Access the built-in debugging features of the microprocessor through the eight Debug
Registers. The linear breakpoint address registers (DRO to DR3) store addresses for as
many as four breakpoints. These breakpoints invoke debugging software. Whenever an
operation accesses one of these addresses, it generates an exception that initiates the
referenced debugging subroutine. You must specify the form of memory access thattriggers
the breakpoint; for example, select an instruction fetch or a doubleword write operation.
The debug registers support instruction breakpoints and data breakpoints.

1-24 Am486 Microprocessor Register Set

AMDH

1.24

DR3 Linear Breakpoint Address 3 Debug Register 32 bits
Bit(s) Bit Set Name Description

310 DR3 Stores the address of a debug breakpoint.
Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

Access the built-in debugging features of the microprocessor through the eight Debug
Registers. The linear breakpoint address registers (DRO to DR3) store addresses for as
many as four breakpoints. These breakpoints invoke debugging software. Whenever an
operation accesses one of these addresses, it generates an exception that initiates the
referenced debugging subroutine. You must specify the form of memory access thattriggers
the breakpoint; for example, select an instruction fetch or a doubleword write operation.
The debug registers support instruction breakpoints and data breakpoints.

Am486 Microprocessor Register Set 1-25

1.25 DR4 Debug Register 4 32 bits
Bit(s) Bit Set Name Description
31-0 DR4 Reserved
Addressing
Specify by nhame as instruction operand.
Default Value
Undefined
Functional Description
Not currently used.
1-26 Am486 Microprocessor Register Set

AMDH

1.26 DR5 Debug Register 5 32 bits
Bit(s) Bit Set Name Description
31-0 DR5 Reserved
Addressing
Specify by nhame as instruction operand.
Default Value
Undefined
Functional Description
Not currently used.
Am486 Microprocessor Register Set 1-27

1.27 DR6 Breakpoint Status Debug Register 32 bits
Bit(s) Bit Set Name Description
31-16 N/A Reserved, always 0000 0000 0000 0000
15 BT 0 = Default, no setting condition detected.
1 = Switch to task with TSS that has debug trap bit (T) set.
14 BS 0 = Default, no setting condition detected.
1 =Trap flag (TF) set.
13 BD 0 = Default, no setting condition detected.
1 = Next instruction reads or writes a debug register that is
in use by in-circuit emulation.
12-4 N/A Reserved, always 0 0000 0000
3 B3 0 = No debug exception generated for breakpoint 3.
1 = Debug exception generated for breakpoint 3.
2 B2 0 = No debug exception generated for breakpoint 2.
1 = Debug exception generated for breakpoint 2.
1 Bl 0 = No debug exception generated for breakpoint 1.
1 = Debug exception generated for breakpoint 1.
0 BO 0 = No debug exception generated for breakpoint 0.
1 = Debug exception generated for breakpoint 0.
Addressing

Specify by name as instruction operand.

Default Value

Undefined

Functional Description

The Breakpoint Status Debug Register stores the current breakpoint exception status. If
an exception occurs, read this register to determine which breakpoint caused the exception,
or whether one of three other possible triggering events occurred.

m The BT bit (15) indicates when the exception was generated by switching to a task for
which the TSS had the T bit (debug trap) set.

m The BS bit (14) indicates whether the trap flag (TF) in the EFLAGS register is set.

m The BD bit (13) indicates that the debug registers are in use by in-circuit emulation and
that the next instruction writes to or reads from one of the registers.

m B3 (bit 3), B2 (bit 2), B1 (bit 1), and BO (bit 0) specify, when set, that the specified
breakpoint exception occurred.

Note: The processor never clears the contents of TR6. When writing a debug handler
routine, always make sure that the program clears TR6 before returning,

1-28

Am486 Microprocessor Register Set

AMDH

1.28

DR7 Breakpoint Control Debug Register 32 bits
Bit(s) Bit Set Name Description
31-30 LEN3 00 = Breakpoint 3 is one byte.
01 = Breakpoint 3 is word (two bytes).
10 = Reserved, undefined.
11 = Breakpoint 3 is doubleword (four bytes).
29-28 R/W3 00 = Breakpoint 3 breaks on instruction execution only.
01 = Breakpoint 3 breaks on data writes only.
10 = Reserved, undefined.
11 = Breakpoint 3 breaks on data reads or writes, but not instructions.
27-26 LEN2 00 = Breakpoint 2 is one byte.
01 = Breakpoint 2 is word (two bytes).
10 = Reserved, undefined.
11 = Breakpoint 2 is doubleword (four bytes).
25-24 R/W2 00 = Breakpoint 2 breaks on instruction execution only.
01 = Breakpoint 2 breaks on data writes only.
10 = Reserved, undefined.
11 = Breakpoint 2 breaks on data reads or writes, but not instructions.
23-22 LEN1 00 = Breakpoint 1 is one byte.
01 = Breakpoint 1 is word (two bytes).
10 = Reserved, undefined.
11 = Breakpoint 1 is doubleword (four bytes).
21-20 R/W1 00 = Breakpoint 1 breaks on instruction execution only.
01 = Breakpoint 1 breaks on data writes only.
10 = Reserved, undefined.
11 = Breakpoint 1 breaks on data reads or writes, but not instructions.
19-18 LENO 00 = Breakpoint 0 is one byte.
01 = Breakpoint 0 is word (two bytes).
10 = Reserved, undefined.
11 = Breakpoint 0 is doubleword (four bytes).
17-16 R/WO 00 = Breakpoint 0 breaks on instruction execution only.
01 = Breakpoint O breaks on data writes only.
10 = Reserved, undefined.
11 = Breakpoint 0 breaks on data reads or writes, but not instructions.
15-10 N/A Reserved, always 0000 00
9 GE Global enable, not used.
8 LE Local enable, not used.
7 G3 0 = Global disable of breakpoint 3.
1 = Global enable of breakpoint 3.
6 L3 0 = Local disable of breakpoint 3.
1 = Local enable of breakpoint 3.
5 G2 0 = Global disable of breakpoint 2.
1 = Global enable of breakpoint 2.
4 L2 0 = Local disable of breakpoint 2.
1 = Local enable of breakpoint 2.
3 Gl 0 = Global disable of breakpoint 1.
1 = Global enable of breakpoint 1.
2 L1 0 = Local disable of breakpoint 1.
1 = Local enable of breakpoint 1.
1 GO 0 = Global disable of breakpoint 0.
1 = Global enable of breakpoint 0.
0 LO 0 = Local disable of breakpoint 0.

1 = Local enable of breakpoint 0.

Am486 Microprocessor Register Set 1-29

b‘l AMD

Addressing

Specify by name as instruction operand.
Default Value

00000000h

Functional Description

The Debug Control Register (DR7) configures the breakpoints. The High word of the register
defines for each breakpoint, the type of breakpoint it is (R/W3, R/IW2, R/W1, and R/WO)
and the length of each field (LEN3, LEN2, LEN1, and LENO).

Note: Foreach LENn and R/Whn pair, ifthe breakpoint is defined as an instruction breakpoint
(R/Wn = 00), set LENn = 00. The instruction break is only defined for byte lengths; the
operation of an instruction break with any other length is undefined.

The lowest byte of DR7 allows enabling or disabling of the breakpoints at one or two levels:
global (G3, G2, G1, GO) or local (L3, L2, L1, LO). If a breakpoint is enabled at the global
level (Gn=1), it is enabled for all operations. If a breakpoint is disabled at the global level,
it can still be enabled for a single task with the local enable bit Ln. This acts as a temporary
enable that exists while the specified task runs. When a task switch occurs, it resets the
Ln enable bit for the associated breakpoint.

1-30

Am486 Microprocessor Register Set

AMDH

1.29

DS Data Segment Register 16 bits
Bit(s) Bit Set Name Description
15-0 DS A segment register that holds the base address for one of the four data

segments of memory, available to the program currently executing.

Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

The processor organizes memory into segments as one of the possible ways to access
memory. There are six segments (tables within memory) accessed through the segment
registers. Each register stores the base address for its segment. There are four data seg-
ments that can contain data used by a program being executed. The segment selectors
(base addresses) for these segments are stored in the DS, ES, FS, and GS registers. The
processor fetches data from a data segment, using an offset into the segment. The data
segment register value changes as a result of interrupts, exceptions, and instructions that
transfer control between segments (see CALL, IRET, and JMP instructions).

Am486 Microprocessor Register Set 1-31

1.30 DX Processor General Register 16 bits
Bit(s) Bit Set Name Description
15-0 DX Register Processor general register, Low word of EDX; see also DL, DH.
Addressing
Specify by nhame as instruction operand.
Default Value
Undefined
Functional Description
One of the eight, 16-bit general processor registers used to hold 16-bit operands for logical
and arithmetic operations.
1-32 Am486 Microprocessor Register Set

AMDH

1.31

EAX Processor General Register 32 bits
Bit(s) Bit Set Name Description

310 EAX Processor general register; see also AX.
Addressing

Specify by nhame as instruction operand.

Default Value

Undefined

Functional Description

One of the eight, 32-bit general processor registers used to hold 32-bit operands for logical
and arithmetic operations.

Am486 Microprocessor Register Set

1-33

EBP Processor General Register — Base Pointer 32 bits

Bit(s) Bit Set Name Description

310 EBP Processor general register; base pointer register; see also BP.

Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

One of the eight, 32-bit general processor registers used to hold 32-bit operands for logical
and arithmetic operations. When using 32-bit addressing, copy the stack pointer (ESP —
see page 1-43) into EBP before pushing anything onto the stack, and access data structures
using fixed offsets from the EBP value.

1-34

Am486 Microprocessor Register Set

AMDH

1.33

EBX Processor General Register 32 bits
Bit(s) Bit Set Name Description

310 EBX Processor general register; see also BX.
Addressing

Specify by nhame as instruction operand.

Default Value

Undefined

Functional Description

One of the eight, 32-bit general processor registers used to hold 32-bit operands for logical
and arithmetic operations.

Am486 Microprocessor Register Set

1-35

1.34 ECX Processor General Register 32 bits
Bit(s) Bit Set Name Description
310 ECX Processor general register; see also CX.
Addressing
Specify by nhame as instruction operand.
Default Value
Undefined
Functional Description
One of the eight, 32-bit general processor registers used to hold 32-bit operands for logical
and arithmetic operations.
1-36 Am486 Microprocessor Register Set

AMDH

1.35

EDI Processor General Register — Data Index 32 bits
Bit(s) Bit Set Name Description
310 EDI Processor general register; data index register, used as a 32-bit des-

tination index for string operations; see also DI.

Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

One of the eight, 32-bit general processor registers used to hold 32-bit operands for logical
and arithmetic operations. For string operations, the EDI register points to destination
operands and increments or decrements between operations, depending on the DF setting
in the EFLAGS register (see page 1-39). The EDI register can only point to operands in
the memory space specified by the ES segment register.

Am486 Microprocessor Register Set 1-37

1.36 EDX Processor General Register 32 bits
Bit(s) Bit Set Name Description
310 EDX Processor general register; see also DX.
Addressing
Specify by nhame as instruction operand.
Default Value
Undefined
Functional Description
One of the eight, 32-bit general processor registers used to hold 32-bit operands for logical
and arithmetic operations.
1-38 Am486 Microprocessor Register Set

AMDH

1.37

EFLAGS Extended Flags Register 32 bits
Bit(s) Bit Set Name Description
31-19 N/A Reserved, always 0000 0000 0000 0
18 AC 0 = Alignment Check mode not enabled.
1 = Alignment Check mode enabled.
17 VM 0 = Normal processing mode.
1 = Virtual-8086 mode.
16 RF 0 = Normal operation.
1 = Debug exceptions disabled to allow debugger program to run
without causing another exception, Resume Flag set.
15 N/A Reserved, always 0
14 NT 0 = Current task is not nested below another task.
1 = Current task is nested below another task.
13-12 IOPL 00 = Highest I/O access privilege level; typically operating system.
01 = Second highest I/O access privilege level; system services.
10 = Third highest I/O access privilege level; system services.
11 = Lowest I/O access privilege level; application software.
11 OF 0 = Arithmetic result within limits.
1 = Arithmetic result not in positive/negative range, Overflow Flag set.
10 DF 0 = Forward direction, addressing increments.
1 = Backward direction, addressing decrements, Direction Flag set.
9 IF 0 = Maskable interrupts disabled.
1 = Maskable interrupts enabled, Interrupt Flag set.
8 TF 0 = Normal operation.
1 = Trap Flag set, processor enters single-step mode for debugging;
each instruction generates a debug exception.
7 SF 0 = Arithmetic result is not negative (20); sign is +.
1 = Arithmetic result is negative (<0); Sign Flag set, sign is —.
6 ZF 0 = Arithmetic result is not zero.
1 = Arithmetic result is zero, Zero Flag set.
5 N/A Reserved, always 0
4 AF 0 = No BCD carry.
1 = BCD carry from bit position 3, Auxiliary Flag set.
3 N/A Reserved, always 0
2 PF 0 = Result Low byte has odd parity.
1 = Result Low byte has even parity, Parity Flag set.
1 N/A Reserved, always 1
0 CF 0 = No carry from MSB of result.
1 = Carry from MSB of result, Carry Flag set.
Addressing

Specify by bit/set names or by using the special flag instructions (BT, BTR, BTS, CLC, CLD,
LAHF, POPF, POPFD, PUSHF, PUSHFD, SAHF, STC, STD, STI) described in Chapter 2.

Default Value

00000002h

Functional Description

The 32-bit EFLAGS register has system flags, status flags, and a control flag.

Am486 Microprocessor Register Set 1-39

1.38 EIP Extended Instruction Pointer Register 32 bits
Bit(s) Bit Set Name Description
310 EIP Extended Instruction Pointer, the offset that points to the next
instruction within the current code segment.

Addressing
Specify by nhame as instruction operand.
Default Value
Undefined
Functional Description
The EIP register contains the 32-bit offset that points to the next instruction within the current
code segment. The control-transfer instructions, such as JUMP or RET, and interrupts and
exceptions control the contents of this register implicitly. The contents of this register ad-
vance from one instruction boundary to the next. Because of instruction prefetching, its
value is only an approximate indication of the bus activity loading instructions into the
processor. The IP register (see page 1-55) is the lower word of the EIP register.

1-40 Am486 Microprocessor Register Set

AMDH

1.39

ES Data Segment Register 16 bits
Bit(s) Bit Set Name Description
15-0 ES A segment register that holds the base address for one of the four data

segments of memory, available to the program currently executing.

Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

The processor organizes memory into segments as one of the possible ways to access
memory. There are six segments (tables within memory) accessed through the segment
registers. Each register stores the base address for its segment. There are four data seg-
ments that can contain data used by a program being executed. The segment selectors
(base addresses) for these segments are stored in the DS, ES, FS, and GS registers. The
processor fetches data from a data segment, using an offset into the segment. The data
segment register value changes as a result of interrupts, exceptions, and instructions that
transfer control between segments (see CALL, IRET, and JMP instructions).

Am486 Microprocessor Register Set 1-41

1.40 ESI Processor General Register — Stack Index 32 bits
Bit(s) Bit Set Name Description
310 ESI Processor 32-hit general register, also used as a 32-hit stack index

register.

Addressing
Specify by nhame as instruction operand.
Default Value
Undefined
Functional Description
One of the eight, 32-bit general processor registers used to hold 32-bit operands for logical
and arithmetic operations. String operations can use ESI as the source index register. The
value in ESI represents the offset into a memory space defined by one of the segment
registers. The default segment register is DS, but a segment override prefix allows a string
instruction to use CS, SS, ES, FS, or GS. When used by string instructions, ESI automat-
ically increments or decrements (based on the value of DF in the EFLAGS register — see
page 1-39). This feature allows sequential string operations to operate on a set of string
values without having to specify a new ESI value for each instruction.

1-42 Am486 Microprocessor Register Set

AMDH

1.41

ESP Processor General Register — Stack Pointer 32 bits
Bit(s) Bit Set Name Description
310 ESP Processor general 32-bit register; also used as the Stack Pointer
register.
Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

One of the eight, 32-bit general processor registers used to hold 32-bit operands for logical
and arithmetic operations. When used as the Stack Pointer, the register holds the offset
value that points to the current top-of-stack (TOS) location within the memory segment
specified by the Stack Segment (SS) register (see page 1-60). When a program PUSHes
a value onto the stack, the processor decrements the value in the ESP register, and then
writes the value to the new TOS specified by ESP. To POP a value, the processor copies
it from the current address specified by ESP and then increments the ESP value.

Am486 Microprocessor Register Set 1-43

b‘l AMD

1.42 FLAGS Flags Register 16 bits
Bit(s) Bit Set Name Description
15 N/A Reserved, always 0
14 NT 0 = Current task is not nested below another task.
1 = Current task is nested below another task.
13-12 I0PL 00 = Highest I/O access privilege level; typically operating system.
01 = Second highest 1/0 access privilege level; system services.
10 = Third highest I/O access privilege level; system services.
11 = Lowest I/O access privilege level; application software.
11 OF 0 = Arithmetic result within limits.
1 = Arithmetic result not in positive/negative range, Overflow Flag set.
10 DF 0 = Forward direction, addressing increments.
1 = Backward direction, addressing decrements, Direction Flag set.
9 IF 0 = Maskable interrupts disabled.
1 = Maskable interrupts enabled, Interrupt Flag set.
8 TF 0 = Normal operation.
1 = Trap Flag set, processor enters single-step mode for debugging;
each instruction generates a debug exception.
7 SF 0 = Arithmetic result is not negative (20); sign is +.
1 = Arithmetic result is negative (<0); Sign Flag set, sign is —.
6 ZF 0 = Arithmetic result is not zero.
1 = Arithmetic result is zero, Zero Flag set.
5 N/A Reserved, always 0
4 AF 0 = No BCD carry.
1 = BCD carry from bit position 3, Auxiliary Flag set.
3 N/A Reserved, always 0
2 PF 0 = Result Low byte has odd parity.
1 = Result Low byte has even parity, Parity Flag set.
1 N/A Reserved, always 1
0 CF 0 = No carry from MSB of result.
1 = Carry from MSB of result, Carry Flag set.
Addressing
Specify by bit/set names or by using the special flag instructions (BT, BTR, BTS, CLC, CLD,
LAHF, POPF, POPFD, PUSHF, PUSHFD, SAHF, STC, STD, STI) described in Chapter 2.
Default Value
00000002h
Functional Description
The 16-bit FLAGS register has system flags, status flags, and a control flag, described
above. FLAGS is the lower word of EFLAGS (see page 1-39).
1-44 Am486 Microprocessor Register Set

AMDH

1.43 FPUCR FPU Control Register 16 bits
Bit(s) Bit Set Name Description
15-13 N/A Reserved, undefined.
12 Infinity Control Not used.
11-10 Rounding Control (RC) 00 = Round to nearest or even value.
01 = Round down (toward — o0).
10 = Round up (toward +).
11 = Chop (truncate toward 0).
9-8 Precision Control (PC) 00 = 24 bits (single precision).
01 = Not used/reserved.
10 = 53 bits (double precision).
11 = 64 bhits (extended precision).
7-6 N/A Reserved, undefined.
5 Precision Exception 0 = Exception not masked.
Mask 1 = Exception masked.
4 Underflow Exception 0 = Exception not masked.
Mask 1 = Exception masked.
3 Overflow Exception 0 = Exception not masked.
Mask 1 = Exception masked.
2 Zero Divide Exception 0 = Exception not masked.
Mask 1 = Exception masked.
1 Denormalized 0 = Exception not masked.
Operand 1 = Exception masked.
Exception Mask
0 Invalid Operation 0 = Exception not masked.
Exception Mask 1 = Exception masked.
Addressing

Use the appropriate Instruction (FLDCW, FNSTCW, or FSTCW) to address the contents

of this register. See Chapter 2 for a description of these instructions.

Default Value

Undefined

Functional Description

The FPUCR stores the current FPU Control Word value. The Control Word allows config-
uration of Rounding and Precision Control values and masking of the six exception types
described above. No direct writing to or reading from this register is possible. Load a value
from memory using the FLDCW instruction to write to the register. Load a copy to memory

using the FNSTCW or FSTCW instruction to read the register contents.

Am486 Microprocessor Register Set

1-45

i"l AMD

1.44 FPUDP FPU Data Pointer 32 or 64 bits
Bit(s) Bit Set Name Description
32-bit Format in Protected Mode (64-bit field):
64-49 N/A Reserved
48-32 Operand Selector Stores the value loaded into the segment register to select the
data segment.
31-0 Data Operand Offset Stores the data offset value within the specified segment.
32-bit Format in Real or Virtual-8086 Mode (64-bit field):
64-61 N/A Reserved, always 0000
60-45 Operand Pointer Upper word of the operand address.
(bits 31-16)
44-32 N/A Reserved, always 0000 0000 0000
31-16 N/A Reserved, undefined.
150 Operand Pointer Lower word of the operand address.
(bits 15-0)
16-bit Format in Protected Mode (32-bit field):
31-16 Operand Selector Stores the value loaded into the segment register to select the
data segment.
15-0 Data Operand Offset Stores the data offset value within the specified segment.
16-bit Format in Real or Virtual-8086 Mode (32-bit field):
31-28 Operand Pointer Upper four bits of the operand address.
(bits 19-16)
27-16 N/A Reserved, always 0000 0000 0000
15-0 Operand Pointer Lower 16 bits of the operand address.
(bits 15-0)
Addressing
Direct addressing of the register contents is not possible. Use the instructions FLDENYV,
FNSAVE, FNSTENV, FRSTOR, FSAVE, and FSTENYV to write to or read from the register.
The save (FNSAVE, FSAVE) and store (FNSTENV and FSTENV) instructions write the
contents of all the FPU registers to memory. The FPU Data Pointer starts at offset 14h from
the base address in 32-bit format, or offset Ah from the base address in 16-bit format, within
the stored ENVironment data.
Default Value
Undefined
Functional Description
The data pointer stores the address of the last data operand that caused a floating-point
exception. The format of the pointer varies depending on the addressing format (32-bit or
16-bit) and mode (Protected or Real/Virtual), as described above.
1-46 Am486 Microprocessor Register Set

AMDH

1.45

FPUIP FPU Instruction Pointer 32 or 64 bits

Bit(s) Bit Set Name Description

32-bit Format in Protected Mode (64-bit field):

64-49 N/A Reserved

48-32 CS Selector Stores the value loaded into the code segment register .

31-0 IP Offset Stores the instruction pointer offset value.

32-bit Format in Real or Virtual-8086 Mode (64-bit field):

64-61 N/A Reserved, always 0000

60-45 Instruction Pointer Upper word of the instruction pointer address.
(bits 31-16)

44-32 N/A Reserved, always 0

43-32 Opcode Stores the 11-bit opcode value.

31-16 N/A Reserved, undefined.

15-0 Instruction Pointer Lower word of the instruction pointer address.
(bits 15-0)

16-bit Format in Protected Mode (32-bit field):

31-16 CS Selector Stores the value loaded into the code segment register.

15-0 IP Offset Stores the instruction pointer offset value.

16-bit Format in Real or Virtual-8086 Mode (32-bit field):

31-28 Instruction Pointer Upper four bits of the instruction pointer address.
(bits 19-16)
27 N/A Reserved, always 0
26-16 Opcode Stores the 11-bit opcode value.
15-0 Instruction Pointer Lower 16 bits of the instruction pointer address.
(bits 15-0)
Addressing

Direct addressing of the register contents is not possible. Use the instructions FLDENYV,
FNSAVE, FNSTENV, FRSTOR, FSAVE, and FSTENV to write to or read from the register.
The save (FNSAVE, FSAVE) and store (FNSTENV and FSTENV) instructions write the
contents of all the FPU registers to memory. The FPU Instruction Pointer starts at offset
Ch from the base address in 32-bit format, or offset 6h from the base address in 16-bit
format, within the stored ENVironment data.

Default Value
Undefined
Functional Description

The data pointer stores the address of the last instruction that caused a floating-point
exception. In Real or Virtual-8086 mode, the opcode field stores the opcode value for the
last non-control FPU instruction. The format of the pointer varies depending on the ad-
dressing format (32-bit or 16-bit) and mode (Protected or Real/Virtual), as described above.

Am486 Microprocessor Register Set 1-47

b‘l AMD

1.46

FPUSR

FPU Status Register 16 bits

Bit(s)
15

14

13-11

10

Bit Set Name
B

C3

TOP

Cc2

C1

Co

ES

SF

PE

UE

OE

ZE

DE

Description

0 = FPU not busy
1 =FPU busy

Condition flag C3, value varies depending on floating-point instruction
For compare and test instructions, 0 = result not zero
and 1 = result zero.
FXAM uses C3, C2, and CO to generate a result code (see FXAM).
For FPREM and FPREML, C3 is the least significant bit of the result.

000 = RO is top of stack.
001 = R1 is top of stack.
010 = R2 is top of stack.
011 = R3 is top of stack.
100 = R4 is top of stack.
101 = R5 is top of stack.
110 = R6 is top of stack.
111 = R7 is top of stack.

Condition flag C2, value varies depending on floating-point instruction.
For compare and test instructions:

0 = operand is comparable and 1 = operand is not comparable.
FXAM uses C3, C2, and CO to generate a result code (see FXAM).
For FPREM and FPREML.:

0 = reduction complete and 1 = reduction incomplete.

Condition flag C1, value varies depending on floating point instruction.
If the instruction generates an exception:
0 = underflow error and 1 = overflow error.
If there is no exception:
For FXAM, 0 = value is 20, sign is +; 1 = value is <0, sign is —.
For FPREM and FPREM1, C1 is the second least significant
result bit.
For arithmetic instructions:
0 = last rounding down and 1 = last rounding up.

Condition flag CO, value varies depending on floating point instruction.
For compare and test instructions:
0 =result did not generate carry and 1 = result generated carry.
FXAM uses C3, C2, and CO0 to generate a result code (see FXAM).
For FPREM and FPREM1, CO is the third least significant result bit.

0 = No exception generated.
1 = Exception generated.

0 = No exception generated.
1 = Stack fault exception generated.

0 = No exception generated.
1 = Precision exception generated.

0 = No exception generated.
1 = Underflow exception generated.

0 = No exception generated.
1 = Overflow exception generated.

0 = No exception generated.
1 = Divide by zero exception generated.

0 = No exception generated.
1 = Denormalized operand exception generated.

0 = No exception generated.
1 = Invalid operation exception generated.

1-48

Am486 Microprocessor Register Set

AMDH

Addressing

Use the appropriate instruction (FLDSW, FNSTSW, or FSTSW) to address the contents of
this register. See Chapter 2 for a description of these instructions.

Default Value
Undefined
Functional Description

The FPUSR stores the current FPU Status Word value. The Status Word allows monitoring
of the current status of the FPU. Direct addressing of the register contents is not possible.
Load a value from memory using the FLDSW instruction to write to the register. Read the
current value by loading a copy to memory using the FNSTSW or FSTSW instruction. The
interaction between the FPU instructions and the Status Word is discussed in detail in
Chapter 2 as part of the individual instruction descriptions.

Am486 Microprocessor Register Set 1-49

b‘l AMD

1.47 FPUTWR FPU Tag Word Register 16 bits
Bit(s) Bit Set Name Description
15-14 TAG(7) 00 = R7 contents valid.
01 = R7 contents are zero.
10 = R7 contents special: invalid (NaN or unsupported), infinity, or denormal
11 = R7 empty.
13-12 TAG(6) 00 = R6 contents valid.
01 = R6 contents are zero
10 = R6 contents special: invalid (NaN or unsupported), infinity, or denormal
11 = R6 empty.
11-10 TAG(5) 00 = R5 contents valid.
01 = R5 contents are zero.
10 = R5 contents special: invalid (NaN or unsupported), infinity, or denormal
11 = R5 empty.
9-8 TAG(4) 00 = R4 contents valid.
01 = R4 contents are zero.
10 = R4 contents special: invalid (NaN or unsupported), infinity, or denormal
11 = R4 empty.
7-6 TAG(3) 00 = R3 contents valid.
01 = R3 contents are zero.
10 = R3 contents special: invalid (NaN or unsupported), infinity, or denormal
11 = R3 empty.
5-4 TAG(2) 00 = R2 contents valid.
01 = R2 contents are zero.
10 = R2 contents special: invalid (NaN or unsupported), infinity, or denormal
11 = R2 empty.
3-2 TAG(1) 00 = R1 contents valid.
01 = R1 contents are zero.
10 = R1 contents special: invalid (NaN or unsupported), infinity, or denormal
11 = R1 empty.
1-0 TAG(0) 00 = RO contents valid.
01 = RO contents are zero.
10 = RO contents special: invalid (NaN or unsupported), infinity, or denormal
11 = RO empty.
Addressing
Direct addressing of the register contents is not possible. Use the instructions FLDENYV,
FNSAVE, FNSTENV, FRSTOR, FSAVE, and FSTENYV to write to or read from the register.
The save (FNSAVE, FSAVE) and store (FNSTENV and FSTENV) instructions write the
contents of all the FPU registers to memory. The FPU Tag Word starts at offset 8h from the
base address in 32-bit format, or offset 4h from the base address in 16-bit format, within
the stored ENVironment data.
Default Value
Undefined
Functional Description
The FPUTWR stores the Tag Word for the eight FPU data registers (RO—R7). The Tag Word
describes the current status for each of these register, as described above. Because the
FPU instructions refer to the registers indirectly through the stack register notation as ST(0)
through ST(7) and the actual associated registers change as the stack pointer changes,
use the value for TOP (bits 13-11 in the FPU Status Word — see page 1-48) to associate
the tag values with the relative stack registers.
1-50 Am486 Microprocessor Register Set

AMDH

1.48

FS Data Segment Register 16 bits
Bit(s) Bit Set Name Description
15-0 FS A segment register that holds the base address for one of the four data

segments of memory, available to the program currently executing.

Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

The processor organizes memory into segments as one of the possible ways to access
memory. There are six segments (tables within memory) accessed through the segment
registers. Each register stores the base address for its segment. There are four data seg-
ments that can contain data used by a program being executed. The segment selectors
(base addresses) for these segments are stored in the DS, ES, FS, and GS registers. The
processor fetches data from a data segment, using an offset into the segment. The data
segment register value changes as a result of interrupts, exceptions, and instructions that
transfer control between segments (see CALL, IRET, and JMP instructions).

Am486 Microprocessor Register Set 1-51

GDTR Global Descriptor Table Register 48 bits

Bit(s) Bit Set Name Description
47-16 GDT Base Address Stores the base address for the Global Descriptor Table location.

15-0 GDT Segment Limit Stores the limit for the Global Descriptor Table segment.

Addressing

Direct addressing of the register contents is not possible. Write to the register using the
LGDT instruction. Read the contents of the registerinto memory using the SGDT instruction.
Both instructions require the highest privilege level generally accorded only to operating
system software.

Default Value
Undefined; BIOS and operating system software define the contents of this register.
Functional Description

The register holds the 32-bitbase address and 16-bit segment limit for the Global Descriptor
Table (GDT). The referenced GDT contains the segment descriptors for the memory avail-
able to any general operation. The table can vary in size from a minimum of 8 bytes to a
maximum of 64K bytes. Each memory segment descriptor requires 8 bytes, so the GDT
can store as many as 8192 segment descriptors. The first 8 bytes of the GDT are, however,
reserved as the null descriptor to define a null pointer value. Load the null value into unused
segment registers to initialize them.

The GDT contains selectors for all of the defined Local Descriptor Tables (LDTs) but should
exclude segments defined for use by the system services (interrupts and traps). The system
services segments are included as part of the Interrupt Descriptor Table (IDT). A detailed
description of the descriptor tables is included as part of Appendix A.

1-52

Am486 Microprocessor Register Set

AMDH

1.50

GS Data Segment Register 16 bits
Bit(s) Bit Set Name Description
15-0 CS A segment register that holds the base address for one of the four data

segments of memory, available to the program currently executing.

Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

The processor organizes memory into segments as one of the possible ways to access
memory. There are six segments (tables within memory) accessed through the segment
registers. Each register stores the base address for its segment. There are four data seg-
ments that can contain data used by a program being executed. The segment selectors
(base addresses) for these segments are stored in the DS, ES, FS, and GS registers. The
processor fetches data from a data segment, using an offset into the segment. The data
segment register value changes as a result of interrupts, exceptions, and instructions that
transfer control between segments (see CALL, IRET, and JMP instructions).

Am486 Microprocessor Register Set 1-53

IDTR Interrupt Descriptor Table Register 48 bits

Bit(s) Bit Set Name Description

47-16 IDT Base Address Stores the base address for the Interrupt Descriptor Table location.

15-0 IDT Segment Limit Stores the limit for the Interrupt Descriptor Table segment.

Addressing

Direct addressing of the register contents is not possible. Write to the register using the
LIDT instruction. Read the contents of the register into memory using the SIDT instruction.
Both instructions require the highest privilege level generally accorded only to operating
system software.

Default Value
Undefined; BIOS and operating system software define the contents of this register.
Functional Description

The register holds the 32-bit base address and 16-bit segment limit for the Interrupt De-
scriptor Table (IDT). The referenced IDT contains the segment descriptors for the memory
available to system service (interrupt and trap) operations. The table can vary in size from
a minimum of 8 bytes to a maximum of 64K bytes. Each memory segment descriptor
requires 8 bytes, so the IDT can store as many as 8192 segment descriptors. To protect
them from use by other tasks, exclude the system services segments from the General
Descriptor Table (GDT). A detailed description of the descriptor table is included as part of
Appendix A.

1-54

Am486 Microprocessor Register Set

AMDH

1.52

| o Instruction Pointer 16 bits
Bit(s) Bit Set Name Description
15-0 IP Instruction Pointer, contains the 16-bit offset into the current code

segment for the next instruction.

Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

The IP register contains the 16-bit offset that points to the next instruction within the current
code segment, when operating using 16-bit addressing. The control-transfer instructions,
such as JUMP or RET, and interrupts and exceptions control the contents of this register
implicitly. The contents of this register advance from one instruction boundary to the next.
Because of instruction prefetching, its value is only an approximate indication of the bus

activity loading instructions into the processor. The IP register is the lower word of the EIP
register (see page 1-40).

Am486 Microprocessor Register Set 1-55

LDTR Local Descriptor Table Register 48 bits

Bit(s) Bit Set Name Description

47-16 LDT Base Address Stores the base address for the Local Descriptor Table location.

15-0 LDT Segment Limit Stores the limit for the Local Descriptor Table segment.

Addressing

Direct addressing of the register contents is not possible. Write to the register using the
LLDT instruction. Read the contents of the register into memory using the SLDT instruction.
Both instructions require the highest privilege level generally accorded only to operating
system software.

Default Value
Undefined; BIOS and operating system software define the contents of this register.
Functional Description

The register holds the 32-bit base address and 16-bit segment limit for the current Local

Descriptor Table (LDT) used by a referenced segment register (CS, DS, ES, FS, GS, or

SS). By using the segment registers, a task can access as many as six different memory
segments simultaneously. The referenced LDT contains the segment descriptors for the

memory available to a specific task. The table can vary in size from a minimum of 8 bytes
to a maximum of 64 Kbytes. Each memory segment descriptor requires 8 bytes, so each
LDT can store as many as 8192 segment descriptors.

The LDT should exclude segments defined for use by the system services (interrupts and
traps). The system services segments are included as part of the Interrupt Descriptor Table
(IDT). A detailed description of the descriptor table is included as part of Appendix A.

1-56

Am486 Microprocessor Register Set

AMDH

1.54

RO-R7 FPU Data Registers 0-7 80 bits each
Bit(s) Bit Set Name Description
79 Sign 0=+
1=—
78-64 Exponent Exponent value
63-0 Significand Significand value
Addressing

Address the registers through the stack address ST(n). ST(0) is the top of the FPU stack.
Bits 13—-11 in the FPU Status Word indicate which data register is at the top of the stack
(see page 1-48).

Default Value
00000000000000000000h
Functional Description

The FPU data registers store data for processing by the FPU. Numeric instructions address
the data registers relative to the register at the top of the FPU stack. At any point in time,

the register at the top of the stack (R0O-R?7) is indicated by the TOP field in the FPU status

word. Load or push operations decrement TOP by one and load a value into the new TOP

register. A store-and-pop operation stores the value from the current TOP register and then
increments TOP by 1. The FPU register stack, similar to stack operations in memory, grows
down toward lower-numbered registers. Some numeric operations allow operating on reg-
isters as an offset of the stack top.

Am486 Microprocessor Register Set 1-57

Sli Processor General Register — Stack Index 16 bits

Bit(s) Bit Set Name Description

15-0 Sl Processor general 16-bit register; also used as the Stack Index
register.

Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

One of the eight, 16-bit general processor registers used to hold 16-bit operands for logical
and arithmetic operations. String operations can use Sl as the source index register for 16-
bit addressing. The value in Sl represents the offset into a memory space defined by one
of the segment registers. The default segment register is DS, but a segment override prefix
allows a string instruction to use CS, SS, ES, FS, or GS. When used by string instructions,
S| automatically increments or decrements (based on the value of DF in the EFLAGS
register — see page 1-39). This feature allows sequential string operations to operate on
a set of string values without having to specify a new Sl value for each instruction.

1-58

Am486 Microprocessor Register Set

AMDH

1.56

SP Processor General Register — Stack Pointer 16 bits
Bit(s) Bit Set Name Description
15-0 SP Processor general 16-bit register, also used as Stack Pointer register

for 16-bit addressing modes.

Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

One of the eight, 16-bit general processor registers used to hold 16-bit operands for logical
and arithmetic operations. When used as the Stack Pointer in 16-bit addressing mode, the
register holds the offset value that points to the current top-of-stack (TOS) location within
the memory segment specified by the Stack Segment (SS) register (see page 1-60). When
a program PUSHes a value onto the stack, the processor decrements the value in the SP
register, and then writes the value to the new TOS specified by SP. To POP a value, the
processor copies it from the current address specified by SP and then increments the SP
value.

Am486 Microprocessor Register Set 1-59

SS Stack Segment Register 16 bits

Bit(s) Bit Set Name Description

15-0 SS Stack segment register holds the base address for the stack segment
in memory.

Addressing

Specify by nhame as instruction operand.
Default Value

Undefined

Functional Description

The processor organizes memory into segments as one of the possible ways to access
memory. There are six segments (tables within memory) accessed through the segment
registers. Each register stores the base address for its segment. The segment containing
the temporary user space for the program being executed is called the stack segment. Its
segment selector (base address) is stored in the SS register. The processor writes to and
fetches dynamically stored information from the stack segment, using the contents of the
SP register as a top-of-stack pointer and the Sl register as offset into the segment. The SS
register value changes as a result of interrupts, exceptions, and instructions that transfer
control between tasks (see CALL, IRET, and JMP instructions).

1-60

Am486 Microprocessor Register Set

AMDH

1.58

TR Task Register 16 bits
Bit(s) Bit Set Name Description
15-0 Selector The selector value used to access/index a TSS descriptor in the GDT.
Addressing

Access by using the load instruction LTR or the store instruction STR.

Default Value

Design dependent; loaded during system initialization and then modified by task switching.
Functional Description

The Task Register points to the current TSS. This register consists of a visible 16-bit selector
that points to the TSS descriptor in the GDT for the current task, and the invisible base
address and segment limit maintained by the TSS. The processor maintains the invisible
part of the TR to make execution more efficient by addressing the Task State Segment
directly through the register. The LTR instruction requires the highest privilege level

(CPL = 0) because changing the register must be restricted to initialization and operating
software task switches to prevent unpredictable results. The STR instruction has no privi-
lege restriction.

Am486 Microprocessor Register Set 1-61

TR3 Cache Test Data Register 32 bits

Bit(s) Bit Set Name Description

310 Data Data storage for internal cache testing.

Addressing

Specify by nhame as instruction operand.
Default Value

00000000h

Functional Description

TR3 is the cache test data register. This register contains a doubleword used to write to

the cache, or, a doubleword read from the cache read buffer. The fill and read buffers each
store four doublewords that pass through TR3 one at a time. Select a specific doubleword
in either buffer by using the 2-bit Entry Select field (bits 2 and 3) of TR5 (see page 1-64).

1-62

Am486 Microprocessor Register Set

AMDH

1.60 TR4 Cache Test Status Register 32 bits

Bit(s) Bit Set Name Description

31-11 TAG The address that becomes the tag on a cache write.

10 VALID 0 = Not valid.

1 = Valid bit on a cache lookup, this is a copy of one of the bits 6-3;
on a write it is a new bit.

9-7 LRU On a cache lookup, this is the three LRU bits of the accessed set; the
LRU bits in the cache are updated by the pseudo-LRU cache replace-
ment algorithm.

On a cache write, these bits are ignored.
6-3 VALID On a cache lookup, these are the four Valid bits of the accessed set.
2-0 N/A Reserved; always 000.

Addressing (I/O)

Specify by name as instruction operand.

Default Value

00000000h

Functional Description

TRA4 contains the Cache Test Status Register. This includes the Valid bits, LRU bits, and a

tag.

Am486 Microprocessor Register Set 1-63

1.61 TR5 Cache Test Control Register 32 bits
Bit(s) Bit Set Name Description
31-11 N/A Not used.
10-4 SET SELECT Selects one of the 128 available sets.
3-2 ENTRY SELECT During a cache read or write, selects one of four entries in the set

addressed by the Set Select; during cache-fill-buffer writes or read-
buffer reads, selects one of the four doublewords in a line.

1-0 CONTROL 00 = Write to cache fill buffer, or read from cache read buffer.
01 = Perform cache write.
10 = Perform cache read.
11 = Flush the cache (mark all entries as invalid).

Addressing

Specify by hame as instruction operand.
Default Value

00000000h

Functional Description

TR5 is the Cache Test Control Register. The register defines the section (set and entry) of
the cache to test and the operation to perform.

1-64 Am486 Microprocessor Register Set

AMDH

1.62 TR6 TLB Test Control Register 32 bits
Bit(s) Bit Set Name Description
31-12 Linear Address On a write, the TLB entry is allocated to this linear address.
On a TLB lookup, the TLB is interrogated with this value.
11 \% 0 = TLB not valid.

1 = TLB data valid.

00 = Undefined

01 = Match on lookup; clear D on write.
10 = Match on lookup; set D on write.
11 = Undefined

8—7 U, u 00 = Undefined
01 = Match on lookup; clear U on write.
10 = Match on lookup; set U on write.
11 = Undefined

6-5 w, W 00 = Undefined
01 = Match on lookup; clear W on write.
10 = Match on lookup; set W on write.
11 = Undefined

gl

10-9 D,

4-1 N/A Reserved, always 0000

0 C 0 = TLB write enabled.
1 =TLB lookup enabled.

Addressing

Specify by nhame as instruction operand.
Default Value

00000000h

Functional Description

The Am486 processor uses a translation lookaside buffer (TLB) to translate linear address
to physical address in the cache. The TLB contains the 20 high-order bits of a physical
address used as a base address for a memory page. The 12 low-order bits (the offset into
the page) are the same in both a linear and physical address. Corresponding to the block
of data entries is a block of valid, attribute, and tag entries. The entry consists of the 17
high-order bits of the linear address (31-15). The processor uses the middle-order bits
(14-12) to address eight sets and then checks the four tags of a selected set for a match
with the high-order bits. If a match is found among the tags of the selected set, the corre-
sponding valid bit is set to 1 and the linear address is translated by replacing its high-order
20 bits with the 20 bits of the corresponding data entry. Three LRU bits are included in each
set to track the use of data in each set. The LRU bits are checked when a new entry is
needed and none of the entries in the set is invalid; a pseudo-LRU replacement algorithm
modifies the LRU when required.

Testing of the TLB uses two registers, TR6 and TR7. TR6 is the Test Control Register. TR7
contains test data read from or written to the TLB.

Am486 Microprocessor Register Set 1-65

1.63 TR7 TLB Test Status Register 32 bits
Bit(s) Bit Set Name Description
31-12 Physical Address This is the data field of the TLB. On a write to the TLB, the Linear
Address in TR6 is set to this value. On a TLB Lookup, the physical
address is loaded from the TLB to this field.
11 PCD The page-level cache-disable (PCD) bit of a page table entry.
10 PWT The page-level write-through (PWT) bit of a page table entry.
9-7 LRU The LRU values before a TLB lookup. TLB lookups that result in hits
and TLB writes change the value of these bits.
6-5 N/A Reserved, always 00
4 PL 0 = On a write, the internal pointer of the paging unit selects the TLB
block to load.
On a TLB lookup, this value indicates a miss.
1 = On a write, the REP field selects which associative block of the
TLB to load.
On a TLB lookup, this value indicates a hit.
3-2 REP If TLB = 0, REP is undefined.
If TLB = 1, then,
For a TLB write, REP indicates which block to write.
For a TLB lookup, REP reports in which of the associative blocks, the
tag was found.
1-0 N/A Reserved, always 00
Addressing
Specify by nhame as instruction operand.
Default Value
00000000h
Functional Description
The Am486 processor uses a translation lookaside buffer (TLB) to translate linear address
to physical address in the cache. The TLB contains the 20 high-order bits of a physical
address used as a base address for a memory page. The 12 low-order bits (the offset into
the page) are the same in both a linear and physical address. Corresponding to the block
of data entries is a block of valid, attribute, and tag entries. The entry consists of the 17
high-order bits of the linear address (31-15). The processor uses the middle-order bits
(14-12) to address eight sets and then checks the four tags of a selected set for a match
with the high-order bits. If a match is found among the tags of the selected set, the corre-
sponding valid bit is set to 1 and the linear address is translated by replacing its high-order
20 bits with the 20 bits of the corresponding data entry. Three LRU bits are included in each
set to track the use of data in each set. The LRU bits are checked when a new entry is
needed and none of the entries in the set is invalid; a pseudo-LRU replacement algorithm
modifies the LRU when required.
Testing of the TLB uses two registers, TR6 and TR7. TR6 is the Test Control Register. TR7
contains test data read from or written to the TLB.
1-66 Am486 Microprocessor Register Set

P

2 Am486 MICROPROCESSOR INSTRUCTION SET

2.1

2.2

OVERVIEW

The Am486 microprocessor instruction set uses the same basic instructions as other 486-
based microprocessors. Pages 2-2 and 2-3 provide a roadmap to these instructions using
functional categories. For each instruction, the roadmap lists the page on which the detailed
instruction description appears. In the detailed description section that follows the instruc-
tion roadmap, the instructions appear in alphabetical order using the roadmap name.

DETAILED INSTRUCTION DESCRIPTIONS

Note: If you are unfamiliar with the instruction notation used in this chapter, refer to Appendix
A for a detailed explanation of instructions and their use in application programming.

Instruction descriptions begin on page 2-4, using the following format:

INSTRUCTION NAME/S General Description

Opcode Instruction Clocks Concurrent | Description
Execution*

nn xx XXX nn nn Function
Some FPU
instructions

Operation

Algorithmic description using a notation similar to Algol or Pascal language.
Description

Verbal description of code operation.

[FPU] Flags Affected

Description of changes made to system flags (or FPU flags CO, C1, C2, and C3).
Numeric Exceptions (floating-point operations only)

List of possible FPU exceptions.

Protected Mode Exceptions

Description of exceptions generated in Protected Mode.

Real Address Mode Exceptions

Description of exceptions generated in Real Address Mode.

Virtual 8086 Mode Exceptions

Description of exceptions generated in Virtual 8086 Mode.

*shaded column not included for all instructions.

Am486 Microprocessor Instruction Set 2-1

b‘l AMD

Instruction Roadmap

Binary Arithmetic Control Transfer Flag Control Protection Control
AAA 2-4 CALL 2-20 cLC 2-27 ARPL 2-11
AAD 2-5 IRET 2-136 CLD 2-28 LAR 2-177
AAM 2-6 IRETD 2-136 cul 2-29 LGDT 2-183
AAS 2-7 JA 2-140 CLTS 2-30 LIDT 2-185
ADC 2-8 JAE 2-141 cMmC 2-31 LLDT 2-186
ADD 2-9 JB 2-142 LAHF 2-176 LMSW 2-187
CMmP 2-32 JBE 2-143 POPF 2-214 LOCK 2-188
DAA 2-38 Jc 2-144 POPFD 2-214 LSL 2-192
DAS 2-39 JCXZ 2-145 PUSHF 2-219 LTR 2-194
DEC 2-40 JE 2-146 PUSHFD 2-219 SGDT 2-237
DIV 2-41 JECXZ 2-147 SAHF 2-230 SIDT 2-244
IDIV 2-124 JG 2-148 STC 2-247 SLDT 2-245
IMUL 2-125 JGE 2-149 STD 2-248 SMSW 2-246
INC 2-127 JL 2-150 ST 2-249 STR 2-252
MUL 2-202 JLE 2-151 VERR 2-255
NEG 2-203 IMP 2-152 . - VERW 2-255
SUB 2-253 INAE 2:157 AND 210 Process Control
INB 2-158
INBE 2-159 BSF 213
Block Structured i BSR 2-14 HLT 2-123
INC 2-160 BT 2-16 INVD 2134
Language e ol BIC 217 INVLPG 2-135
ENTER 942 INGE 2163 BTS g-lg WAIT 3-556
LEAVE 2-180 INL 5164 BT -1 WBINVD -257
NOT 2-205
INLE 2-165 OR 5500 _
Data Movement JNO 2-166 XOR 5261 Shift and Rotate
INP 2-167
INS 2-168 RCL 2-220
CBW 2-25
) INZ 2-169 Input/Output (I/0) RCR 2-221
CDQ 2-26
CWD 536 JO 2-170 ROL 2-228
CWDE 537 JpP 2-171 IN 2-126 ROR 2-229
MOV 2-195 JPE 2-172 ouT 2-207 SAL 2-231
POP 5210 JPO 2-173 SAR 2-232
Js 2-174 SHL 2-238
POPA 2-212
POPAD 5213 Jz 2-175 SHLD 2-239
PUSH 5.215 LOOP 2-191 SHR 2-241
LOOPE 2-191 SHRD 2-242
PUSHA 2-217
LOOPNE 2-191
PUSHAD 2-218
LOOPNZ 2-191
XCHG 2:259 LOOPZ 2-191
RET 5294 Miscellaneous
Data Pointer BSWAP 915
LDS 2.178 Interrupt Control CMPXCHG 2-35
LFS 5182 BOUND 2-12 NOP 2-204
LGS 5184 INT 2-130 TEST 2-254
LSS 5-193 INTO 2-130 XADD 2-258
XLAT 2-260
XLATB 2-260
2-2 Am486 Microprocessor Instruction Set

AMDH

Set Register

String Operations

Floating-Point Operations

SETA 2-236 CMPS 2-33 F2XM1 2-43 FLDPI 2-82
SETAE 2-236 CMPSB 2-33 FABS 2-44 FLDZ 2-83
SETB 2-236 CMPSD 2-33 FADD 2-45 FMUL 2-84
SETBE 2-236 CMPSW 2-33 FADDP 2-46 FMULP 2-85
SETC 2.236 INS 2.128 FBLD 2-47 FNCLEX 2-86
SETE 2-236 INSB 2-128 FBSTP 2-48 FNINIT 2-87
SETG 2-236 INSD 2-128 FCHS 2-49 ENOP 2-88
SETGE 2-236 INSW 2-128 FCLEX 2-50 FNSAVE 2-89
SETL 2-236 LODS 2-189 FCOM 2-51 ENSTCW 2-90
SETLE 2-236 LODSB 2-189 FCOMP 2-52 ENSTENV 2-91
SETNA 2-236 LODSD 2-189 FCOMPP 2-53 FNSTSW 2-92
SETNAE 2-236 LODSW 2-189 FCOS 2-54 FPATAN 2-93
SETNB 2-236 MOVS 2-198 FDECSTP 2-55 FPREM 2-94
SETNBE 2-236 MOVSB 2-198 FDIV 2-56 FPREM1 2-95
SETNC 2-236 MOVSD 2-198 FDIVP 2-57 FPTAN 2-96
SETNE 2-236 MOVSW 2-198 FDIVR 2-58 FRNDINT 2-97
SETNG 2-236 MOVSX 2-200 FDIVRP 2-59 FRSTOR 2-98
SETNGE 2-236 MOVZX 2-201 FFREE 2-60 FSAVE 2-99
SETNL 2.236 OUTS 2.208 FIADD 2-61 FSCALE 2-100
SETNLE 2-236 OUTSB 2-208 FICOM 262 FSIN 2-101
SETNO 2-236 OUTSD 2-208 FICOMP 2-63 FSINCOS 2-102
SETNP 2-236 ouTSW 2-208 FIDIV 2-64 FSQRT 2-103
SETNS 2-236 REP 2-222 FIDIVR 2-65 FST 2-104
SETNZ 2-236 REPE 2-222 FILD 2-66 FSTCW 2-105
SETO 2.236 REPNE 2.222 FIMUL 2-67 FSTENV 2-106
SETP 2.236 REPNZ 2.229 FINCSTP 2-68 FSTP 2-107
SETPE 2-236 REPZ 2-222 FINIT 2-69 FSTSW 2-108
SETPO 2-236 SCAS 2-234 FIST 2-70 FSUB 2-109
SETS 2-236 SCASB 2-234 FISTP 2-71 FSUBP 2-110
SETZ 2-236 SCASD 2-234 FISUB 2-72 FSUBR 2-111
SCASW 5.934 FISUBR 2-73 FSUBRP 2-112
STOS 5.950 FLD1 275 FTST 2-113
STOSB 5.950 FLD 2-74 FUCOM 2-114
STOSD 5.950 FLDCW 2-76 FUCOMP 2-115
STOSW 5.950 FLDENV 2-77 FUCOMPP 2-116
FLDL2E 278 FWAIT 2-117
FLDL2T 279 FXAM 2-118
FLDLG2 2-80 FXCH 2-119
FLDLN2 2-81 FXTRACT 2-120
FYL2X 2-121
FYL2XP1 2-122

Am486 Microprocessor Instruction Set 2-3

i"l AMD

2.3 AAA ASCII Adjusts AL after Addition
Opcode Instruction Clocks Description
37 AAA 3 ASCII adjusts after addition.
Operation
IF ((AL and OFh) > 9) OR (AF = 1)
THEN
AL < (AL + 6) and OFh;
AH _ AH + 1;
AF _ 1;
CF - 1;
ELSE
CF - 0;
AF _ O;
Fl
Description
Use the AAA instruction after an ADD instruction that leaves a byte resultin the AL register.
The lower nibbles of the operands of the ADD instruction should be in the range 0-9 (BCD
digits). The AAA instruction adjusts the AL register to contain the correct decimal digit result.
If the addition produced a decimal carry, AAA increments the AH register and sets the Carry
and Auxiliary-carry Flags (CF and AF). If there is no decimal carry, AAA clears CF and AF
and leaves the AH register unchanged. AAA sets the top nibble of the AL register to 0. To
convert the AL register to an ASCII result, use an OR AL, 30h instruction after the AAA
instruction.
Flags Affected
For a decimal carry, AAA sets AF and CF. AAA clears AF and CF when there is no carry.
OF, SF, ZF, and PF are not affected by this instruction.
Protected Mode Exceptions
None
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
2-4 Am486 Microprocessor Instruction Set

AMDH

2.4

AAD ASCII Adjusts AX before Division
Opcode Instruction Clocks Description

D5 0A AAD 14 ASCII adjusts AX before division.
Operation

AH _ AHMO + AL ; 10 is deci nal

AH_ 0

Description

AAD prepares two unpacked BCD digits (the least-significant digit in the AL register and

the most-significant digit in the AH register) for a division operation that yields an unpacked
result. The instruction sets the AL registerto AL + (10 U\H) and then clears the AH register.
The AX register then equals the binary equivalent of the original unpacked two digit number.

Flags Affected

The result determines the SF, ZF, and PF settings. This instruction does not affect OF, AF,
and CF.

Protected Mode Exceptions
None

Real Address Mode Exceptions
None

Virtual 8086 Mode Exceptions

None

Am486 Microprocessor Instruction Set 2-5

i"l AMD

2.5 AAM ASCII Adjusts AX after Multiply
Opcode Instruction Clocks Description
D4 0A AAM 15 ASCII adjusts AX after multiply.
Operation
AH _ AL / 10
AL _ AL MOD 10
Description
Use AAM only after executing the MUL instruction between two unpacked BCD operands
with the result in the AX register. Because the result is less than 100, it resides entirely in
the AL register. AAM unpacks the AL result by dividing AL by 10, leaving the quotient (most-
significant digit) in AH and the remainder (least-significant digit) in AL.
Flags Affected
The result determines the SF, ZF, and PF settings. This instruction does not affect OF, AF,
and CF.
Protected Mode Exceptions
None
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
2-6 Am486 Microprocessor Instruction Set

AMDH

2.6

AAS ASCII Adjusts AL after Subtraction

Opcode Instruction Clocks Description

3F AAS 3 ASCII adjusts AL after subtract.

Operation

IF ((AL and OFh) > 9) OR (AF = 1)
THEN
AL — AL -6;
AL ~ AL and OFh;
AH_ AH-1;
AF _ 1;
CF _ 1;
ELSE
CF _0;
AF _ 0;
FI

Description

Use AAS only after a SUB instruction that leaves the byte result in AL. The lower nibbles
of the SUB instruction must be in the range 0-9 (BCD). AAS adjusts AL so that it contains
the correct decimal result. If the subtraction produced a decimal carry, AAS decrements
AH and sets CF and AF. If there is no decimal carry, AAS clears CF and AF and leaves AH
unchanged. AAS sets the top nibble set in AL to 0. Use OR AL, 30h after AAS to convert
AL to an ASCII result.

Flags Affected

For a decimal carry, AAS sets AF and CF. AAS clears AF and CF when there is no carry.
OF, SF, ZF, and PF are not affected by this instruction.

Protected Mode Exceptions
None

Real Address Mode Exceptions
None

Virtual 8086 Mode Exceptions

None

Am486 Microprocessor Instruction Set 2-7

b‘l AMD

2.7 ADC Adds Integers with Carry
Opcode Instruction Clocks Description
14 ib ADC AL, imm8 1 Adds immediate byte to AL with carry.
15iw ADC AX, imm16 1 Adds immediate word to AX with carry.
15id ADC EAX, imm32 1 Adds immediate doubleword to EAX with carry.
80/2ib ADC r/m8, imm8 1/3 Adds immediate byte to r/m byte with carry.
81 /2 iw ADC r/m16, imm16 1/3 Adds immediate word to r/m word with carry.
81/2id ADC r/m32, imm32 1/3 Adds immediate doubleword to r/m doubleword with carry.
83/2ib ADC r/m16, imm8 1/3 Adds sign-extended immediate byte to r/m word with carryj
83/2ib ADC r/m32, imm8 1/3 Adds sign-extended immediate byte into r/m doubleword
with carry.
10 /r ADC r/m8, r8 1/3 Adds byte register to r/m byte with carry.
11 /r ADC r/m16, r16 1/3 Adds word register to r/m word with carry.
11 ADC r/m32, r32 1/3 Adds doubleword register to r/m doubleword with carry.
12 /r ADC r8, r/m8 1/2 Adds r/m byte to byte register with carry.
13/r ADC r16, r/m16 1/2 Adds r/m word to word register with carry.
13/r ADC r32, r/m32 1/2 Adds r/m doubleword to doubleword register with carry.
Operation
DEST . DEST + SRC + CF
Description
ADC performs an integer addition of the two operands DEST and SRC and sets the Carry
Flag (CF) as required. ADC assigns the result to DEST and sets the flags accordingly. ADC
is typically part of a multibyte or multiword addition operation. ADC sign-extends immediate
byte values to the appropriate size before adding to a word or doubleword operand.
Flags Affected
The result determines the OF, SF, ZF, CF, and PF settings.
Protected Mode Exceptions
General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.
2-8 Am486 Microprocessor Instruction Set

AMDH

2.8

ADD Adds Integers
Opcode Instruction Clocks Description
04 ib ADD AL, imm8 1 Adds immediate byte to AL.
05 iw ADD AX, imm16 1 Adds immediate word to AX.
05 id ADD EAX, imm32 1 Adds immediate doubleword to EAX.
80/0ib ADD r/m8, imm8 1/3 Adds immediate byte to r/m byte.
81/0iw ADD r/m16, imm16 1/3 Adds immediate word to r/m word.
81/0id ADD r/m32, imm32 1/3 Adds immediate doubleword to r/m doubleword.
83/01ib ADD r/m16, imm8 1/3 Adds sign-extended immediate byte to r/m word.
83/01ib ADD r/m32, imm8 1/3 Adds sign-extended immediate byte into r/m doubleword.
00 /r ADD r/m8, r8 1/3 Adds byte register to r/m byte.
01/r ADD r/m16, r16 1/3 Adds word register to r/m word.
01/r ADD r/m32, r32 1/3 Adds doubleword register to r/m doubleword.
02 /r ADD r8, r/m8 1/2 Adds r/m byte to byte register.
03 /r ADD r16, r/m16 1/2 Adds r/m word to word register.
03 /r ADD r32, r/m32 1/2 Adds r/m doubleword to doubleword register.
Operation

DEST .~ DEST + SRC
Description

ADD performs an integer addition of the two operands DEST and SRC. ADD assigns the
result to DEST and sets the flags accordingly. ADC sign-extends immediate byte values to
the appropriate size before adding to a word or doubleword operand.

Flags Affected
The result determines the OF, SF, ZF, CF, and PF settings.
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-9

b‘l AMD

2.9 AND Logical AND Function
Opcode Instruction Clocks Description
24 ib AND AL, imm8 1 ANDs immediate byte to AL.
25 iw AND AX, imm16 1 ANDs immediate word to AX.
25id AND EAX, imm32 1 ANDs immediate doubleword to EAX.
80/41ib AND r/m8, imm8 1/3 ANDs immediate byte to r/m byte.
81 /4 iw AND r/m16, imm16 1/3 ANDs immediate word to r/m word.
81/4id AND r/m32, imm32 1/3 ANDs immediate doubleword to r/m doubleword.
83/4ib AND r/m16, imm8 1/3 ANDs sign-extended immediate bye to r/m word.
83/41ib AND r/m32, imm8 1/3 ANDs sign-extended immediate byte into r/m
doubleword.
20 /r AND r/m8, r8 1/3 ANDs byte register to r/m byte.
21/r AND r/m16, r16 1/3 ANDs word register to r/m word.
21 /r AND r/m32, r32 1/3 ANDs doubleword register to r/m doubleword.
22 Ir AND r8, r/m8 1/2 ANDs r/m byte to byte register.
231Ir AND r16, r/m16 1/2 ANDs r/m word to word register.
231/r AND r32, r/m32 1/2 ANDs r/m doubleword to doubleword register.
Operation
DEST . DEST AND SRC
CF 0
oF 0
Description
AND computes the logical AND of the two operands. If corresponding bits of the operands
are 1, the resulting bit is 1. If the bits are not the same or are both 0, the resultis 0. The
answer replaces the first operand.
Flags Affected
AND clears CF and OF. The result determines the ZF, CF, and PF settings.
Protected Mode Exceptions
General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.
2-10 Am486 Microprocessor Instruction Set

AMDH

2.10

ARPL Adjusts RPL Field of Selector
Opcode Instruction Clocks Description
63 /r ARPL r/m16, r16 9/9 Adjusts RPL of r/m16 to no less than the RPL of r16.
Operation
IF RPL bits(0,1) of DEST < RPL bits(0,1) of SRC
THEN

ZF ~ 1;

RPL bits(0,1) of DEST —~ RPL bits(0,1) of SRC
ELSE

ZF _ 0;
FI
Description

ARPL has two operands. The first (/m16) is a 16-bit memory variable or word register that
contains the selector value. The second (r16) is a word register. If the RPL field (“requested
privilege level” — bits 0 and 1) of the first operand is less than the RPL field of the second
operand, ARPL sets ZF and increases the RPL field of the first operand to equal the RPL
field of the second operand. If the first operand RPL field is equal to or greater than the
second operand RPL field, ARPL clears ZF and does not change the first operand.

Typically, ARPL appears in operating system software and not application programs. Its
use guarantees that a selector parameter to a subroutine does notrequest a higher privilege
level than allowed to the caller. The second operand used by ARPL is normally a register
that contains the CS selector value of the caller.

Flags Affected

ARPL sets ZF to 1 if the first operand RPL field is less than the second operand RPL field.
ARPL resets the ZF to O if the first operand RPL field is greater than or equal to the second
operand RPL field.

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
or there is an illegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions
Invalid Opcode (6); Real Address Mode does not recognize ARPL.
Virtual 8086 Mode Exceptions

Invalid Opcode (6); Virtual 8086 Mode does not recognize ARPL. Page Fault (14) indicates
a page fault. If CPL is 3, Alignment Check (17) indicates there is an unaligned memory
reference.

Am486 Microprocessor Instruction Set 2-11

b‘l AMD

2.11

BOUND Checks Array Index Against Bounds

Opcode Instruction Clocks Description

62 /r BOUND r16,m16&16 7 Checks to see if r16 is within bounds (passes test).
62 /r BOUND r32,m32&32 7 Checks to see if r32 is within bounds (passes test).

Operation

IF (Left SRC < [Right SRC] OR LeftSRC > [Ri ght SRC + Qper andSi ze/ 8])
THEN BOUND Range Exceeded Exception;
Fl

Description

BOUND ensures that a signed array index is within the limits specified by a block of memory
between an upper and lower bound. The register size determines whether the operation
uses words or doublewords. The first operand (from the specified register) must be greater
than or equal to the lower bound value, but not greater than the upper bound. The lower
bound value is stored at the address specified by the second operand. The upper bound
value is stored at a consecutive higher memory address (+2 for word operations; +4 for
doubleword operations). If the first operand is out of the specified bounds, BOUND returns
an Interrupt 15. The return EIP points to the BOUND instruction.

Flags Affected
None
Protected Mode Exceptions

If the test fails, BOUND generates a BOUND Range Exceeded (5) exception. General
Protection Fault (13) indicates an illegal memory-operand effective address in the code or
data segments. Stack Fault (12) indicates an illegal SS segment address. Page Fault (14)
indicates a page fault. If CPL is 3, Alignment Check (17) indicates there is an unaligned
memory reference. Invalid Opcode (6) occurs if BOUND uses a register as the second
operand.

Real Address Mode Exceptions

BOUND Range Exceeded (5) indicates the test failed. Invalid Opcode (6) indicates the
second operand is aregister. General Protection Fault (13) indicates that part of the operand
lies outside the effective address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

BOUND Range Exceeded (5) indicates the test failed. Invalid Opcode (6) indicates the
second operand is aregister. General Protection Fault (13) indicates that part of the operand
lies outside the effective address space: 0 to OFFFFh. Page Fault (14) indicates a page
fault. If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

2-12

Am486 Microprocessor Instruction Set

AMDH

2.12

BSF Bit Scan Forward

Opcode Instruction Clocks Description

OF BC BSF r16, r/m16 6—-42/7-43 Performs a forward bit scan on r/m word.
OF BC BSF r32, r/m32 6—-42/7-43 Performs a forward bit scan on r/m doubleword.

Operation

IFrim=20
THEN
ZF ~ 1;
regi ster « UNDEFI NED;
ELSE
tenp ~ O;
ZF 0O;
VH LE BIT[r/m tenp = 0];
DG,
tenp ~ tenp + 1;
register . tenp;
oo,
FI

Description

BSF scans the bits in the second word or doubleword operand starting with bit 0. If all the
bits are 0, BSF sets ZF. If any bitis not 0, BSF clears ZF and loads the destination register
with the bit index of the first set bit.

Flags Affected
ZF is set if all bits are 0. If any bitis 1, BSF clears ZF.
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-13

b‘l AMD

2.13 BSR Bit Scan Reverse
Opcode Instruction Clocks Description
OF BD BSR r16, r/m16 6-103/7-104 Performs a reverse bit scan on r/m word.
OF BD BSR r32, r/m32 6-103/7-104 Performs a reverse bit scan on r/m doubleword.
Operation
IFr/m=20
THEN
F « 1;
regi ster — UNDEFI NED;
ELSE
tenp . OperandSize -1;
ZF _ 0;
WHILE BIT[r/m, temp = 0];
DO;
temp temp+1;
register ~ temp;
OD;
Fl
Description
BSR scans the bits in the second word or doubleword operand from the most-significant
bit to the least-significant bit. If all the bits are 0, BSR sets ZF. If any bitis not 0, BSR clears
ZF and loads the destination register with the bitindex of the first set bit found when scanning
in the reverse direction.
Flags Affected
ZF is set if all bits are 0. If any bit is 1, BSR clears ZF.
Protected Mode Exceptions
General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.
2-14 Am486 Microprocessor Instruction Set

ANW)::'

2.14

BSWAP Byte Swap

Opcode Instruction Clocks Description

OF C8Ir BSWAP r32 1 Swaps bytes to convert little/big endian data in a
32-bit register to big/little endian form.

Operation

TEMP _r32

r32(7..0) . TEMP(31..24)
r32(15..8) . TEMP(23..16)
r32(23..16) . TEMP(15..8)
r32(31..24) . TEMP(7..0)

Description

BSWAP reverses the byte order of a 32-bit register, converting a value in little/big endian
form to big/little endian form. Applying BSWAP to a 16-bit operand leaves an undefined
result in the destination register.

Flags Affected

None

Protected Mode Exceptions
None

Real Address Mode Exceptions
None

Virtual 8086 Mode Exceptions
None

Note: The BSWAP instruction is not available on 386DX or SX microprocessors. If you are
writing code that must be compatible with these systems, you must use 386 functionally-
equivalent code to perform this operation.

Am486 Microprocessor Instruction Set 2-15

b‘l AMD

2.15 BT Bit Test

Opcode Instruction Clocks Description

OF A3 BT r/m16, r16 3/8 Saves bit in Carry Flag.

OF A3 BT r/m32, r32 3/8 Saves bit in Carry Flag.

OF BA /4 /ib BT r/m16, imm8 3/8 Saves bit in Carry Flag.

OF BA/4/ib BT r/m32, imm8 3/8 Saves bit in Carry Flag.

Operation
CF . BIT[Left SRC, Ri ght SRC]

Description

BT saves the value of the bit indicated by the base (first operand) and the bit offset (second
operand) into CF.

Flags Affected

CF contains the value of the selected bit.

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.
Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Note: You can indicate the bit index by using a general register value or an immediate
8-bit constant. The operand is taken modulo 32, so the range of immediate bit offsets is
0-31. This allows you to select any bit in a word or doubleword register. For memory bit
strings, you can support longer fields by using the immediate bit offset field in combination
with the memory-operand displacement field. The Low order 3 to 5 bits of the immediate
bit offset are stored in the immediate bit offset field, and the High order 27 to 29 bits are
shifted and combined with the byte displacement in the addressing mode. When accessing
a bit in memory, you can make the processor access two (16-bit operand) or four (32-bit
operand) bytes from the starting address using:

Effective Address + ([2 or 4] 0O (BitOffset DIV [16 or 32]))
You may use this form even if the processor only needs to access one byte to reach the
given bit. When using this form, avoid referencing areas close to address space holes, and
in particular, avoid references to memory-mapped I/O registers. Use MOV instructions to
load from or store to these addresses, and use the register form of these instructions to
manipulate the data.
2-16 Am486 Microprocessor Instruction Set

AMDH

2.16

BTC Bit Test and Complement

Opcode Instruction Clocks Description

OF BB BTC r/m16, r16 6/13 Saves bit in Carry Flag and complement.
OF BB BTC r/m32, r32 6/13 Saves hit in Carry Flag and complement.
OF BA/7ib BTC r/m16, imm8 6/8 Saves bit in Carry Flag and complement.
OF BA/7ib BTC r/m32, imm8 6/8 Saves bit in Carry Flag and complement.
Operation

CF _ BIT[Left SRC, Ri ght SRC]
Bl T[Lef t SRC, Ri ght SRC] — NOT BI T[Left SRC, Ri ght SRC]|

Description

BTC saves the value of the bitindicated by the base (first operand) and the bit offset (second
operand) into CF and complements the bit.

Flags Affected
CF contains the value of the selected bit.
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Note: You can indicate the bit index by using a general register value or an immediate
8-bit constant. The operand is taken modulo 32, so the range of immediate bit offsets is
0-31. This allows you to select any bit in a word or doubleword register. For memory bit
strings, you can support longer fields by using the immediate bit offset field in combination
with the memory-operand displacement field. The Low order 3 to 5 bits of the immediate
bit offset are stored in the immediate bit offset field, and the High order 27 to 29 bits are
shifted and combined with the byte displacement in the addressing mode. When accessing
a bit in memory, you can make the processor access two (16-bit operand) or four (32-bit
operand) bytes from the starting address using:

Effective Address + ([2 or 4] 0O (BitOffset DIV [16 or 32]))

You may use this form even if the processor only needs to access one byte to reach the
given bit. When using this form, avoid referencing areas close to address space holes, and
in particular, avoid references to memory-mapped I/O registers. Use MOV instructions to
load from or store to these addresses, and use the register form of these instructions to
manipulate the data.

Am486 Microprocessor Instruction Set 2-17

b‘l AMD

2.17

BTR Bit Test And Reset

Opcode Instruction Clocks Description

OF B3 BTR r/m16, r16 6/13 Saves bhit in Carry Flag and reset.
OF B3 BTR r/m32, r32 6/13 Saves bhit in Carry Flag and reset.
OFBA/6ib BTR r/mi16, imm8 6/8 Saves bit in Carry Flag and reset.

OFBA/6ib BTR r/m32,imm8 6/8 Saves bit in Carry Flag and reset.

Operation

CF._ BIT[Lef t SRC, Ri ght SRC|
Bl T[Left SRC, Ri ghtSRC] - 0

Description

BTR saves the value of the bitindicated by the base (first operand) and the bit offset (second
operand) into CF and resets the bit to 0.

Flags Affected
CF contains the value of the selected bit.
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Note: You can indicate the bit index by using a general register value or an immediate
8-bit constant. The operand is taken modulo 32, so the range of immediate bit offsets is
0-31. This allows you to select any bit in a word or doubleword register. For memory bit
strings, you can support longer fields by using the immediate bit offset field in combination
with the memory-operand displacement field. The Low order 3 to 5 bits of the immediate
bit offset are stored in the immediate bit offset field, and the High order 27 to 29 bits are
shifted and combined with the byte displacement in the addressing mode. When accessing
a bit in memory, you can make the processor access two (16-bit operand) or four (32-bit
operand) bytes from the starting address using:

Effective Address + ([2 or 4] 0O (BitOffset DIV [16 or 32]))

You may use this form even if the processor only needs to access one byte to reach the
given bit. When using this form, avoid referencing areas close to address space holes, and
in particular, avoid references to memory-mapped I/O registers. Use MOV instructions to
load from or store to these addresses, and use the register form of these instructions to
manipulate the data.

2-18

Am486 Microprocessor Instruction Set

AMDH

2.18

BTS Bit Test And Set

Opcode Instruction Clocks Description

OF AB BTS r/m16, r16 6/13 Saves hit in Carry Flag and setsitto a 1.
OF AB BTS r/m32, r32 6/13 Saves hit in Carry Flag and setsitto a 1.
OFBA/5ib BTS r/m16, imm8 6/8 Saves bit in Carry Flag and setsitto a 1.
OFBA/5ib BTS r/m32, imm8 6/8 Saves bit in Carry Flag and setsitto a 1.
Operation

CF _ BIT[Left SRC, Ri ght SRC]
Bl T[Lef t SRC, Ri ghtSRC] ~ 1

Description

BTS saves the value of the bitindicated by the base (first operand) and the bit offset (second
operand) into CF and sets the bitto 1.

Flags Affected
CF contains the value of the selected bit.
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Note: You can indicate the bit index by using a general register value or an immediate 8-
bit constant. The operand is taken modulo 32, so the range of inmediate bit offsets is
0-31. This allows you to select any bit in a word or doubleword register. For memory bit
strings, you can support longer fields by using the immediate bit offset field in combination
with the memory-operand displacement field. The Low order 3 to 5 bits of the immediate
bit offset are stored in the immediate bit offset field, and the High order 27 to 29 bits are
shifted and combined with the byte displacement in the addressing mode. When accessing
a bit in memory, you can make the processor access two (16-bit operand) or four (32-bit
operand) bytes from the starting address using:

Effective Address + ([2 or 4] 0O (BitOffset DIV [16 or 32]))

You may use this form even if the processor only needs to access one byte to reach the
given bit. When using this form, avoid referencing areas close to address space holes, and
in particular, avoid references to memory-mapped I/O registers. Use MOV instructions to
load from or store to these addresses, and use the register form of these instructions to
manipulate the data.

Am486 Microprocessor Instruction Set 2-19

b‘l AMD

2.19 CALL Calls Procedure
Opcode Instruction Clocks Description
E8 cw CALL rell6 3 Calls near, displacement relative to next instruction.
FF /2 CALL r/m16 5/5 Calls near, register indirect/memory indirect.
9A cd CALL ptr16:16 18, pm =20 Calls far to full pointer given.
9A cd CALL ptr16:16 pm =35 Calls gate, same privilege.
9A cd CALL ptrl16:16 pm = 69 Calls gate, more privilege, no parameters.
9A cd CALL ptrl6:16 pm = 77+4x Calls gate, more privilege, x parameters.
9Acd CALL ptr16:16 pm = 37+ts* Calls to task.
FF /3 CALL m16:16 17,pm =20 Calls far to address at r/m word.
FF /3 CALL m16:16 pm =35 Calls gate, same privilege.
FF /3 CALL m16:16 pm =69 Calls gate, more privilege, no parameters.
FF /3 CALL m16:16 pm = 77+4x Calls gate, more privilege, x parameters.
FF/3 CALL m16:16 pm = 37+ts* Calls to task.
E8 cd CALL rel32 3 Calls near, displacement relative to next instruction.
FF /2 CALL r/m32 5/5 Calls near, register indirect/memory indirect.
9A cp CALL ptr16:32 18, pm =20 Calls far to full pointer given.
9A cp CALL ptr16:32 pm =35 Calls gate, same privilege.
9A cp CALL ptr16:32 pm =69 Calls gate, more privilege, no parameters.
9A cp CALL ptr16:32 pm = 77+4x Calls gate, more privilege, x parameters.
9A cp CALL ptrl16:32 pm = 37+ts* Calls to task.
FF /3 CALL m16:32 17,pm = 20 Calls far to address at r/m doubleword.
FF /3 CALL m16:32 pm =35 Calls gate, same privilege.
FF /3 CALL m16:32 pm =69 Calls gate, more privilege, no parameters.
FF /3 CALL m16:32 pm = 77+4x Calls gate, more privilege, x parameters.
FF /3 CALL m16:32 pm = 37+ts* Calls to task.
*ts = 199 for 486TSS, 180 for 286TSS, or 177 for VM TSS.

Operation

IF rel16 or rel 32 type of call
THEN (* near relative call *)

| F OperandSi ze =
THEN
Push(IP);

EIP « (EIP + rel 16) AND OOOOFFFFh;

ELSE (* OperandSi ze

Push(El P);

EIP _EIP + rel 32; FI;

= 32 *)

IF r/ml6 or r/nB2 type of call
THEN (* near absolute call *)

Oper andSi ze = 16
THEN
Push(IP);

EIP — [r/nml6] AND 0000FFFFh;
ELSE (* OperandSi ze

Push(El P)

EIP _[r/nm2];Fl;

= 32 *)

Fl ;

Fl;

IF(PE=0OR(PE=1and VW= 1) [* real or Virtual 8086 Nbde *]
AND operand type = [ml6: 16, ml6: 32, ptrl1l6:16, or ptrl16:32]

THEN
| F OperandSi ze =
THEN
Push(CS);
Push(I P)
ELSE
Push(CS);

2-20 Am486 Microprocessor Instruction Set

AMDH

Push(El P)
Fl;
| F operand type is nil6:16 or ml6: 32
THEN (* indirect far call *)
| F OperandSi ze = 16
THEN
CS: 1P _ [nl6:16];
ElIP _ EI P AND O000FFFFh; (* clear upper 16 bits *)
ELSE (* OperandSize = 32 *);
CS: IP [m6:32]; FI
| F operand type is ptrl1l6:16 or ptrl6: 32
THEN (* direct far call *)
| F OperandSi ze = 16
THEN
CS: 1P _ ptri6: 16;
EIP . EI P AND O000FFFFh; (* clear upper 16 bits *)
ELSE (* OperandSize = 32 *);
CSIP _ ptr16:32; Fl; FI

IF (PE =1 AND VM = 0)(* Protected Mode, not V86 Mode *)
AND instruction = far CALL
THEN
If indirect, then check access of EA doubl eword;
General Protection Fault if limt violation;
New CS sel ector nust not be null else General Protection Fault;
Check that new CS selector index is within its descriptor linits;
el se General Protection Fault(new CS selector);
Exani ne AR byte of selected descriptor for various |egal val ues;
dependi ng on val ue:
go t o CONFORM NG- CODE- SEGVENT;
go t o NONCONFORM NG- CODE- SEGVENT
go to CALL- GATE;
go to TASK- GATE;
go to TASK- GATE- SEGVENT
ELSE General Protection Fault(code segnent selector); FI

CONFORM NG- CODE- SEGVENT
DPL nust be < CPL ELSE General Protection Fault(code segnent sel ector);
Segnent nust be present
ELSE Segnent Not Present Exception(code segnent selector);
Stack nust be big enough for return address ELSE Stack Fault (12);
I nstruction pointer nmust be in code segment limt
ELSE Ceneral Protection Fault;
Load code segnent descriptor into CS register
Load CS with new code segnent sel ector
Load EIP with zero-extend(new of fset);
| F OperandSi ze = 16 THEN EIP —~ EI P AND O000FFFFh; FI

NONCONFORM NG- CODE- SEGVENT
RPL nmust be <CPL ELSE General Protection Fault(code segnment sel ector)
DPL nust be = CPL ELSE General Protection Fault(code segnent sel ector)
Segnent nust be present
ELSE Segnent Not Present Exception (code segnment sel ector)
Stack rmust be big enough for return address ELSE Stack Fault(0)
I nstruction pointer nmust be in code segnent limt
ELSE Ceneral Protection Fault
Load code segnent descriptor into CS register
Load CS with new code segnment sel ector
Set RPL of CS to CPL

Am486 Microprocessor Instruction Set 2-21

b‘l AMD

Load EIP with zero-extend (new of fset);
| F OperandSize = 16 THEN EIP ~ EIP AND 0000FFFFh; FI;

CALL- GATE
Call gate DPL nmust be = CPL
ELSE General Protection Fault(call gate sel ector)
Call gate DPL nust be = RPL
ELSE CGeneral Protection Fault(call gate sel ector)
Call gate must be present
ELSE Segnent Not Present (11)(call gate sel ector)
Exani ne code segnent selector in call gate descriptor:
Sel ector must not be null ELSE General Protection Fault
Sel ector nust be within its descriptor table limts
ELSE General Protection Fault(code segnent selector)
AR byte of selected descriptor nust indicate code
segnent ELSE General Protection Fault(code segnent sel ector)
DPL of sel ected descriptor nust be < CPL
ELSE General Protection Fault(code segnent sel ector)
| F non-conform ng code segnent AND DPL < CPL
THEN go to MORE- PRI VI LEGE
ELSE go to SAME-PRI VI LEGE; FI;

MORE- PRI VI LEGE:
Get new SS selector for new privilege |evel fromTSS
Check sel ector and descriptor for new SS:
Sel ector must not be null ELSE Invalid TSS Exception(0)
Sel ector index nust be within its descriptor
table limts ELSE Invalid TSS Exception(SS sel ector)
Selector’s RPL nust equal DPL of code segment
ELSE I nvalid TSS Exception(SS sel ector)
Stack segnent DPL nust equal DPL of code
segnent ELSE Invalid TSS Exception(SS sel ector)
Descriptor nust indicate witable data segnment
ELSE I nvalid TSS Exception(SS sel ector)
Segnent present ELSE Stack Faul t (SS sel ector)
| F OperandSi ze = 32
THEN
New stack nust have room for paraneters plus 16 bytes
ELSE I nvalid TSS Exception(SS sel ector)
ElI P nust be in code segnent limt ELSE General Protection Fault
Load new SS: eSP val ue from TSS
Load new CS: EIP value fromgate
ELSE
New stack nust have room for paraneters plus 8 bytes
ELSE Stack Fault (12)(SS sel ector)
I P must be in code segnent linmt ELSE General Protection Fault
Load new SS: eSP val ue from TSS
Load new CS:. | P value fromgate; Fl;
Load CS descriptor
Load SS descri ptor
Push | ong pointer of old stack onto new stack
Get word count fromcall gate, nask to 5 bits
Copy paraneters fromold stack onto new stack
Push return address onto new stack
Set CPL to stack segnent DPL
Set RPL of CS to CPL

SAME- PRI VI LEGE:
| F OperandSi ze = 32

2-22 Am486 Microprocessor Instruction Set

ANW)::'

THEN

Stack must have roomfor 6-byte return address (padded to 8 bytes)
ELSE Stack Fault

El P must be within code segment limt ELSE General Protection Fault
Load CS:EIP fromgate

ELSE
Stack nmust have roomfor 4-byte return address ELSE Stack Fault
| P must be within code segnent linit ELSE General Protection Fault
Load CS:IP fromgate

Fl ;
Push return address onto stack
Load code segnent descriptor into CS register
Set RPL of CS to CPL
TASK- GATE

Task gate DPL rmust be > CPL ELSE Invalid TSS Exception(gate sel ector)
Task gate DPL nust be = RPL ELSE Invalid TSS Exception(gate sel ector)
Task Gate nust be present
ELSE Segnent Not Present Exception(gate sel ector)
Exani ne selector to TSS, given in Task Gate descriptor:
Must specify global in the local/global bit
ELSE Invalid TSS Exception (TSS sel ector)
I ndex nmust be within GDT linits
ELSE Invalid TSS Exception (TSS sel ector)
TSS descriptor AR byte must specify nonbusy TSS
ELSE Invalid TSS Exception(TSS sel ector)
Task State Segnent nust be present
ELSE Segnent Not Present (11)(TSS sel ector)
SW TCH TASKS (with nesting) to TSS
| P nust be in code segnent limt ELSE Invalid TSS Exception(0)

2
2

TO TASK- STATE- SEGVENT
TSS DPL nmust be = CPL ELSE Invalid TSS Exception(TSS sel ector)
TSS DPL nmust be = RPL ELSE Invalid TSS Exception(TSS sel ector)
TSS descriptor AR byte nust specify avail able TSS
ELSE Invalid TSS Exception(TSS sel ector)
Task State Segnent mnust be present
ELSE Segnent Not Present (11)(TSS sel ector)
SW TCH TASKS (with nesting) to TSS
| P nust be in code segnent |imt ELSE Invalid TSS Exception(0)

Description

CALL exits the current instruction sequence and executes the procedure named in the
operand. A return at the end of the CALLed procedure exits the procedure and starts
execution at the instruction following the CALL instruction.

A CALL with a destination of r/m16, r/m32, rell16, or rel32 is a near CALL. It uses the current
segment register value. The CALL rell6 and CALL rel32 forms add a signed offset to the
address of the next instruction to determine the destination. Use the rel16 form if the next
instruction uses a 16-bit (word) operand. Use the rel32 form if the next instruction uses a
32-bit (doubleword) operand. CALL stores the result in the 32-bit EIP register. With rel16,
CALL clears the upper word of the EIP register, resulting in an offset whose value does not
exceed 16 bits. CALL r/m16 and CALL r/m32 specify a register or memory location from
which the absolute segment offset is fetched. CALL r/m16 fetches a 16-bit offset for a word
operand; CALL r/m32 fetches a 32-bit offset for a doubleword operand. CALL pushes the
offset of the next instruction in sequence onto the stack. The near RET instruction in the
procedure pops the instruction offset when it returns control.

Am486 Microprocessor Instruction Set 2-23

b‘l AMD

The far calls, CALL ptrl6:16 and CALL ptrl6:32, use a 4-byte or 6-byte operand as a long
pointer to the called procedure. The CALL m16:16 and m16:32 forms fetch the long pointer
from the memory location specified (indirection). In Real Address Mode or Virtual 8086
Mode, the long pointer provides 16 bits for the CS register and 16 or 32 bits for the EIP
register (depending on the operand-size attribute). These forms of the instruction push both
the CS and IP or EIP registers as a return address.

In Protected Mode, both long pointer forms consult the AR byte in the descriptor indexed
by the selector part of the long pointer. Depending on the value of the AR byte, the call will
perform one of the following types of control transfers:

m A far call to the same protection level
m An inter-protection level far call
m A task switch

A CALL-indirect-through-memory, using the stack pointer (ESP) as a base register, refer-
ences memory before the CALL. The base is the value of the ESP before the instruction
executes.

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not
occur.

Protected Mode Exceptions

For far calls: General Protection Fault (13), Segment Not Present (11), Stack Fault (12),
and Invalid TSS (10), as indicated in Appendix A.

For near direct calls: General Protection Fault (13) if procedure location is beyond the code
segment limits; Stack Fault (12) if pushing the return address exceeds the bounds of the
stack segment; Page Fault Exception (14) for a page fault; Alignment Check (17) for un-
aligned memory reference if the current privilege level is 3.

Foranearindirect call: General Protection Fault (13) for anillegal memory-operand effective
address in the code or data segments; Stack Fault (12) for an illegal SS segment address;
General Protection Fault (13) if the indirect offset obtained is beyond the code segment
limits; Page Fault Exception (14) for a page fault; Alignment Check (17) for unaligned
memory reference if the current privilege level is 3.

Real Address Mode Exceptions

General Protection Fault (13) if any part of the operand would lie outside of the effective
address space from 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) if any part of the operand would lie outside of the effective
address space from 0 to OFFFFh. Page Fault Exception (14) for a page fault; Alignment
Check (17) for aligned memory reference if the current privilege level is 3.

Note: Any far call from a 32-bit code segment to a 16-bit code segment should be made
from the first 64 Kbytes of the 32-bit code segment, because the operand-size attribute of
the instruction is set to 16, allowing only a 16-bit return address offset to be saved.

2-24

Am486 Microprocessor Instruction Set

AMDn

2.20

CBW Converts Byte to Word
Opcode Instruction Clocks Description

98 cBwW 3 AX _ sign-extend of AL
Operation

| F OperandSi ze = 16
THEN AX _ SignExtend (AL)

Description

The CBW instruction converts the signed byte in the AL register to a signed word in the AX
register by extending the most-significant bit of the AL register (the sign bit) into all of the
bits of the AH register.

Flags Affected

None

Protected Mode Exceptions
None

Real Address Mode Exceptions
None

Virtual 8086 Mode Exceptions

None

Am486 Microprocessor Instruction Set 2-25

2.21 CcDQ Converts Doubleword to Quadword
Opcode Instruction Clocks Description
99 CDQ 3 EDX:EAX . sign-extend of EAX
Operation
| F OperandSi ze = 32
THEN
IF EAX < O
THEN EDX . OFFFFFFFFh;
ELSE EDX . O;
Fl
Description
The CDQ instruction converts the signed doubleword in the EAX register to a signed 64-
bit integer in the register pair EDX:EAX by extending the most-significant bit of the EAX
register (the sign bit) into all the bits of the EDX register.
Flags Affected
None
Protected Mode Exceptions
None
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
2-26 Am486 Microprocessor Instruction Set

AMDH

2.22 CLC Clears Carry Flag
Opcode Instruction Clocks Description
F8 CLC 2 Clears Carry Flag.
Operation
CF - 0
Description

CLC clears CF. It does not affect other flags or registers.
Flags Affected

CF is cleared.

Protected Mode Exceptions

None

Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Am486 Microprocessor Instruction Set 2-27

2.23 CLD Clears Direction Flag
Opcode Instruction Clocks Description
FC CLD 2 Clears Direction Flag to make the Stack Index (S| or ESI) and/or the
Data Index (DI or EDI) Registers increment.
Operation
DF - 0
Description
The CLD instruction clears the Direction Flag, causing all subsequent string operations to
increment the index registers on which they operate: Sl (8-bit or 16-bit operation) or ESI
(32-bit operation), and/or DI (8-bit or 16-bit operation) or EDI (32-bit operation).
Flags Affected
DF is cleared. No other flags or registers are affected.
Protected Mode Exceptions
None
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
2-28 Am486 Microprocessor Instruction Set

AMDH

2.24

CLI Clears Interrupt-Enable Flag

Opcode Instruction Clocks Description

FA CLI 5 Clears Interrupt-enable Flag: maskable interrupts disabled.
Operation

IF - 0

Description

The CLI instruction clears IF if the current privilege level is at least as privileged as IOPL.
No other flags are affected. External interrupts are not recognized at the end of the CLI
instruction or from that point on until the IF flag is set.

Flags Affected
IF is cleared.
Protected Mode Exceptions

General Protection Fault (13) if the current privilege level is greater (has less privilege) than
the 1/O privilege level in the FLAGS register. The 1/O privilege level specifies the least
privileged level at which I/O can be performed.

Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions

General Protection Fault (13) if the current privilege level is greater (has less privilege) than
the 1/O privilege level in the FLAGS register. The I/O privilege level specifies the least
privileged level at which 1/0O can be performed.

Am486 Microprocessor Instruction Set 2-29

CLTS Clears Task-Switched Flag in CRO

Opcode Instruction Clocks Description

OF 06 CLTS 7 Clears Task-Switched flag.

Operation
TS Flag in CRO 0
Description

The CLTS instruction clears the Task-Switched (TS) flag in the CRO register. This flag is
set by the microprocessor every time a task switch occurs. The TS flag is used to manage
microprocessor extensions as follows:

m Every execution of an ESC instruction is trapped if the TS flag is set.
m Execution of a WAIT instruction is trapped if the MP flag and the TS flag are both set.

If a task switch occurs after an ESC instruction begins execution, you may need to save
the floating-point unit’s context before issuing a new ESC instruction. The fault handler
saves the context and clears the IS flag.

The CLTS instruction appears in operating system software, not in application programs.
It is a privileged instruction that only executes at privilege level 0.

Flags Affected
The TSflagiscleared (the TS flagisinthe CRO register, notthe FLAGS or EFLAGS register).
Protected Mode Exceptions

General Protection Fault (13) if the CLTS instruction is executed with a current privilege
level other than 0.

Real Address Mode Exceptions
None (valid in Real Address Mode to allow initialization for Protected Mode).
Virtual 8086 Mode Exceptions

General Protection Fault (13) if the CLTS instruction is executed with a current privilege
level other than 0.

2-30

Am486 Microprocessor Instruction Set

AMDn

2.26

CcCMC Complements Carry Flag
Opcode Instruction Clocks Description

F5 CMC 2 Complements the Carry Flag.
Operation

CF - NOT CF

Description

The CMC instruction reverses the setting of CF. No other flags are affected.

Flags Affected

CF contains the complement of its original value.

Protected Mode Exceptions

None

Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Am486 Microprocessor Instruction Set

2-31

2.27 CMP Compares Two Operands

Opcode Instruction Clocks Description

3Cib CMP AL,imm8 1 Compares immediate byte to AL.

3D iw CMP AX,imm16 1 Compares immediate word to AX.

3Did CMP EAX,imm32 1 Compares immediate doubleword to EAX.

80/7ib CMP r/m8,imm8 1/2 Compares immediate byte to r/m byte.

81/7iw CMPr/m16,imml1l6 1/2 Compares immediate word to r/m word.

81/7id CMPr/m32,imm32 1/2 Compares immediate doubleword to r/m doubleword.

83/7ib CMP r/m16,imm8 1/2 Compares sign extended immediate byte to r/m word.

83/71ib CMP r/m32,imm8 1/2 Compares sign extended immediate word to r/m doubleword.
381/r CMP r/m8,48 1/2 Compares byte register to r/m byte.

39/r CMP r/m16,r16 1/2 Compares word register to r/m word.

39/r CMP r/m32,r32 1/2 Compares doubleword register to r/m doubleword.

3Ar CMP 48,4/m8 1/2 Compares r/m byte to byte register.

3BI/r CMP r16,r/m16 1/2 Compares r/m word to word register.

3BI/r CMP r32,r/m32 1/2 Compares r/m doubleword to doubleword register.
Operation

LeftSRC — SignExtend(RightSRC);

(* CMP does not store a result; its purpose is to set the flags *)

Description

CMP subtracts the second operand from the first, but does not store the result; CMP only
changes the flag settings. The CMP instruction is typically used in conjunction with condi-
tional jumps and the conditional SET instructions. (Refer to Appendix D for the list of signed
and unsigned flag tests provided.) If an operand greater than one byte is compared to an
immediate byte, the byte value is first sign-extended.

Flags Affected
The result determines the OF, SF, ZF, AF, PF, and CF settings.

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.
Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.
2-32 Am486 Microprocessor Instruction Set

AMDH

CMPS/CMPSB/CMPSD/CMPSW Compares Two String Operands
Opcode Instruction Clocks Description
A6 CMPS m8,m8 8 Compares bytes ES:DI (second operand) with SI (first operand).
A7 CMPS m16,m16 8 Compares words ES:DI (second operand) with SI (first operand).
A7 CMPS m32,m32 8 Compares doublewords ES:EDI (second operand) with
ESI (first operand).
A6 CMPSB 8 Compares bytes ES:DI with DS:SI.
A7 CMPSD 8 Compares doublewords ES:EDI with DS:SI.
A7 CMPSW 8 Compares words ES:DI with DS:SI.
Operation
| F OperandSize = 8 (* byte *)
THEN
Sl - DI
IF DF = 0 THEN IncDec ~ 1 ELSE IncDec ~ =1; FI;
IF OperandSize = 16 (* word *)
THEN
Sl - DI
IF DF = 0 THEN IncDec ~ 2 ELSE IncDec «~ =2; FI;
IF OperandSize = 32 (* doubleword *)
THEN
ESI - EDI
IF DF = 0 THEN IncDec ~ 4 ELSE IncDec ~ —4; Fl,
FI;

source-index = source-index + IncDec;
destination-index = destination-index + IncDec

Note: If AddressSize = 16, S| = Source Index and DI = Destination Index.
If AddressSize = 32, ESI = Source Index and EDI = Destination Index.

Description

CMPS compares the byte, word, or doubleword pointed to by the S| (8- or 16-bit operation)
or ESI (32-bit operation) register with the byte, word, or doubleword pointed to by the DI
(8- or 16-bit operation) or EDI (32-bit operation) register. You must preload the registers
before executing CMPS.

CMPS subtracts the (E)DI indexed operand from the (E)SI indexed operand. This is the
reverse of the usual AMD convention in which the left operand is the destination and the
right operand is the source. No result is stored; only the flags reflect the change. The
operand size determines whether bytes, words, or doublewords are compared. The first
operand (Sl or ESI) uses the DS register unless a segment override byte is present. The
second operand (DI or EDI) must be addressable from the ES register; no segment override
is possible. After the comparison, both the source-index register and the destination-index
register are automatically advanced. If DF is 0O, the registers increment according to the
operand size (byte = 1; word = 2; doubleword = 4); if DF is 1, the registers decrement.

CMPSB, CMPSD, and CMPSW instructions are synonymous with the byte, doubleword,
and word CMPS instructions, respectively.

The CMPS instruction can be preceded by the REPE or REPNE prefix for block comparison
of CX or ECX bytes, words, or doublewords. Refer to the description of the REP instruction
for more information on this operation.

Flags Affected
OF, SF, ZF, AF, PF, and CF are set according to the result.

Am486 Microprocessor Instruction Set 2-33

b‘l AMD

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

2-34

Am486 Microprocessor Instruction Set

AMDH

2.29 CMPXCHG Compares And Exchanges
Opcode Instruction Clocks Description
OFBO /r CMPXCHG 6/7 if equal; Compares AL with r/m byte. If equal, sets ZF and loads byte
r/m8,r8 6/10 if not register into r/m byte; otherwise, clears ZF and loads r/m byte
into AL.
OF B1/r CMPXCHG 6/7if equal; Compares AX with r/m word. If equal, sets ZF and loads word
r/m16,r16 6/10 if not register into r/m word; otherwise, clears ZF and loads r/m word
into AX.
OF B1/r CMPXCHG 6/7 if equal; Compares EAX with r/m doubleword. If equal, sets ZF and
r/m32,r32 6/10 if not loads doubleword register into r/m doubleword; otherwise,
clears ZF and loads r/m doubleword into EAX.

Operation

| F accumul at or = DEST
ZF 1
DEST ~ SRC
ELSE
ZF -« 0
accumul ator ~ DEST

Description

CMPXCHG compares the accumulator (AL, AX, or EAX register) with DEST. If they are
equal, SRC is loaded into DEST. Otherwise, DEST is loaded into the accumulator.

Flags Affected

CF, PF, AF, SF, and OF are affected as if a CMP instruction had been executed with DEST
and the accumulator as operands. ZF is set if the destination operand and the accumulator
are equal; otherwise it is cleared.

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Note: This instruction can be used with a LOCK prefix. In order to simplify the interface to
the microprocessor’s bus, the destination operand receives a write cycle without regard to
the result of the comparison. DEST is written back if the comparison fails, and SRC is

written into the destination otherwise. (The microprocessor never produces a locked read
without also producing a locked write.) This instruction is not supported by 386 processors.

Am486 Microprocessor Instruction Set 2-35

2.30 CWD Converts Word to Doubleword Using DX:AX Register Pair
Opcode Instruction Clocks Description
99 CWD 3 DX:AX . sign-extend of AX
Operation
| F OperandSi ze = 16
THEN
IF AX <O
THEN DX . OFFFFh:
ELSE DX . O;
Fl
Description

The CWD instruction converts the signed word in the AX register to a signed doubleword
in the DX:AX register pair by extending the most-significant bit of the AX register into all
the bits of the DX register.

Flags Affected

None

Protected Mode Exceptions
None

Real Address Mode Exceptions
None

Virtual 8086 Mode Exceptions

None

2-36 Am486 Microprocessor Instruction Set

AMDn

2.31

CWDE Converts Word to Doubleword Using EAX Register

Opcode Instruction Clocks Description
98 CWDE 3 EAX . sign-extend of AX
Operation

| F OperandSi ze = 32
THEN EAX _ SignExtend (AX)

Description

The CWDE instruction converts the signed word in the AX register to a doubleword in the
EAX register by extending the most-significant bit of the AX register into the two most-
significant bytes of the EAX register.

Note: The CWDE instruction is different from the CWD instruction. The CWD instruction
uses the DX:AX register pair rather than the EAX register as a destination.

Flags Affected

None

Protected Mode Exceptions
None

Real Address Mode Exceptions
None

Virtual 8086 Mode Exceptions

None

Am486 Microprocessor Instruction Set 2-37

DAA Decimal Adjusts AL after Addition

Opcode Instruction Clocks Description
27 DAA 2 Decimal adjusts AL after addition.

Operation

IF ((AL AND OFh) > 9) OR (AF = 1)
THEN
AL ~ AL + 6;
AF ~ 1;
ELSE
AF ~ O;
Fl;
IF (AL > 9Fh) On (CF = 1)
THEN
AL — AL + 60h;
CF « 1;
ELSE CF ~ O;
Fl

Description

Execute the DAA instruction only after executing an ADD instruction that leaves a two-
BCD-digit byte result in the AL register. The ADD operands should consist of two packed
BCD digits. The DAA instruction adjusts the AL register to contain the correct two-digit
packed decimal result.

Flags Affected

AF and CF are set if there is a decimal carry, cleared if there is no decimal carry; SF, ZF
and PF are set according to the result. OF is undefined.

Protected Mode Exceptions
None

Real Address Mode Exceptions
None

Virtual 8086 Mode Exceptions

None

2-38

Am486 Microprocessor Instruction Set

AMDH

2.33

DAS Decimal Adjusts AL after Subtraction

Opcode Instruction Clocks Description

2F DAS 2 Decimal adjusts after subtraction.

Operation

1l
[EEN

IF (AL AND OFh) > 9 OR AF
THEN
AL ~ AL -6;
AF « 1,
ELSE
AF - 0
FI;
IF (AL > 9Fh) OR (CF =1)
THEN
AL ~ AL —60h;
CF - 1;
ELSECF -~ O;
FI

Description

Execute the DAS instruction only after a subtraction instruction that leaves a two-BCD digit
byte result in the AL register. The operands should consist of two packed BCD digits. The
DAS instruction adjusts the AL register to contain the correct packed two-digit decimal
result.

Flags Affected

AF and CF are set if there is a decimal carry, cleared if there is no decimal carry; SF, ZF
and PF are set according to the result. OF is undefined.

Protected Mode Exceptions
None

Real Address Mode Exceptions
None

Virtual 8086 Mode Exceptions

None

Am486 Microprocessor Instruction Set 2-39

DEC Decrements by 1

Opcode Instruction Clocks Description

FE /1 DEC r/m8 1/3 Decrements r/m byte by 1.

FF/1 DEC r/m16 1/3 Decrements r/m word by 1.

FF /1 DEC r/m32 1/3 Decrements r/m doubleword by 1.
48 + rw DEC r16 1 Decrements word register by 1.

48 + rw DEC r32 1 Decrements doubleword register by 1.

Operation
DEST -~ DEST-1
Description

The DEC instruction subtracts 1 from the operand. The DEC instruction does not change
CF. To affect CF, use the SUB instruction with an immediate operand of 1.

Flags Affected
OF, SF, ZF, AF, and PF are set according to the result.
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

2-40

Am486 Microprocessor Instruction Set

AMDH

2.35

DIV Unsigned Divide
Opcode Instruction Clocks Description
F6 /6 DIV AL, r/m8 16/16 Unsigned division of AX by r/m byte (AL = Quo, AH = Rem).
F716 DIV AX,r/m16 24/24 Unsigned division of DX:AX by r/m word (AX = Quo, DX = Rem).
F71/6 DIV EAX,r/m32 40/40 Unsigned division of EDS:EAX by r/m doubleword (EAX = Quo,
EDX = Rem).
Operation

tenp ~ dividend / divisor;
| F tenp does not fit in quotient
THEN Di vi de By Zero Exception O;
ELSE

quotient ~ tenp;

remai nder ~ dividend MOD (r/m;
Fl

Note: Divisions are unsigned. The divisor is given by the r/m operand. The dividend,
quotient, and remainder use implicit registers. Refer to the table under ‘Description.’

Description

The DIV instruction performs an unsigned division. The dividend is implicit; only the divisor
is given as an operand. The remainder is always less than the divisor. The type of the
divisor determines which registers to use as follows:

Size Divisor Quotient Remainder Dividend
byte AX r/m8 AL AH

word DX:AX r/m16 AX DX
doubleword EDX:EAX r/m32 EAX EDX

Flags Affected
OF, SF, ZF, AF, PF, and CF are undefined.
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

Divide By Zero Exception 0 if the quotient is too big to fit in the designated register (AL,
AX, or EAX), or if the divisor is 0. General Protection Fault (13) indicates that part of the
operand lies outside the effective address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

Divide By Zero Exception O if the quotient is too big to fit in the designated register (AL,
AX, or EAX), or if the divisor is 0. General Protection Fault (13) indicates that part of the
operand lies outside the effective address space: 0 to OFFFFh. Page Fault (14) indicates
a page fault. If CPL is 3, Alignment Check (17) indicates there is an unaligned memory
reference.

Am486 Microprocessor Instruction Set 2-41

2.36 ENTER Makes Stack Frame for Procedure
Opcode Instruction Clocks Description
C8 /w 00 ENTER imm16,0 14 Makes procedure stack frame.
C8 /w01 ENTER imm16,1 17 Makes stack frame for procedure parameters.
C8 /wib ENTER imm16,imm8 17 + 3n Makes stack frame for procedure parameters.
Operation
level ~ level MOD 32
| F OperandSi ze = 16 THEN Push(BP) ELSE Push (EBP) FI;
(* Save stack pointer *)
frane-ptr ~ eSP
IF level >0
THEN (* level is rightnost paraneter *)
FORi <« 1TOlevel-1
DO
IF OperandSize = 16
THEN
BP — BP-2;
Push [BP]
ELSE (* OperandSize = 32 *)
EBP ~ EBP -4;
Push[EBP]; FI;
OD;
Push(frame-ptr)
FI;
IF OperandSize = 16 THEN BP ~ frame-ptr ELSE EBP ~ frame-ptr; FI;
IF StackAddrSize = 16
THEN SP ~ SP — First operand;
ELSE ESP ~ ESP - ZeroExtend (First operand); FI
Description
ENTER creates the stack frame required by most block-structured high-level languages.
The first operand specifies the number of allocated dynamic storage bytes. The second
operand gives the lexical nesting level (0—-31) of the routine within the high-level language
source code and determines the number of stack frame pointers copied into the new stack
frame from the preceding frame. The processor uses the BP (word) or EBP (doubleword)
register as the frame pointer and the SP (word) or ESP (doubleword) register as the stack
pointer. If the second operand is 0, ENTER pushes the frame pointer onto the stack, sub-
tracts the first operand from the stack pointer, and sets the frame pointer to the current
stack-pointer value.
Flags Affected
None
Protected Mode Exceptions
Stack Fault (12) if SP or ESP exceeds the stack limit. Page Fault (14) indicates a page fault.
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
2-42 Am486 Microprocessor Instruction Set

AMDH

2.37

F2XM1 Computes 2*-1
Concurrent
Opcode Instruction Clocks Execution Description
D9 FO F2xXM1 242 (140-279) 2 Replaces ST with (257 - 1).
Operation

ST « (25 -1)

Description

F2XM1 replaces the contents of ST with (25"-1). ST must lie in the range -1 < ST < 1.
FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Denormalized Operand, Invalid Operation, Stack
Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: If the operand is outside the acceptable range, the result of F2XM1 is undefined.
The F2XM1 instruction is designed to produce a very accurate result even when the operand
is close to zero. Larger errors are incurred for operands with magnitudes very close to 1.
Values other than 2 can be exponentiated using the formula:

X/ = D - logx)

The instructions FLDL2T and FLDLZ2E load the constants log,10 and log,e, respectively.
FYL2X can be used to calculate y Olog.x for arbitrary positive X.

Am486 Microprocessor Instruction Set 2-43

FABS Absolute Value

Opcode Instruction Clocks Description
D9 E1 FABS 3 Replaces ST with its absolute value.

Operation
sign bit of ST « O
Description

The absolute value instruction clears the sign bit of ST. This operation leaves a positive
value unchanged, or replaces a negative value with a positive value of equal magnitude.

FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. CO, C2, and C3 are undefined.

Numeric Exceptions

Stack Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: The invalid-operation exception is raised only on stack underflow, even if the operand
is signaling NaN or is in an unsupported format.

2-44

Am486 Microprocessor Instruction Set

AMDH

2.39

FADD Adds Floating Point
Concurrent
Opcode Instruction Clocks Execution Description
D8 /0 FADD m32 real 10 (8-20) 7 (5-17) Adds m32real to ST.
DC/0 FADD m64 real 10 (8-20) 7 (5-17) Adds m64real to ST.
D8 CO+i FADD ST,ST(i) 10 (8-20) 7 (5-17) Adds ST(i) to ST.
DC CO+i FADD ST(i),ST 10 (8-20) 7 (5-17) Adds ST to ST(i).
Operation

DEST ~ DEST +SRC
Description

The addition instructions add the source and destination operands and return the sum to
the destination. The operand at the stack top can be doubled by coding:

FADD ST, ST(0)
FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Denormalized Operand, Invalid Operation,
Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPLis 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-45

2.40 FADDP Adds Floating Point and Pops FPU Stack Top
Concurrent

Opcode Instruction Clocks Execution Description

DE CO+i FADDP ST(i),ST 10 (8-20) 7 (5-17) Adds ST to ST(i) and pops ST.

DE C1 FADDP 10 (8-20) 7 (5-17) Adds ST to ST(1) and pops ST.
Operation

DEST ~ DEST +SRC,

pop ST;

Fl

Description
The addition instructions add the source and destination operands, return the sum to the
destination, and pop the stack.

FPU Flags Affected
The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Denormalized Operand, Invalid Operation,
Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.
Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPLis 3, Alignment Check (17) indicates
there is an unaligned memory reference.
2-46 Am486 Microprocessor Instruction Set

AMDH

2.41

FBLD Loads Binary Coded Decimal
Concurrent
Opcode Instruction Clocks Execution Description
D8 /4 FBLD m80 dec 75 (70-103) 7.7 (2-8) Pushes m80dec onto the FPU stack.
Operation
Decrenent FPU top-of-stack pointer;
ST(0) ~ SRC
Description

FBLD converts the BCD source operand into extended-real format and pushes it onto the
FPU stack.

FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are undefined.

Numeric Exceptions
Stack Fault
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: The source is loaded without rounding error. The sign of the source is preserved,
including the case where the value is negative zero. The packed decimal digits are assumed
to be in the range 0-9. The instruction does not check for invalid digits (A-Fh) and the
result of attempting to load an invalid encoding is undefined. ST(7) must be empty to avoid
causing an invalid-operation exception.

Am486 Microprocessor Instruction Set 2-47

2.42 FBSTP Stores Binary Coded Decimal and Pops FPU Stack Top

Opcode Instruction Clocks Description
DF /6 FBSTP m80dec 175 (172-176) Stores ST in m80dec and pops ST.

Operation
DEST ~ ST(0);
pop ST FI
Description
FBSTP converts the value in ST into a packed decimal integer, stores the result at the
destination in memory, and pops ST. Non-integral values are first rounded according to the
RC field of the control word.
FPU Flags Affected
The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.
Numeric Exceptions
Precision (Inexact Result), Invalid Operation, Stack Fault
Protected Mode Exceptions
General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROis set. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

2-48 Am486 Microprocessor Instruction Set

AMDH

2.43

FCHS Changes Sign

Opcode Instruction Clocks Description

D9 EO FCHS 6 Replaces ST with a value of opposite sign.
Operation

sign bit of — ST NOT (sign bit of ST)
Description

The FCHS instruction inverts the sign bit of ST. This operation replaces a positive value
with a negative value of equal magnitude, or vice versa.

FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. CO, C2, and C3 are undefined.

Numeric Exceptions

Stack Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: The invalid-operation exception is raised only on stack underflow, even if the operand
is a signaling NaN or is in an unsupported format.

Am486 Microprocessor Instruction Set 2-49

2.44 FCLEX Clears Exceptions after Checking for FPU Error
Opcode Instruction Clocks Description
9BDBE2 FCLEX 7+ 3+ Clears floating-point exception flags after
for FWAIT checking for floating-point error conditions.
Operation
SW[0-7] < O;
SW[15] ~ 0
Description
FCLEX clears the exception flags, the exception status flag, and the busy flag of the FPU
status word after checking for floating-point error conditions.
FPU Flags Affected
CO0, C1, C2, C3 undefined
Numeric Exceptions
None
Protected Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
2-50 Am486 Microprocessor Instruction Set

AMDH

2.45

FCOM Compares Real
Opcode Instruction Clocks Description
c81/2 FCOM m32real 4 Compares ST with m32real.
DC /2 FCOM mé64real 4 Compares ST with m64real.
D8 DO+i FCOM st(i) 4 Compares ST with ST(i).
D8 D1 FCOM 4 Compares ST with ST(1).
Operation

CASE (rel ation of operands) OF

Not conparable: C3, C2, CO ~ 111;
ST > SRC Cc3, €2, @0 -~ 000;
ST < SRC C3, €2, 0 - 001;
ST = SRC. C3, 2, 0 -~ 100;

CF - Q0;

PF ~ C2;

ZF ~ C3;

Fl

Description

FCOM compares the stack top to the source, which can be a register or a 32-bit or 64-bit
real memory operand. If no operand is encoded, ST is compared to ST(1). Following the
instruction, the condition codes reflect the relation between ST and the source operand.

FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are set as specified above.

Numeric Exceptions
Denormalized Operand, Invalid Operation, Stack Fault
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If either operand is a NaN or is in an undefined format, or if a stack fault occurs, the
invalid-operation exception is raised and the condition bits are set to “unordered.” The sign
of zero is ignored, so that — 0.0 = + 0.0.

Am486 Microprocessor Instruction Set 2-51

FCOMP Compares Real and Pops FPU Stack Top

Opcode Instruction Clocks Description

D8 /3 FCOMP m32real 4 Compares ST with m32real and pops ST.
DC /3 FCOMP mé64real 4 Compares ST with m64real and pops ST.
D8 D8+i FCOMP ST(i) 4 Compares ST with ST(i) and pops ST.
D8 D9 FCOMP 4 Compares ST with ST(1) and pops ST.

Operation

CASE (rel ation of operands) OF
Not conparable: C3, C2, CO ~ 111;
ST > SRC C3, C, G ~ 000;
ST < SRC C3, €2, G0 ~ 001;
ST = SRC. C3, C2, GO ~ 100;

CF ~ C0;

PF ~ C2;

ZF ~ C3;

pop ST; FI

Description

FCOMP compares the stack top to the source, which can be a register or a single or double-
real memory-operand, and then pops the stack. If no operand is encoded, ST is compared
to ST(1). Following the instruction, the condition codes reflect the relation between ST and
the source operand.

FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are set as specified above.

Numeric Exceptions
Denormalized Operand, Invalid Operation, Stack Fault
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROis set. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If either operand is a NaN or is in an undefined format, or if a stack fault occurs, the
invalid-operation exception is raised, and the condition bits are set to “unordered.” The sign
of zero is ignored, so that — 0.0 = + 0.0.

2-52

Am486 Microprocessor Instruction Set

AMDH

2.47

FCOMPP Compares Real and Pops FPU Stack Top Twice

Opcode Instruction Clocks Description
DE D9 FCOMPP 5 Compares ST with ST(1) and pops ST twice.
Operation
CASE (rel ation of operands) OF
Not conparable: C3, C2, CO ~ 111;
ST > ST(1): C3, C2, CO ~ 000;
ST < ST(1): C3, C2, CO - 001;
ST = ST(1): C3, C2, OO ~ 100;
CF ~ QC0;
PF - C2;
ZF - C3;

pop ST; pop ST; FI
Description

FCOMPP compares the stack top to ST(1). Following the instruction, the condition codes
reflect the relation between ST and ST(1).

FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are set as specified above.

Numeric Exceptions
Denormalized Operand, Invalid Operation, Stack Fault
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If either operand is a NaN or is in an undefined format, or if a stack fault occurs, the
invalid-operation exception is raised, and the condition bits are set to “unordered.” The sign
of zero is ignored, so that — 0.0 = + 0.0.

Am486 Microprocessor Instruction Set 2-53

FCOS Cosine

Concurrent
Opcode Instruction Clocks Execution Description

D9 FF FCOS 241 (193-279) 2 Replaces ST with its cosine.

Operation

| F operand is in range
THEN

2 ~ 0

ST « cos (ST);
ELSE

2 « 1
FI

Description

The cosine instruction replaces the contents of ST with cos (ST). ST, expressed in radians,
must lie in the range | 6 | < 2%,

FPU Flags Affected

If C2 = 0 (reduction complete), the result determines the C1 setting. If both the IE and SF
bits of the status word are set (indicating a stack exception), CO distinguishes between
stack overflow (C1 = 1) and underflow (C1 = 0); if PE is set, C1 indicates whether the last
rounding was upward. If C2 = 1 (reduction incomplete), C1 is undefined. CO and C3 are
undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Denormalized Operand, Invalid Operation, Stack
Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: If the operand is outside the acceptable range, the C2 flag is set and ST remains
unchanged. Reduce the operand to an absolute value smaller than 2% by subtracting an
appropriate integer multiple of 2. For 1, use the full 66-bit internal Tt used by the FPU:

4 [J0.C90FDAA22168C234Ch. This ensures that the results are consistent with argument
reduction used by the FPU for trigonometric functions. You cannot represent this number
as an extended-real value, however. A suggested solution is to represent Tt as the sum of
a hightt (the 33 most-significant bits) and a lowr (the 33 least-significant bits). The Am486
processor checks for interrupts while performing this instruction. It aborts execution to
service an interrupt.

If you need to compute sine and cosine, use FSINCQOS for faster execution.

2-54

Am486 Microprocessor Instruction Set

AMDH

2.49

FDECSTP Decrements Top-of-Stack Pointer

Opcode Instruction Clocks Description

D9 F6 FDECSTP 3 Decrements top-of-stack pointer for FPU register stack.
Operation

IF TOP =0

THEN TOP ~ 7,
ELSE TOP —~ TOP -1,
FI

Description
FDECSTP subtracts one (without carry) from the 3-bit TOP field of the FPU status word.
FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are undefined.

Numeric Exceptions

None

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: The effect of FDECSTP is to rotate the stack. It does not alter register tags or contents,
nor does it transfer data.

Am486 Microprocessor Instruction Set 2-55

2.50 FDIV Divides Real
Concurrent

Opcode Instruction Clocks Execution Description

D8 /6 FDIV m32real 73 70 Divides ST by m32real.

DC /6 FDIV m64real 73 70 Divides ST by m64real.

D8 FO+i FDIV ST,ST(i) 73 70 Divides ST by ST(i).

DC F8+i FDIV ST(i),ST 73 70 Replaces ST(i) with ST + ST(i).
Operation

DEST ~ ST =+ other operand

Description
The division instructions divide the stack top by the other operand and return the quotient
to the destination.

FPU Flags Affected
The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Divide By Zero, Denormalized Operand,
Invalid Operation, Stack Fault

Protected Mode Exceptions
General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the source operand is in memory, it automatically converts to the extended-real
format. The performance of division instructions depends on the PC (Precision Control)
field of the FPU control word. If PC specifies a precision of 53 bits, the division instruction
executes in 62 clocks. If the specified precision is 24 bits, the division instruction takes only
35 clocks.

2-56 Am486 Microprocessor Instruction Set

AMDH

2.51

FDIVP Divides Real and Pops FPU Stack Top
Concurrent
Opcode Instruction Clocks Execution Description
DE F8+i FDIVP ST(i),ST 73 70 Replaces ST(i) with ST + ST(i); pops ST.
DE F9 FDIVP 73 70 Replaces ST(1) with ST + ST(1); pops ST.
Operation
DEST ~ ST+ other operand;
pop ST FI
Description

The division instructions divide the stack top by the other operand and return the quotient
to the destination.

FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Divide By Zero, Denormalized Operand,
Invalid Operation, Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective

address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in

CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

If the source operand is in memory, it automatically converts to the extended-real format.
The performance of division instructions depends on the PC (Precision Control) field of the
FPU control word. If PC specifies a precision of 53 bits, the division instruction executes in
62 clocks. If the specified precision is 24 bits, the division instruction takes only 35 clocks.

Am486 Microprocessor Instruction Set 2-57

2.52 FDIVR Reverse Divides Real
Concurrent

Opcode Instruction Clocks Execution Description

D8 /7 FDIVR m32real 73 70 Replaces ST with m32real + ST.

DC /7 FDIVR m64real 73 70 Replaces ST with m64real +~ ST.

D8 F8+i FDIVR ST,ST(i) 73 70 Replaces ST with ST(i) + ST.

DC FO+i FDIVR ST(i),ST 73 70 Divides ST(i) by ST.

Operation

DEST ~ other operand + ST

Description
The division instructions divide the other operand by the stack top and return the quotient
to the destination.

FPU Flags Affected
The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Divide By Zero, Denormalized Operand,
Invalid Operation, Stack Fault

Protected Mode Exceptions
General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the source operand is in memory, it automatically converts to the extended-real
format. The performance of division instructions depends on the PC (Precision Control)
field of the FPU control word. If PC specifies a precision of 53 bits, the division instruction
executes in 62 clocks. If the specified precision is 24 bits, the division instruction takes only
35 clocks.

2-58 Am486 Microprocessor Instruction Set

AMDH

2.53

FDIVRP Reverse Divides Real and Pops FPU Stack Top

Concurrent

Opcode Instruction Clocks Execution Description

DE FO+i FDIVRP ST(i),ST 73 70 Divides ST(i) by ST and pops ST
DE F1 FDIVRP 73 70 Divides ST(1) by ST and pops ST
Operation

DEST ~ other operand + ST;
pop ST FI

Description

The division instructions divide the other operand by the stack top and return the quotient
to the destination.

FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Divide By Zero, Denormalized Operand,
Invalid Operation, Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the source operand is in memory, it automatically converts to the extended-real
format. The performance of division instructions depends on the PC (Precision Control)
field of the FPU control word. If PC specifies a precision of 53 bits, the division instruction
executes in 62 clocks. If the specified precision is 24 bits, the division instruction takes only
35 clocks.

Am486 Microprocessor Instruction Set 2-59

2.54 FFREE Free Floating-Point Register
Opcode Instruction Clocks Description
DD CO+i FFREE ST(i) 3 Tags ST(i) as empty.
Operation
TAGi) ~ 11B
Description
FFREE tags the destination register as empty.
FPU Flags Affected
CO0, C1, C2, C3 undefined
Numeric Exceptions
None
Protected Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Note: FFREE does not affect the contents of the destination register. The floating-point
top-of-stack pointer (TOP) is also unaffected.
2-60 Am486 Microprocessor Instruction Set

AMDH

2.55

FIADD Adds Integer
Concurrent
Opcode Instruction Clocks Execution Description
DA /0 FIADD m32int 22.5(19-32) 7 (5-17) Adds m32int to ST.
DE /0 FIADD m16int 24 (20-35) 7 (5-17) Adds m16int to ST.
Operation

DEST -~ DEST + SRC
Description

The addition instructions add the source and destination operands and return the sum to
the destination.

FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Denormalized Operand, Invalid Operation,
Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROis set. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the source operand is in memory, it is automatically converted to the extended-
real format.

Am486 Microprocessor Instruction Set 2-61

2.56 FICOM Compares Integer
Opcode Instruction Clocks Concurrent Description
Execution
DE /2 FICOM m16intl 18 (16-20) 1 Compares ST with m16int.
DA /2 FICOM m32intl 16.5 (15-17) 1 Compares ST with m32int.
Operation
CASE (rel ation of operands) OF
Not conparable: C3, C2, QO ~ 111;
ST > SRC: C3, €, O ~ 000;
ST < SRC. C3, €2, O ~ 001;
ST = SRC. C3, €2, O ~ 100;
CF ~ C0;
PF ~ C2;
ZF ~ C3;
Fl
Description
FICOM compares the stack top to the source. Following the instruction, the condition codes
reflect the relation between ST and the source operand.
FPU Flags Affected
The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. The values of CO, C2, and C3 are as specified above.
Numeric Exceptions
Denormalized Operand, Invalid Operation, Stack Fault
Protected Mode Exceptions
General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.
Note: The memory operand is converted to extended-real format before the comparison
is performed. If either operand is a NaN or is in an undefined format, or if a stack fault
occurs, the invalid-operation exception is raised and the condition bits are set to
“unordered.”
2-62 Am486 Microprocessor Instruction Set

AMDH

2.57

FICOMP Compares Integer and Pops FPU Stack Top

Opcode Instruction Clocks Concurrent Description
Execution

DE /3 FICOMP m16int 18 (16-20) 1 Compares ST with m16int and pops ST.
DA /3 FICOMP m32int 16.5(15-17) 1 Compares ST with m32int and pops ST.
Operation
CASE (rel ation of operands) OF

Not conparable: C3, C2, CO ~ 111;

ST > SRC. C3, C2, GO ~ 000;

ST < SRC C3, C2, OO ~ 001;

ST = SRC C3, C2, OO ~ 100;
CF ~ Co;
PF ~ C2;
ZF - C3;
pop ST FI
Description

FICOMP compares the stack top to the source, then pops the stack top. Following the
instruction, the condition codes reflect the relation between ST and the source operand.

FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. The values of C0O, C2, and C3 are as specified above.

Numeric Exceptions
Denormalized Operand, Invalid Operation, Stack Fault
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Note: The memory operand is converted to extended-real format before the comparison
is performed. If either operand is a NaN or is in an undefined format, or if a stack fault
occurs, the invalid-operation exception is raised and the condition bits are set to
“unordered.”

Am486 Microprocessor Instruction Set 2-63

2.58 FIDIV Divides Integer
Concurrent

Opcode Instruction Clocks Execution Description

DA /6 FIDIV m32int 73 70 Divides ST by m32int.

DE /6 FIDIV m16int 73 70 Divides ST by m16int.

Operation

DEST ~ ST+ other operand

Description
The division instructions divide the stack top by the other operand and return the quotient
to the destination.

FPU Flags Affected
The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Divide By Zero, Denormalized Operand,
Invalid Operation, Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.
Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the source operand is in memory, it automatically converts to the extended-real
format. The performance of division instructions depends on the PC (Precision Control)
field of the FPU control word. If PC specifies a precision of 53 bits, the division instruction
executes in 62 clocks. If the specified precision is 24 bits, the division instruction takes only
35 clocks.

2-64 Am486 Microprocessor Instruction Set

AMDH

2.59

FIDIVR Reverse Divides Integer
Concurrent
Opcode Instruction Clocks Execution Description
DA /7 FIDIVR m32int 73 70 Replaces ST with m32int + ST.
DE /7 FIDIVR m16int 73 70 Replaces ST with m16int + ST.
Operation

DEST ~ other operand + ST
Description

The division instructions divide the other operand by the stack top and return the quotient
to the destination.

FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Divide By Zero, Denormalized Operand,
Invalid Operation, Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the source operand is in memory, it automatically converts to the extended-real
format. The performance of division instructions depends on the PC (Precision Control)
field of the FPU control word. If PC specifies a precision of 53 bits, the division instruction
executes in 62 clocks. If the specified precision is 24 bits, the division instruction takes only
35 clocks.

Am486 Microprocessor Instruction Set 2-65

2.60 FILD Loads Integer
Concurrent

Opcode Instruction Clocks Execution Description

DF /0 FILD m16int 145 (13-16) 4 Pushes m16int onto FPU stack.

DB /0 FILD m32int 11.5 (9-12) 4 (2-4) Pushes m32int onto FPU stack.

DF /5 FILD m64int 16.8 (10-18) 7.8 (2-8) Pushes m64int onto FPU stack.
Operation

Decrenent FPU top-of-stack pointer;

ST(0) — SRC

Description

FILD converts the source signed integer operand into extended-real format and pushes it
onto the FPU stack.

FPU Flags Affected
The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are undefined.

Numeric Exceptions

Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: The source is loaded without rounding error. ST(7) must be empty to avoid causing
an invalid-operation exception.

2-66 Am486 Microprocessor Instruction Set

AMDH

2.61

FIMUL Multiplies Integer
Opcode Instruction Clocks Description
DA /1 FIMUL m32int 8 Multiplies ST by m32int.
DE /1 FIMUL m16int 8 Multiplies ST by m16int.
Operation

DEST . DEST [ISRc
Description

The multiplication instructions multiply the destination operand by the source operand and
return the product to the destination.

FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Denormalized Operand, Invalid Operation,
Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROis set. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the source operand is in memory, it is automatically converted to the extended-
real format.

Am486 Microprocessor Instruction Set 2-67

2.62 FINCSTP Increments Top-of-Stack Pointer
Opcode Instruction Clocks Description
D9 F7 FINCSTP 3 Increments top-of-stack pointer for FPU register stack.
Operation
IF TOP = 7
THEN TOP ~ O;
ELSE TOP ~ TOP + 1;
Fl
Description
FINCSTP adds one (without carry) to the 3-bit TOP field of the FPU status word.
FPU Flags Affected
The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are undefined.
Numeric Exceptions
None
Protected Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions
Coprocessor Not Available (7) if either EM or TS in CRO is set.
Note: The effect of FINCSTP is to rotate the stack. It does not alter register tags or contents,
nor does it transfer data. It is not equivalent to popping the stack because it does not set
the tag of the old stack-top to empty.
2-68 Am486 Microprocessor Instruction Set

AMDH

2.63

FINIT Initializes FPU after Checking for Unmasked FPU Error

Opcode Instruction Clocks Description

DB E3 FINIT 17 + 3+ Initializes FPU after checking for unmasked floating-point
for FWAIT error condition.

Operation

CW ~ 037Fh; (* Control word *)

SW « 0; (* Status word *)

TW « FFFFh; (* Tag word *)

FEA —~ 0; FDS ~ O; (* Data pointer *)

FIP « 0; FOP - 0; FCS « O (* Instruction pointer *)
Description

The initialization instructions set the FPU into a known state, unaffected by any previous
activity.

The FPU control word is set to 037Fh (round to nearest, all exceptions masked, 64-bit
precision). The status word is cleared (no exception flags set, stack register RO = stack
top). The stack registers are all tagged as empty. The error pointers (both instruction and
data) are cleared.

FPU Flags Affected

Co, C1, C2, C3 cleared

Numeric Exceptions

None

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: FINIT leaves the FPU in the same state as that which results from a hardware RESET
signal. Unlike the Intel 387 math coprocessor, FINIT clears the error pointers in the Am486
processor.

Am486 Microprocessor Instruction Set 2-69

2.64 FIST Stores Integer

Opcode Instruction Clocks Description

DF /2 FIST m16int 33.4 (29-34) Stores ST in m16int.

DB /2 FIST m32int 32.4 (28-34) Stores ST in m32int.

Operation

DEST ~ ST(0)

Description

FIST converts the value in ST into a signed integer according to the RC field of the control
word and transfers the result to the destination. ST remains unchanged. FIST accepts word
and short integer destinations.

FPU Flags Affected
The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Invalid Operation, Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.
Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. Coprocessor Not
Available (7) occurs if either EM or TS in CRO is set. If CPL is 3, Alignment Check (17)
indicates there is an unaligned memory reference.

Note: Negative zero is stored with the same encoding (00...00) as positive zero. If the value
is too large to represent as an integer, an exception is raised. The masked response is to
write the most negative integer to memory.

2-70 Am486 Microprocessor Instruction Set

AMDH

2.65

FISTP Stores Integer and Pops FPU Stack Top
Opcode Instruction Clocks Description
DF /3 FISTP m16int 33.4 (29-34 Stores ST in m16int and pops ST.
DB /3 FISTP m32int 33.4 (29-34) Stores ST in m32int and pops ST.
DF /7 FISTP m64int 33.4 (29-34) Stores ST in m64int and pops ST.

Operation

DEST ~ ST(0);

pop ST FI

Description

FISTP converts the value in ST into a signed integer according to the RC field of the control
word and transfers the result to the destination. ST remains unchanged. FISTP accepts
word, short integer, and long integer destinations.

FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions
Precision (Inexact Result), Invalid Operation, Stack Fault
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: Negative zero is stored with the same encoding (00...00) as positive zero. If the value
is too large to represent as an integer, an exception is raised. The masked response is to
write the most negative integer to memory.

Am486 Microprocessor Instruction Set 2-71

FISUB Subtracts Integer

Opcode Instruction Clocks Concurrent Description
Execution

DA /4 FISUB m32int 22.5(19-32) 7 (5-17) Subtracts m32int from ST.
DE /4 FISUB m16int 24 (20-35) 7 (5-17) Subtracts m16int from ST.

Operation
DEST ~ ST - Other Operand
Description

The subtraction instructions subtract the other operand from the stack top and return the
difference to the destination.

FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Denormalized Operand, Invalid Operation,
Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the source operand is in memory, it is automatically converted to the extended-
real format.

2-72

Am486 Microprocessor Instruction Set

AMDH

2.67

FISUBR Reverse Subtracts Integer
Opcode Instruction Clocks Concurrent Description
Execution
DA /5 FISUBR m32int 22.5(19-32) 7 (5-17) Replaces ST with m32int — ST.
DE /5 FISUBR m16int 24 (20-35) 7 (5-17) Replaces ST with m16int — ST.
Operation

DEST ~ Other Operand — ST
Description

The reverse subtraction instructions subtract the stack top from the other operand and
return the difference to the destination.

FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Denormalized Operand, Invalid Operation,
Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the source operand is in memory, it is automatically converted to the extended-
real format.

Am486 Microprocessor Instruction Set 2-73

2.68 FLD Loads Real

Opcode Instruction Clocks Description

D9 /0 FLD m32real 3 Pushes m32real onto the FPU stack.

DD /0 FLD m64real 3 Pushes m64real onto the FPU stack.

DB /5 FLD m80real 6 Pushes m80real onto the FPU stack.

D9 CO+i FLD ST(i) 4 Pushes ST(i) onto the FPU stack.

Operation

Decrenent FPU top-of-stack pointer;

ST(0) — SRC

Description

FLD pushes the source operand onto the FPU stack. If the source is an FPU stack register,
the register number is computed from the top-of-stack pointer before it is decremented.
Because of this instruction characteristic, the following coding duplicates the stack top:
FLD ST(0)

FPU Flags Affected
The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are undefined.

Numeric Exceptions

Denormalized Operand, Invalid Operation, Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.
Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.
Note: If the source operand is in single or double-real format, it is automatically converted
to the extended-real format. Loading an extended-real operand does not require conver-
sion, so the | and D exceptions will not occur in this case. ST(7) must be empty to avoid
causing an invalid-operation exception.
2-74 Am486 Microprocessor Instruction Set

AMDH

2.69

FLD1 Loads Constant +1.0

Opcode Instruction Clocks Description

D9 E8 FLD1 4 Pushes +1.0 onto the FPU stack.
Operation

Decrenent FPU top-of-stack pointer;
ST(0) ~ +1.0

Description
FLD1 pushes a +1.0 (in extended-real format) onto the FPU stack.
FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are undefined.

Numeric Exceptions

Stack Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: ST(7) must be empty to avoid an invalid exception. An internal 66-bit constant is
used and rounded to external-real format (as specified by the RC bit of the control words).
The precision exception is not raised.

Am486 Microprocessor Instruction Set 2-75

2.70 FLDCW Loads Control Word
Opcode Instruction Clocks Description
D9 /5 FNLDCW m2byte 4 Loads the FPU control word from m2byte.
Operation
CW ~ SRC
Description
FLDCW replaces the current value of the FPU control word with the value contained in the
specified memory word.
FPU Flags Affected
CO0, C1, C2, C3 undefined
Numeric Exceptions
None, except for unmasking an existing exception.
Protected Mode Exceptions
General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPLis 3, Alignment Check (17) indicates
there is an unaligned memory reference.
Note: FLDCW is typically used to establish or change the FPU’s mode of operation. If an
exception bit in the status word is set, loading a new control word that unmasks that
exception will result in a floating-point error condition. When changing modes, the
recommended procedure is to clear any pending exceptions before loading the new control
word.

2-76 Am486 Microprocessor Instruction Set

AMDH

2.71

FLDENV Loads FPU Environment
Opcode Instruction Clocks Description
D9 /4 FLDENV 44 real or virtual/ Loads FPU environment from m14byte or m28byte.
m14/28byte 34 protected

Operation
FPU environment ~ SRC
Description

FLDENYV reloads the FPU environment from the memory area defined by the source op-
erand. This data should be written by previous FSTENV or FNSTENV instruction. The FPU
environment consists of the FPU control word, status word, tag word, and error pointers
(both data and instruction). The environment layoutin memory depends on both the operand
size and the current operating mode of the microprocessor. The USE attribute of the current
code segment determines the operand size: the 14-byte operand applies to a USE16
segment, and the 28-byte operand applies to a USE32 segment. FLDENV should be exe-
cuted in the same operating mode as the corresponding FSTENV or FNSTENV.

FPU Flags Affected

CO0, C1, C2, C3 as loaded

Numeric Exceptions

None, except for loading an unmasked exception.
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROis set. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the environment image contains an unmasked exception, loading it will result in a
floating-point error condition.

Am486 Microprocessor Instruction Set 2-77

FLDL2E Loads Constant log.e

Concurrent
Opcode Instruction Clocks Execution Description

D9 EA FLDL2E 8 2 Pushes log,e onto the FPU Stack.

Operation

Decrenent FPU top-of-stack pointer;
ST(0) ~ log.e

Description
FLDL2E pushes log,e (in extended-real format) onto the FPU stack.
FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are undefined.

Numeric Exceptions

Stack Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: ST(7) must be empty to avoid an invalid exception. An internal 66-bit constant is
used and rounded to external-real format (as specified by the RC bit of the control words).
The precision exception is not raised.

2-78

Am486 Microprocessor Instruction Set

AMDH

2.73

FLDL2T Loads Constant log,10
Concurrent
Opcode Instruction Clocks Execution Description
D9 E9 FLDL2T 8 2 Pushes log,10 onto the FPU stack.
Operation

Decrenent FPU top-of-stack pointer;
ST(0) ~ lo0g,10

Description
FLDL2T pushes log,10 (in extended-real format) onto the FPU stack.
FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are undefined.

Numeric Exceptions

Stack Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: ST(7) must be empty to avoid an invalid exception. An internal 66-bit constant is
used and rounded to external-real format (as specified by the RC bit of the control words).
The precision exception is not raised.

Am486 Microprocessor Instruction Set 2-79

FLDLG2 Loads Constant log,,2

Concurrent
Opcode Instruction Clocks Execution Description

D9 EC FLDLG2 8 Pushes log,,2 onto the FPU stack.

Operation

Decrenent FPU top-of-stack pointer;
ST(0) ~ 10g,2

Description
FLDLG2 pushes log,,2 (in extended-real format) onto the FPU stack.
FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are undefined.

Numeric Exceptions

Stack Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: ST(7) must be empty to avoid an invalid exception. An internal 66-bit constant is
used and rounded to external-real format (as specified by the RC bit of the control words).
The precision exception is not raised.

2-80

Am486 Microprocessor Instruction Set

AMDH

2.75

FLDLN2 Loads Constant log 2
Concurrent
Opcode Instruction Clocks Execution Description
D9 ED FLDLN2 8 2 Pushes log,2 onto the FPU stack.
Operation

Decrenent FPU top-of-stack pointer;
ST(0) ~ lo0g.2

Description
FLDLNZ2 pushes log,2 (in extended-real format) onto the FPU stack.
FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are undefined.

Numeric Exceptions

Stack Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: ST(7) must be empty to avoid an invalid exception. An internal 66-bit constant is
used and rounded to external-real format (as specified by the RC bit of the control words).
The precision exception is not raised.

Am486 Microprocessor Instruction Set 2-81

FLDPI Loads Constant 1t

Concurrent
Opcode Instruction Clocks Execution Description

D9 EB FLDPI 8 2 Pushes 1t onto the FPU stack.

Operation

Decrenent FPU top-of-stack pointer;
ST(0) « m

Description
FLDPI pushes 1t (in extended-real format) onto the FPU stack.
FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are undefined.

Numeric Exceptions

Stack Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: ST(7) must be empty to avoid an invalid exception. An internal 66-bit constant is
used and rounded to external-real format (as specified by the RC bit of the control words).
The precision exception is not raised.

2-82

Am486 Microprocessor Instruction Set

AMDH

2.77

FLDZ Loads Constant +0.0

Opcode Instruction Clocks Description

D9 EE FLDZ 4 Pushes +0.0 onto the FPU stack.
Operation

Decrenent FPU top-of-stack pointer;
ST(0) ~ +0.0

Description
FLDZ pushes +0.00 (in extended-real format) onto the FPU stack.
FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are undefined.

Numeric Exceptions

Stack Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: ST(7) must be empty to avoid an invalid exception. An internal 66-bit constant is
used and rounded to external-real format (as specified by the RC bit of the control words).
The precision exception is not raised.

Am486 Microprocessor Instruction Set 2-83

2.78 FMUL Multiplies Real
Concurrent

Opcode Instruction Clocks Execution Description

D8 /1 FMUL m32real 11 8 Multiplies ST by m32real.

DC/1 FMUL m64real 14 11 Multiplies ST by m64real.

D8 C8+i FMUL ST,ST() 16 13 Multiplies ST by ST(i).

DC C8+ FMUL ST(i),ST 16 13 Multiplies ST(i) by ST.

Operation

DEST — DEST [ISRC

Description
The multiplication instructions multiply the destination operand by the source operand and
return the product to the destination.

FPU Flags Affected
The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Denormalized Operand, Invalid Operation,
Stack Fault

Protected Mode Exceptions
General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.
Note: If the source operand is in memory, it is automatically converted to the extended-
real format.

2-84 Am486 Microprocessor Instruction Set

AMDH

2.79

FMULP Multiplies Real and Pops FPU Stack Top
Concurrent

Opcode Instruction Clocks Execution Description

DE C8+i FMULP ST(i),ST 16 13 Multiplies ST(i) by ST and pops ST.
DE C9 FMULP 16 13 Multiplies ST(1) by ST and pops ST.
Operation

DEST ~ DEST LISRC,
pop ST FI

Description

The multiplication instructions multiply the destination operand by the source operand and
return the product to the destination.

FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Denormalized Operand, Invalid Operation,
Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the source operand is in memory, it is automatically converted to the extended-
real format.

Am486 Microprocessor Instruction Set 2-85

2.80 FNCLEX Clears Exceptions without Checking for FPU Error
Opcode Instruction Clocks Description
D8 E2 FNCLEX 7 Clears floating-point exception flag without
checking for floating-point error conditions.
Operation
SW[0-7] < O;
SW[15] ~ 0
Description
FNCLEX clears the exception flags, the exception status flag, and the busy flag of the FPU
status word.
FPU Flags Affected
CO0, C1, C2, C3 undefined
Numeric Exceptions
None
Protected Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
2-86 Am486 Microprocessor Instruction Set

AMDH

2.81

FNINIT Initializes FPU without Checking for Unmasked FPU Error

Opcode Instruction Clocks Description
DB E3 FNINIT 17 Initializes FPU without checking for unmasked
floating-point error condition.
Operation
CW ~ 037Fh; (* Control word *)
SW « 0; (* Status word *)
TW ~ FFFFh; * Tag word *)
FEA —~ 0; FDS ~ O; (* Data pointer *)
*

FIP « 0; FOP - 0; FCS « 0; I nstruction pointer *)
Description

The initialization instructions set the FPU into a known state, unaffected by any previous
activity.

The FPU control word is set to 037Fh (round to nearest, all exceptions masked, 64-bit
precision). The status word is cleared (no exception flags set, stack register RO = stack
top). The stack registers are all tagged as empty. The error pointers (both instruction and
data) are cleared.

FPU Flags Affected

Co0, C1, C2, C3 cleared

Numeric Exceptions

None

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: FNINIT leaves the FPU in the same state as that which results from a hardware
RESET signal. Unlike the Intel 387 math coprocessor, FNINIT clears the error pointers in
the Am486 processor.

Am486 Microprocessor Instruction Set 2-87

2.82 FNOP No Operation
Opcode Instruction Clocks Description
D9 DO FNOP 3 No operation is performed.
Description
FNOP performs no operation. If affects only the instruction pointers.
FPU Flags Affected
CO0, C1, C2, C3 undefined
Numeric Exceptions
None
Protected Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
2-88 Am486 Microprocessor Instruction Set

AMDH

2.83

FNSAVE Stores FPU State w/o Checking for Unmasked FPU Error

Opcode Instruction Clocks Description
DD /6 FNSAVE 154 real or virtual/ Stores FPU environment to m94byte or
m94/108byte 143 protected m108byte without checking for unmasked

floating-point error condition, and then rein-
itializes the FPU.

Operation

DEST ~ FPU state;
initialize FPU, (* Equivalent to FNINIT *)

Description

FNSAVE writes the current FPU state (environment and register stack) to the specified

destination, and then reinitializes the FPU, without checking for unmasked floating-point
error conditions. The environment consists of the FPU control word, status word, tag word,
and error pointers (both data and instruction). The state layout in memory depends on both
the operand size and the current operating mode of the microprocessor. The USE attribute
of the current code segment determines the operand size: the 94-byte operand applies to
USE16 segment, and the 108-byte operand applies to a USE32 segment. The stack reg-
isters, ST(0) to ST(7), are in the 80 bytes immediately following the environment image.

FPU Flags Affected

Co0, C1, C2, C3 cleared
Numeric Exceptions

None

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault(14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: FNSAVE does not store the FPU state until all FPU activity is complete; the saved
image reflects the state of the FPU after any previously decoded instruction is executed.
If a program must read from the memory image of the state after a save instruction, it must
issue an FWAIT instruction to ensure that the storage is complete. The save instructions
are typically used when an operating system needs to perform a context switch, or an
exception handler needs to use the FPU, or an application program wants to pass a “clean”
FPU to a subroutine.

Am486 Microprocessor Instruction Set 2-89

2.84 FNSTCW Stores Control Word without Checking for FPU Error
Opcode Instruction Clocks Description
D9 /7 FNSTCW m2byte 3 Stores FPU control work to m2byte without checking for

unmasked floating-point error condition.

Operation
DEST - CW
Description
FNSTCW writes the current value of the FPU control word to the specified destination
without checking for an unmasked floating-point error condition.
FPU Flags Affected
CO0, C1, C2, C3 undefined
Numeric Exceptions
None
Protected Mode Exceptions
General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROis set. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

2-90 Am486 Microprocessor Instruction Set

AMDH

2.85

FNSTENV Stores FPU Environment w/o Checking for FPU Error

Opcode Instruction Clocks Description
D9 /6 FNSTENV 67 real or virtual/ Stores FPU environment to m14byte or
m14/28byte 56 protected m28byte without checking for unmasked float-

ing-point error condition. Then masks all float-
ing-point exceptions.

Operation

DEST — FPU environnent;
CW[0-5] « 111111

Description

FNSTENV writes the current FPU environment to the specified destination, and then masks
all floating-point exceptions without checking for unmasked floating-point error conditions.
The FPU environment consists of the FPU control word, status word, tag word, and error
pointer (both data and instruction). The environment layout in memory depends on both
the operand size and the current operating mode of the microprocessor. The USE attribute
of the current code segment determines the operand size: the 14-byte operand applies to
a USE16 segment, and the 28-byte operand applies to a USE32 segment.

FPU Flags Affected

Co0, C1, C2, C3 undefined
Numeric Exceptions

None

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective

address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in

CROisset. Page Fault (14) indicates a page fault. If CPLis 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: FNSTENV does not store the environment until all FPU activity is complete, the saved
environment reflects the state ofthe FPU after any previously decoded instruction has been
executed. The store environment instructions are often used by exception handlers
because they provide access to the FPU error pointers. The environment is typically saved
onto the memory stack. After saving the environment, FNSTENYV sets all the exception
masks in the FPU control word. This prevents floating-point errors from interrupting the
exception handler.

Am486 Microprocessor Instruction Set 2-91

FNSTSW Stores Status Word w/o Checking for Unmasked FPU Error

Opcode Instruction Clocks Description

DF /7 FNSTSW m2byte 3 Stores FPU status word to m2byte without checking for
unmasked floating-point error condition.

DF EO FNSTSW AX 3 Stores FPU status word to AX register without checking
for unmasked floating-point error condition.

Operation
DEST ~ SW
Description

FNSTSW writes the current value of the FPU status word to the specified destination, which
can be either a 2-byte location in memory or the AX register, without checking for an
unmasked floating-point error condition.

FPU Flags Affected

CO0, C1, C2, C3 undefined
Numeric Exceptions

None

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: FNSTSW is used primatrily in conditional branching (after a comparison, FPREM,
FPREM1, or FXAM instruction). It can also invoke exception handlers (by polling the
exception bits) in environments that do not use interrupts. When FNSTSW AX is executed,
the AX register is updated before the Am486 microprocessor executes any further
instructions. The status stored is that from the completion of the prior ESC instruction.

2-92

Am486 Microprocessor Instruction Set

AMDH

2.87

FPATAN Partial Arctangent
Concurrent
Opcode Instruction Clocks Execution Description
D9 F3 FPATAN 289 (218-303) 5 (2-17) Replaces ST(1) with
arctan (ST(1) + ST) and pops ST.

Operation
ST(1) < arctan (ST(1) + ST);

pop ST FI

Description

The partial arctangent instruction computes the arctangent of ST(1) + ST and returns the
computed value, expressed in radians, to ST(1). It then pops ST. The result has the same
sign as the operand from ST(1) and a magnitude less than 1t

FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Denormalized Operand, Invalid Operation, Stack
Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: There is no restriction on the range of arguments that FPATAN can accept. The fact
that FPATAN takes two arguments and computes the arctangent of their ratio simplifies the
calculation of other trigonometric functions. For instance, arcsin (x) (which is the arctangent
of x =V (1 —x2)) can be computed using the following sequence of operations: Push x onto
the FPU stack; compute V(1 — x2) and push the resulting value onto the stack; execute
FPATAN. The Am486 processor checks for interrupts while performing this instruction. It
will abort this instruction to serve an interrupt.

Am486 Microprocessor Instruction Set 2-93

2.88 FPREM Partial Remainder (Non-lIEEE 754 compliant)
Opcode Instruction Clocks Concurrent Description
Execution
D9 F8 FPREM 84 (70-138) 2 (2-8) Replaces ST with the remainder
obtained when dividing ST by ST(1).
Operation
EXPDI F ~ exponent(ST) — exponent(ST(1));
IF EXPDIF < 64
THEN
Q - integer obtained by chopping ST + ST(1) toward zero;
ST « ST—(ST(1));
C2 - 0;
Co, C1,C3 ~ three least-significant bits of Q; (* Q2, Q1, Q0 *)
ELSE
C2 ~1;
N ~ anumber between 32 and 63
QQ - integer obtained by chopping (ST + ST(1)) ~ 2 EXPDIFN t owar d zer o;
ST « ST—(ST(1) [QQ [&,
Fl ;
Description
FPREM computes the remainder of dividing ST by ST(1) using iterative subtraction and
leaves the resultin ST. The remainder’s sign is the same as the sign of the original dividend
in ST. The magnitude of the remainder is less than that of the modulus.
FPU Flags Affected
If the IE and SF status word bits are set (stack exception), C1 indicates whether it is an
overflow (C1 = 1) or underflow (C1 = 0); otherwise, C3 = Q0, C1 = Q1, and CO = Q2 least-
significant quotient bits. C2 indicates the reduction status: 0 = complete; 1 = incomplete.
Numeric Exceptions
Underflow, Denormalized Operand, Invalid Operation, Stack Fault
Protected Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Note: FPREM produces an exact result with no precision (inexact) exception and no
rounding. FPREM does not comply with IEEE Std 754 (see FPREM1), but is compatible
with 8087 and 80287 coprocessors. A higher-priority interrupting routine can force the FPU
to switch context between the instructions in the remainder loop.
FPREM can reduce periodic function arguments. C3, C1, and CO represent the three least-
significant quotient bits when execution is complete. This is important in argument reduction
for the tangent function (using a modulus ofV4), because it locates the original angle within
the correct sector of the unit circle.
2-94 Am486 Microprocessor Instruction Set

AMDH

2.89

FPREM1 Partial Remainder (IEEE 754 compliant)
Opcode Instruction Clocks Concurrent Description
Execution
D9 F5 FPREM1 94.5 (72-167) 5.5 (2-18) Replaces ST with the remainder
obtained when dividing ST by ST(1).

Operation

EXPDI F ~ exponent(ST) — exponent(ST(1));

IF EXPDIF < 64
THEN

Q - integer obtained by chopping ST + ST(1) toward zero;
ST « ST—(ST(1) Q);

C2 - 0;
Co, C1,C3 ~ three least-significant bits of Q; (* Q2, Q1, Q0 *)
ELSE
c2 -1,
N « anumber between 32 and 63
QQ - integer obtained by chopping (ST + ST(1)) ~ 2 EXPDIFN t owar d zer o;
ST « ST—(ST() [(RQ [ExPoFN,
Fl ;
Description

FPREM1 computes the remainder of dividing ST by ST(1) using iterative subtraction, and
leaves the resultin ST. The magnitude of the remainder is less than half that of the modulus.

FPU Flags Affected

If the IE and SF status word bits are set (stack exception), C1 indicates whether it is an
overflow (C1 = 1) or underflow (C1 = 0); otherwise, C3 = Q0, C1 = Q1, and CO = Q2 least-
significant quotient bits. C2 indicates the reduction status: 0 = complete; 1 = incomplete.

Numeric Exceptions

Underflow, Denormalized Operand, Invalid Operation, Stack Fault
Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: FPREM1 produces an exact result with no precision (inexact) exception and no
rounding. FPREM1 complies with IEEE Std 754 (see also FPREM). A higher-priority
interrupting routine can force the FPU to switch context between the instructions in the
remainder loop.

FPREM1 can reduce periodic function arguments. C3, C1, and CO represent the three
least-significant quotient bits when execution is complete. This is important in argument
reduction for the tangent function (using a modulus of T7v4), because it locates the original
angle within the correct sector of the unit circle.

Am486 Microprocessor Instruction Set 2-95

FPTAN Partial Tangent

Concurrent
Opcode Instruction Clocks Execution Description

D9 F2 FPTAN 244 (200-273) 70 Replaces ST with its tangent and
push 1 onto the FPU stack.

Operation

| F operand is in range
THEN
c2 -~ 0;
ST « tan (ST);
Decrenent top-of-stack pointer;
ST ~ 1.0;
ELSE
c2 - 1
Fl

Description

FPTAN replaces the contents of ST with tan (ST), and then pushes 1.0 onto the FPU stack
to maintain 8087 and 80287 compatibility. ST, expressed in radians, must lie in the range
|6]< 2%,

FPU Flags Affected

If C2 = 0 (reduction complete), the result determines the C1 setting. If both the IE and SF
bits of the status word are set (indicating a stack exception), CO distinguishes between
stack overflow (C1 = 1) and underflow (C1 = 0); if PE is set, C1 indicates whether the last
rounding was upward. If C2 = 1 (reduction incomplete), C1 is undefined. CO and C3 are
always undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Denormalized Operand, Invalid Operation, Stack
Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: If the operand is outside the acceptable range, the C2 flag is set, and ST remains
unchanged. Reduce the operand to an absolute value smaller than 2% by subtracting an
appropriate integer multiple of 2. For 1, use the value used as the full 66-bit internal Tt
used by the FPU: 4 [10.C90FDAA22168C234Ch. This ensures that the results are
consistent with argument reduction used by the FPU for trigonometric functions. You cannot
represent this number as an extended-real value, however. A suggested solution is to
represent 1t as the sum of a highm (the 33 most-significant bits) and a lown (the 33 least-
significant bits). The Am486 processor can abort this instruction to service an interrupt.
ST(7) must be empty to avoid an invalid-operation exception.

2-96

Am486 Microprocessor Instruction Set

AMDH

2.91

FRNDINT Rounds to Integer
Concurrent
Opcode Instruction Clocks Execution Description
D9 FC FRNDINT 29.1 (21-30) 7.4 (2-8) Rounds ST to an integer.
Operation

ST « rounded ST
Description

FRNDINT rounds the value in ST to an integer according to the RC field of the FPU control
word.

FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Denormalized Operand, Invalid Operation, Stack Fault
Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Am486 Microprocessor Instruction Set 2-97

FRSTOR Restores FPU State

Opcode Instruction Clocks Description

DB /4 FRSTOR 131 real or virtual/ 120 Loads FPU state from m94byte or m108byte.
m94/108byte protected

Operation
FPU state ~ SRC
Description

FRSTOR reloads the FPU state (environment and register stack) from the memory area
defined by the source operand. This data should have been written by a previous FSAVE
or FNSAVE instruction.

The FPU environment consists of the FPU control word, status word, tag word, and error
pointers (both data and instruction). The environment layout in memory depends on both
the operand size and the current operating mode of the microprocessor. The USE attribute
of the current code segment determines the operand size: the 14-byte operand applies to
a USE16 segment, and the 28-byte operand applies to a USE32 segment.

Figures 15-5 through 15-8 show the environment layouts for both operand sizes in both
Real Mode and Protected Mode. (In Virtual 8086 Mode, the Real Mode layout is used.) The
stack registers, beginning with ST and ending with ST(7), are in the 80 bytes that immedi-
ately follow the environment image. FRSTOR should be executed in the same operating
mode as the corresponding FSAVE or FNSAVE.

FPU Flags Affected

Co0, C1, C2, C3 as loaded

Numeric Exceptions

None, except for loading an unmasked exception.
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROis set. Page Fault(14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the state image contains an unmasked exception, loading it generates a floating-
point error condition.

2-98

Am486 Microprocessor Instruction Set

AMDH

2.93

FSAVE Stores FPU State after Checking for Unmasked FPU Error

Opcode Instruction Clocks Description
9B DD /6 FSAVE 154 real or virtual/ Stores FPU environment to m94byte or
m94/108byte 143 protected + 3+ for m108byte after checking for unmasked float-
FWAIT ing-point error condition. Reinitializes FPU.
Operation

DEST ~ FPU state;
initialize FPU, (* Equivalent to FNINIT *)

Description

FSAVE writes the current FPU state (environment and register stack) to the specified
destination and then reinitializes the FPU, without checking for unmasked floating-point
error conditions. The environment consists of the FPU control word, status word, tag word,
and error pointers (both data and instruction). The state layout in memory depends on both
the operand size and the current operating mode of the microprocessor. The USE attribute
of the current code segment determines the operand size: the 94-byte operand applies to
USE16 segment, and the 108-byte operand applies to a USE32 segment. The stack reg-
isters, ST(0) to ST(7), are in the 80 bytes immediately following the environment image.

FPU Flags Affected

Co0, C1, C2, C3 cleared
Numeric Exceptions

None

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective

address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in

CROis set. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: FSAVE does not store the FPU state until all FPU activity is complete. The saved
image reflects the state of the FPU after any previously decoded instruction is executed.
If a program must read from the memory image of the state after a save instruction, it must
issue an FWAIT instruction to ensure that the storage is complete. The save instructions
are typically used when an operating system needs to perform a context switch, or an
exception handler needs to use the FPU, or an application program wants to pass a “clean”
FPU to a subroutine.

Am486 Microprocessor Instruction Set 2-99

FSCALE Scales

Concurrent

Clocks Execution

31(30-32) 2

Opcode Instruction Description

D9 FD FSCALE Scales ST by ST(2).

Operation
ST ~ ST [2sw
Description

The scale instruction interprets the value in ST(1) as an integer, and adds this integer to
the exponent of ST. Thus, FSCALE provides rapid multiplication or division by integral
powers of 2.

FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Denormalized Operand, Invalid Operation,
Stack Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: FSCALE can be used as an inverse to FXTRACT. Since FSCALE does not pop the
exponent part, however, FSCALE must be followed by FSTP ST(1) in order to completely
undo the effect of a preceding FXTRACT. There is no limit on the range of the scale factor
in ST(1). Ifthe value is not integral, FSCALE uses the nearest integer smaller in magnitude
(i.e., it chops the value toward 0). If the resulting integer is zero, the value in ST is not
changed.

2-100

Am486 Microprocessor Instruction Set

AMDH

2.95

FSIN Sine

Concurrent
Opcode Instruction Clocks Execution Description

D9 FE FSIN 241 (193-279) 2 Replaces ST with its sine.

Operation

| F operand is in range
THEN

2 ~ 0

ST « sin (ST);
ELSE

2 « 1
Fl ;

Description

The sine instruction replaces the contents of ST with sin (ST). ST, expressed in radians,
must lie in the range | 6 | < 2%,

FPU Flags Affected

If C2 = 0 (reduction complete), the result determines the C1 setting. If both the IE and SF
bits of the status word are set (indicating a stack exception), CO distinguishes between
stack overflow (C1 = 1) and underflow (C1 = 0); if PE is set, C1 indicates whether the last
rounding was upward. If C2 = 1 (reduction incomplete), C1 is undefined. CO and C3 are
undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Denormalized Operand, Invalid Operation, Stack
Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: If the operand is outside the acceptable range, the C2 flag is set and ST remains
unchanged. Reduce the operand to an absolute value smaller than 2% by subtracting an
appropriate integer multiple of 2. For 1, use the full 66-bit internal Tt used by the FPU:

4 [Jo.C90FDAA22168C234Ch. This ensures that the results are consistent with the
argument reduction used by the FPU for trigonometric functions. You cannot represent this
number as an extended-real value, however. A suggested solution is to represent Tt as the
sum of a highm (the 33 most-significant bits) and a lowmn (the 33 least-significant bits). The
Am486 processor can abort this instruction to service an interrupt.

If you need to compute sine and cosine, use FSINCQOS for faster execution.

Am486 Microprocessor Instruction Set 2-101

2.96 FSINCOS Sine and Cosine
Concurrent
Opcode Instruction Clocks Execution Description
D9 FB FSINCOS 291 (243-329) 2 Computes the sine and cosine of ST;
replaces ST with the sine, and then
pushes the cosine onto the FPU stack.
Operation
| F operand is in range
THEN
cC2 ~ 0;
TEMP ~ cos (ST);
ST « sin (ST);
Decrenent FPU top-of-stack pointer;
ST - TEMP;
ELSE
c ~ 1;
Fl :
Description
FSINCOS computes both sine (ST) and cosine (ST), replaces ST with the sine, and then
pushes the cosine onto the FPU stack. ST, expressed in radians, must lie in the range | 8
| < 263.
FPU Flags Affected
If C2 = 0 (reduction complete), the result determines the C1 setting. If both the IE and SF
bits of the status word are set (indicating a stack exception), CO distinguishes between
stack overflow (C1 = 1) and underflow (C1 = 0); if PE is set, C1 indicates whether the last
rounding was upward. If C2 = 1 (reduction incomplete), C1 is undefined. CO and C3 are
undefined.
Numeric Exceptions
Precision (Inexact Result), Underflow, Denormalized Operand, Invalid Operation, Stack
Fault
Protected Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Note: If the operand is outside the acceptable range, the C2 flag is set, and ST remains
unchanged. Reduce the operand to an absolute value smaller than 2% by subtracting an
appropriate integer multiple of 2. For 11, use the full 66-bit internal Tt used by the FPU:
4 [J0.C90FDAA22168C234Ch. This ensures that the results are consistent with the
argument reduction used by the FPU for trigonometric functions. You cannot represent this
number as an extended-real value, however. A suggested solution is to represent Tt as the
sum of a hightt (the 33 most-significant bits) and a lowrt (the 33 least-significant bits). The
Am486 processor can abort this instruction to service an interrupt.
2-102 Am486 Microprocessor Instruction Set

AMDH

2.97

FSQRT Square Root
Concurrent
Opcode Instruction Clocks Execution Description
D9 FA FSQRT 85.5 (83-87) 70 Replaces ST with its square root.
Operation

ST « square root of ST;

Description

The square root instruction replaces the value in ST with its square root.
FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Denormalized Operand, Invalid Operation, Stack Fault
Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: The square root of -0 is —0.

Am486 Microprocessor Instruction Set 2-103

2.98 FST Stores Real

Opcode Instruction Clocks Description

D9 /2 FST m32real 7 Copies ST to m32real.

DD /2 FST m64real 8 Copies ST to m64real.

DD DO+i FST ST(i) 3 Copies ST to ST(i).

Operation

DEST ~ ST(0)

Description

FST copies the current value in the ST register to the destination, which can be another
register or a single or double real-memory operand.

FPU Flags Affected
The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Register destinations: Stack Fault

Single or double real destinations: Precision (Inexact Result), Underflow, Overflow, Denor-
malized Operand, Invalid Operation, Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the destination is 32 bits or 64 bits, the significand is rounded to the width of the
destination according to the RC field of the control word, and the exponent is converted to
the width and bias of the destination format. The over/underflow condition is checked as
well. If ST contains zero, +», or a NaN, then the significand is not rounded but chopped
(on the right) to fit the destination. The exponent of such a value is not converted; it too is
chopped on the right. These operations preserve the value's identity as« or NaN (exponent
all ones). The invalid-operation exception is not raised when the destination is a nonempty
stack element.

2-104 Am486 Microprocessor Instruction Set

AMDH

2.99

FSTCW Stores Control Word after Checking for FPU Error

Opcode Instruction Clocks Description
9B D9 /7 FSTCW m2byte 3+ 3+ Stores FPU control word to m2byte after checking for
for FWAIT unmasked floating-point error condition.
Operation
DEST - CW
Description

FSTCW writes the current value of the FPU control word to the specified destination, after
checking for an unmasked floating-point error condition.

FPU Flags Affected

CO0, C1, C2, C3 undefined
Numeric Exceptions

None

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROis set. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-105

b‘l AMD

2.100

FSTENV Stores FPU Environment after Checking for FPU Error

Opcode Instruction Clocks Description

9B D9 /6 FSTENV 67 real or virtual/ Stores FPU environment to m14byte or
m14/28byte 56 protected + m28byte after checking for unmasked floating-
3+ for FWAIT point error condition; then masks all floating-
point exceptions.

Operation

DEST — FPU environnent;
CW[O-5] « 111111

Description

FSTENV writes the current FPU environment to the specified destination, and then masks
all floating-point exceptions, after checking for unmasked floating-point error conditions.
The FPU environment consists of the FPU control word, status word, tag word, and error
pointer (both data and instruction). The environment layout in memory depends on both
the operand size and the current operating mode of the microprocessor. The USE attribute
of the current code segment determines the operand size: the 14-byte operand applies to
a USE16 segment, and the 28-byte operand applies to a USE32 segment.

FPU Flags Affected

Co0, C1, C2, C3 undefined
Numeric Exceptions

None

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPLis 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: FSTENYV does not store the FPU environment until all FPU activity is complete. The
saved environment reflects the state of the FPU after any previously decoded instruction
has been executed. The stored environment instructions are often used by exception
handlers because they provide access to the FPU error pointers. The FPU environment is
typically saved onto the memory stack. After saving the FPU environment, FSTENYV sets
all the exception masks in the FPU control word. This prevents floating-point errors from
interrupting the exception handler.

2-106

Am486 Microprocessor Instruction Set

AMDH

2.101

FSTP Stores Real and Pops the FPU Stack Top
Opcode Instruction Clocks Description
D9 /3 FSTP m32real 7 Copies ST to m32real, then pops ST.
DD /3 FSTP mé64real 8 Copies ST to m64real, then pops ST.
DB /7 FSTPm80real 6 Copies ST to m80real, then pops ST.
DD D8+i FSTP ST(i) 3 Copies ST to ST(i), then pops ST.

Operation

DEST ~ ST(0);

pop ST FI

Description

FSTP copies the current ST register value to the destination, which can be another register
or a single-, double-, or extended-real memory operand, and then pops ST. If the source
is a register, the number is used before the stack is popped.

FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Register or extended-real destinations: Stack Fault
Single or double real destinations: Precision (Inexact Result), Underflow, Overflow, Denor-
malized Operand, Invalid Operation, Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates part of the operand lies outside the effective address
space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPLis 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the destination is 32 bits or 64 bits, the significand is rounded to the width of the
destination according to the RC field of the control word, and the exponent is converted to
the width and bias of the destination format. The over/underflow condition is checked for
as well. If ST contains zero, #», or a NaN, then the significand is not rounded but chopped
(on the right) to fit the destination. The exponent of such a value is not converted, it too is
chopped on the right. These operations preserve the value's identity as« or NaN (exponent
all ones). The invalid-operation exception is not raised when the destination is a nonempty
stack element.

Am486 Microprocessor Instruction Set 2-107

b‘l AMD

2.102

FSTSW Stores Status Word after Checking for Unmasked FPU Error

Opcode Instruction Clocks Description

9B DF /7 FSTSW m2byte 3+ 3+ Stores FPU status word to m2byte after checking for
for FWAIT unmasked floating-point error condition.

9BDFEO FSTSW AX 3+ 3+ Stores FPU status word to AX register after checking for
for FWAIT unmasked floating-point error condition.

Operation
DEST ~ SW
Description

FSTSW writes the current value of the FPU status word to the specified destination, which
can be either a 2-byte location in memory or the AX register, after checking for an unmasked
floating-point error condition.

FPU Flags Affected

CO0, C1, C2, C3 undefined
Numeric Exceptions

None

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: FSTSW is used primatrily in conditional branching (after a comparison, FPREM,
FPREM1, or FXAM instruction). It can also invoke exception handlers (by polling the
exception bits) in environments that do not use interrupts.

2-108

Am486 Microprocessor Instruction Set

AMDH

2.103

FSUB Subtracts Real
Opcode Instruction Clocks Concurrent Description
Execution
D8 /4 FSUB m32rea; 10 (8-20) 7 (5-17) Subtracts m32real from ST.
DC /4 FSUB m64real 10 (8-20) 7 (5-17) Subtracts m64real from ST.
D8 EO+i FSUB ST,ST(i) 10 (8-20) 7 (5-17) Subtracts ST(i) from ST.
DC E8+i FSUB ST(i),ST 10 (8-20) 7 (5-17) Replaces ST(i) with ST-ST()).
Operation

DEST ~ ST - Other Operand
Description

The subtraction instructions subtract the other operand from the stack top and return the
difference to the destination.

FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Denormalized Operand, Invalid Operation,
Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the source operand is in memory, it is automatically converted to the extended-
real format.

Am486 Microprocessor Instruction Set 2-109

b‘l AMD

2.104 FSUBP Subtracts Real and Pops FPU Stack Top
Opcode Instruction Clocks Concurrent Description
Execution

DE E8+i FSUBP ST(i)),ST 10(8-20) 7 (5-17) Replaces ST(i) with ST-ST(i); pops ST.

DE E9 FSUBP 10 (8-20) 7 (5-17) Replaces ST(1) with ST-ST(1); pops ST.
Operation

DEST ~ ST - Other Operand;

pop ST FI

Description

FSUBP subtracts the other operand from the stack top, returns the difference to the desti-
nation, and pops ST.

FPU Flags Affected
The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Denormalized Operand, Invalid Operation,
Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the source operand is in memory, it is automatically converted to the extended-
real format.

2-110 Am486 Microprocessor Instruction Set

AMDH

2.105

FSUBR Reverse Subtracts Real
Opcode Instruction Clocks Concurrent Description
Execution
D8 /5 FSUBR m32real 10 (8-20) 7 (5-17) Replaces ST with m32real — ST.
DC /5 FSUBR mé64real 10 (8-20) 7 (5-17) Replaces ST with m64real — ST.
D8 E8+i FSUBR ST,ST(i) 10 (8-20) 7 (5-17) Replaces ST with ST(i) — ST.
DC EO+i FSUBR ST(i),ST 10 (8-20) 7 (5-17) Subtracts ST from ST(i).
Operation

DEST ~ Other Operand — ST
Description

The reverse subtraction instructions subtract the stack top from the other operand and
return the difference to the destination.

FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Denormalized Operand, Invalid Operation,
Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the source operand is in memory, it is automatically converted to the extended-
real format.

Am486 Microprocessor Instruction Set 2-111

b‘l AMD

2.106 FSUBRP Reverse Subtracts and Pops FPU Stack Top
Opcode Instruction Clocks Concurrent Description
Execution

DE EO+i FSUBRP ST(i),ST 10 (8-20) 7 (5-17) Subtracts ST from ST(i); pops ST.

DE E1 FSUBRP 10 (8-20) 7 (5-17) Subtracts ST from ST(1); pops ST.
Operation

DEST ~ Other Operand — ST;

pop ST FI

Description
The reverse subtraction instructions subtract the stack top from the other operand and
return the difference to the destination.

FPU Flags Affected
The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Denormalized Operand, Invalid Operation,
Stack Fault

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CRO is set.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Coprocessor Not Available (7) occurs if either EM or TS in
CROisset. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: If the source operand is in memory, it is automatically converted to the extended-
real format.

2-112 Am486 Microprocessor Instruction Set

AMDH

2.107

FTST Test
Concurrent
Opcode Instruction Clocks Execution Description
D9 E4 FTST 4 1 Compares ST with 0.0.
Operation

CASE (rel ation of operands) OF

Not conpar abl e: C3, C2, CO ~ 111;
ST > SRC C3, C2, CO ~ 000;
ST < SRC c3, C, GO ~ 001;
ST = SRC. c3, C, GO ~ 100;

CF ~ Co;

PF ~ C2;

ZF ~ C3;

Fl

Description

FTST compares the stack top to 0.0. Following the instruction, the condition codes reflect
the result of the comparison.

FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are set as specified above.

Numeric Exceptions

Denormalized Operand, Invalid Operation, Stack Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: If ST contains a NaN or is in an undefined format, or if a stack fault occurs, the invalid-
operation exception is raised, and the condition bits are set to “unordered.”

The sign of zero is ignored, so that —0.0 = +0.0.

Am486 Microprocessor Instruction Set 2-113

b‘l AMD

2.108 FUCOM Unordered Compare Real
Concurrent
Opcode Instruction Clocks Execution Description
DD EO+1 FUCOM ST(i) 4 Compares ST with ST(i).
DD E1 FUCOM 4 Compares ST with ST(1).
Operation
CASE (rel ation of operands) OF
Not conpar abl e: C3, C, CO ~ 111;
ST > SRC: C3, €, G ~ 000;
ST < SRC. C3, €, G ~ 001,
ST = SRC. C3, €, G ~ 100;
CF ~ C0;
PF ~ C2;
ZF ~ C3;
Fl
Description
FUCOM compares the stack top to the source, which must be a register. If no operand is
encoded, ST is compared to ST(1). Following the instruction, the condition codes reflect
the relation between ST and the source operand.
FPU Flags Affected
The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are set as specified above.
Numeric Exceptions
Denormalized Operand, Invalid Operation, Stack Fault
Protected Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Note: If either operand is a NaN or is in an undefined format, or if a stack fault occurs, the
invalid-operation exception is raised, and the condition bits are set to “unordered.”
If either operand is a QNaN, the condition bits are set to “unordered.” Unlike the ordinary
compare instructions (FCOM, etc.), the unordered compare instructions do not raise the
invalid-operation exception if there is a QNaN operand.
The sign of zero is ignored, so that —0.0 = +0.0.
2-114 Am486 Microprocessor Instruction Set

AMDH

2.109

FUCOMP Unordered Compare Real and Pop FPU Stack Top

Concurrent

Opcode Instruction Clocks Execution Description
DD E8+i FUCOMP ST(i) 4 1 Compares ST with ST(i) and pops ST.
DD E9 FUCOMP 4 1 Compares ST with ST(1) and pops ST.
Operation
CASE (rel ation of operands) OF

Not conpar abl e: C3, C, CO ~ 111;

ST > SRC. C3, C2, GO -~ 000;

ST < SRC. Cc3, C2, GO -~ 001,

ST = SRC. C3, C2, GO -~ 100;
CF ~ Co;
PF - C2;
ZF « C3;
pop ST FI
Description

FUCOMP compares the stack top to the source, which must be a register, then pops ST.
If no operand is encoded, ST is compared to ST(1). Following the instruction, the condition
codes reflect the relation between ST and the source operand.

FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are set as specified above.

Numeric Exceptions

Denormalized Operand, Invalid Operation, Stack Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: If either operand is a NaN or is in an undefined format, or if a stack fault occurs, the
invalid-operation exception is raised and the condition bits are set to “unordered.”

If either operand is a QNaN, the condition bits are set to “unordered.” Unlike the ordinary
compare instructions (FCOM, etc.), the unordered compare instructions do not raise the
invalid-operation exception if there is a QNaN operand.

The sign of zero is ignored, so that —0.0 = +0.0.

Am486 Microprocessor Instruction Set 2-115

b‘l AMD

2.110 FUCOMPP Unordered Compare Real and Pop FPU Stack Top Twice
Concurrent
Opcode Instruction Clocks Execution Description
DA E9 FUCOMPP 5 1 Compares ST with ST(1) and pops ST twice.
Operation

CASE (rel ation of operands) OF

Not conpar abl e: C3, C2, CO ~ 111;
ST > SRC C3, €, CO ~ 000;
ST < SRC C3, €2, CO ~ 001;
ST = SRC C3, €2, CO ~ 100;

CF ~ Co;

PF ~ C2;

ZF - C3;

pop ST; pop ST; FI
Description

FUCOMPP compares the stack top to ST(1) and pops ST twice. Following the instruction,
the condition codes reflect the relation between ST and the source operand.

FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are set as specified above.

Numeric Exceptions

Denormalized Operand, Invalid Operation, Stack Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: If either operand is a NaN or is in an undefined format, or if a stack fault occurs, the
invalid-operation exception is raised and the condition bits are set to “unordered.”

If either operand is a QNaN, the condition bits are set to “unordered.” Unlike the ordinary
compare instructions (FCOM, etc.), the unordered compare instructions do not raise the
invalid-operation exception if there is a QNaN operand.

The sign of zero is ignored, so that —0.0 = +0.0.

2-116 Am486 Microprocessor Instruction Set

AMDH

2.111

FWAIT Wait
Opcode Instruction Clocks Description
9B FWAIT (1-3) Alias for WAIT.

Description

FWAIT causes the microprocessor to check for pending unmasked numeric exceptions
before proceeding.

FPU Flags Affected

CO0, C1, C2, C3 undefined

Numeric Exceptions

None

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if both MP and TS in CRO are set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if both MP and TS in CRO are set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if both MP and TS in CRO are set.

Note: As its opcode shows, FWAIT is not actually an ESC instruction but an alternate
mnemonic for WAIT. Coding FWAIT after an ESC instruction ensures that any unmasked
floating-point exceptions caused by the instruction are handled before the processor
modifies the instruction’s results.

Am486 Microprocessor Instruction Set 2-117

i"l AMD

2.112 FXAM Examine
Opcode Instruction Clocks Description
D9 E5 FXAM 8 Reports the type of object in the ST register.
Operation

A ~ sign bit of ST; (* O for positive, 1 for negative *)

CASE (type of object in ST) OF
Unsupport ed: C3, C, CO ~ 000;
NaN: C3, C2, CO -~ 001;
Nor mal : c3, C, & - o010
Infinity: C3, C, GO ~ 011;
Zer o: C3, C2, CO ~ 100;
Enpt y: c3, C2, 0 -~ 101,
Denor nal : C3, €2, GO ~ 110;

CF ~ C0;

PF ~ C2;

ZF - C3;

FI

Description

The examine instruction reports the type of object contained in the ST register by setting
the FPU Flags.

FPU Flags Affected

CO0, C1, C2, C3 are set as shown above.

Numeric Exceptions

None

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

2-118 Am486 Microprocessor Instruction Set

AMDH

2.113

FXCH Exchanges Stack Register Contents

Opcode Instruction Clocks Description

D9 C8+i FXCH ST(i) 4 Exchanges the contents of ST and ST(i).
D9 C9 FXCH 4 Exchanges the contents of ST and ST(1).

Operation

TEMP ~ ST;
ST ~ DEST;
DEST -~ TEMP

Description

FXCH swaps the contents of the destination and stack top registers. If the destination is
not coded explicitly, ST(1) is used.

FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are undefined.

Numeric Exceptions

Stack Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: Many numeric instructions operate only on the stack top; FXCH provides a simple
means for using these instructions on lower stack elements. For example, the following
sequence takes the square root of the third register from the top (assuming that ST is not

empty):

FXCH ST(3)

FSQRT
FXCH ST(3)

Am486 Microprocessor Instruction Set 2-119

b‘l AMD

2.114

FXTRACT Extracts Exponent and Significand

Concurrent
Opcode Instruction Clocks Execution Description

D9 F4 FXTRACT 19 (16-20) 4 (2-4) Separates ST into its exponent and
significand; replaces ST with the ex-
ponent and then pushes the signifi-

cand onto the FPU stack.

Operation

TEMP ~ significand of ST;

ST ~ exponent of ST;

Decrenent FPU top-of-stack pointer;
ST ~ TEMP

Description

FXTRACT splits the value in ST into its exponent and significand. The exponent replaces
the original operand on the stack and the significand is pushed onto the stack. ST (the new
stack top) contains the value of the significand as a real number with the same sign, a 0

true (16,383 or 3FFFh biased) exponent, and identical significand as the original operand.
ST(1) contains the original operand’s true (unbiased) exponent expressed as areal number.

FPU Flags Affected

The result determines the C1 setting. If both the IE and SF bits of the status word are set
(indicating a stack exception), CO distinguishes between stack overflow (C1 = 1) and un-
derflow (C1 = 0); otherwise, C1 = 0. C0O, C2, and C3 are undefined.

Numeric Exceptions

Divide By Zero, Denormalized Operand, Invalid Operation, Stack Fault
Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: FXTRACT (extract exponent and significand) performs a superset of the IEEE
recommended logb(x) function. It is useful for power and range scaling operations. Both
FXTRACT and F2XM1 are needed to perform a general power operation. You must use
FXTRACT with FBSTP when converting extend-format real numbers to decimal
representations to allow scaling that does not overflow the extended format range.
FXTRACT is also useful for debugging because it allows separate examination of a real
number’s exponent and significand.

If the original operand is zero, FXTRACT leaves — o in ST(1) (the exponent), assigns a
zero value with the same sign as the original operand to ST, and generates a zero divide
exception. ST(7) must be empty to avoid the invalid-operation exception.

2-120

Am486 Microprocessor Instruction Set

AMDH

2.115

FYL2X Computes y Dogzx
Concurrent
Opcode Instruction Clocks Execution Description
D9 F1 FYL2X 311 (196-329) 13 Replaces ST(1) with ST(1) DIogZST
and pops ST.
Operation
ST(1) < st(1) Ui og,ST;
pop ST
Description

FYL2X computes the base-2 logarithm of ST, multiplies the logarithm by ST(1), and returns
the resulting value to ST(1). It then pops ST. The operand in ST cannot be negative.

FPU Flags Affected

The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.

Numeric Exceptions

Precision (Inexact Result), Underflow, Overflow, Divide By Zero, Denormalized Operand,
Invalid Operation, Stack Fault

Protected Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions

Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.

Note: The Am486 processor can abort this instruction to service an interrupt.

If the operand in ST is negative, the invalid-operation exception is raised. FYL2X has built-
in multiplication to optimize the calculation of logarithms with an arbitrary positive base:

log,x = (log,b)* [l og,x
The instructions FLDL2T and FLDLZ2E load the constants log,10 and log.e, respectively.

Am486 Microprocessor Instruction Set 2-121

b‘l AMD

2.116 FYL2XP1 Computes y Dogz(x+1)
Opcode Instruction Clocks Concurrent Description
Execution
D9 F9 FYL2XP1 313 (171-326) 13 Replaces ST(1) with
ST(1) Dlogz(ST+1.0) and pops ST.
Operation
ST(1) < ST(1) [log,(ST + 1.0);
pop ST
Description
FYL2XP1 computes the base-2 logarithm of (ST + 1.0), multiplies the logarithm by ST(1),
and returns the resulting value to ST(1). It then pops ST. The operand in ST must be in the
range:
-(1-(Vv212) <ST <v2-1
FPU Flags Affected
The result determines the C1 setting. If the PE bit of the status word is set, C1 represents
whether the last rounding in the instruction was upward or not. If both the IE and SF bits
of the status word are set (indicating a stack exception), CO distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0). CO, C2, and C3 are undefined.
Numeric Exceptions
Precision (Inexact Result), Underflow, Denormalized Operand, Invalid Operation, Stack
Fault
Protected Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Real Address Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Virtual 8086 Mode Exceptions
Coprocessor Not Available (7) occurs if either EM or TS in CRO is set.
Note: If the operand in ST is outside the acceptable range, the result of FYL2XP1 is
undefined.
The FYL2XP1 instruction provides improved accuracy over FYL2X when computing the
logarithms of numbers very close to 1. When € is small, more significant digits can be
retained by providing € as an argument to FYL2XP1 than by providing 1 + € as an argument
to FYL2X.
The Am486 processor can abort this instruction to service an interrupt.
2-122 Am486 Microprocessor Instruction Set

ANW)::'

2.117

HLT Halt
Opcode Instruction Clocks Description
F4 HLT 4 Halt
Operation

Enter Halt state
Description

The HLT instruction stops instruction execution and places the microprocessor in a HALT
state. An enabled interrupt, an NMI, or a reset resumes execution. If an interrupt (including
NMI) is used to resume execution after a HLT instruction, the saved CS:IP (or CS:EIP)
value points to the instruction following the HLT instruction.

Flags Affected
None
Protected Mode Exceptions

The HLT instruction is a privileged instruction; General Protection Fault (13) indicates the
current privilege level is not 0.

Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions

General Protection Fault (13); the HLT instruction is a privileged instruction.

Am486 Microprocessor Instruction Set 2-123

b‘l AMD

2.118 IDIV Signed Divide
Opcode Instruction Clocks Description
F6 /7 IDIV r/m8 19/20 Performs a signed divide AX by r/m byte (AL = Quo, AH = Rem).
F7 17 IDIV AX,r/m16 27128 Performs a signed divide DX:AX by r/m word (AX = Quy, DX =
F717 IDIV EAX,I/m32 43/44 Rem).
Performs a signed divide EDX:EAX by r/m doubleword
(EAX = Quo, EDX = Rem).
Operation
tenp ~ dividend / divisor;
I F tenp does not fit in quotient
THEN Di vi de By Zero Exception O;
ELSE
quotient ~ tenp;
remai nder ~ dividend MOD (r/m;
Fl
Note: Divisions are signed.
Description
IDIV performs a signed division. The dividend, quotient, and remainder are implicitly allo-
cated to fixed registers. The divisor is an explicit r/m operand. The divisor type determines
which registers to use as follows:
Size Divisor Quotient Remainder Dividend
byte r/m8 AL AH AX
word r/m16 AX DX DX:AX
doubleword r/m32 EAX EDX EDX:EAX
Non-integral quotients are truncated toward 0. The remainder has the same sign as the
dividend and the remainder absolute value is always less than the divisor absolute value.
Flags Affected
OF, SF, ZF, AF, PF, CF are undefined.
Protected Mode Exceptions
Divide By Zero (0) indicates a quotient too large for the designated register (AL or AX), or
a divisor of 0. General Protection Fault (13) indicates either that the result is in a non-
writable segment or there is an illegal memory-operand effective address in the code or
data segments. Stack Fault (12) indicates an illegal SS segment address. Page Fault (14)
indicates a page fault. For CPL = 3, Alignment Check (17) indicates an unaligned memory
reference.
Real Address Mode Exceptions
Divide By Zero (0) indicates a quotient too large for the designated register (AL or AX), or
a divisor of 0. General Protection Fault (13) indicates that part of the operand is outside
the effective address space: 0 to OFFFFh.
Virtual 8086 Mode Exceptions
Divide By Zero (0) indicates a quotient too large for the designated register (AL or AX), or
a divisor of 0. General Protection Fault (13) indicates that part of the operand is outside
the effective address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is
3, Alignment Check (17) indicates there is an unaligned memory reference.
2-124 Am486 Microprocessor Instruction Set

AMDH

2.119

IMUL Signed Multiply

Opcode Instruction Clocks Description

F6 /5 IMUL r/8 13-18 AX < AL [O/m byte

F7/5 IMUL r/16 13-26 DX:AX ~ AX [F/m word

F7 /5 IMUL r/m32 13-42 EDS:EAX ~ EAX [X/m doubleword

OF AF /r IMUL r16,r/m16 13-26 word reg — word reg [f/m word

OF AF /r IMUL r32,r/m32 13-42 doubleword reg ~ doubleword reg [i/m doubleword

6B /r ib IMUL r16,r/m16,imm8 13-26 word reg « r/m16 [kign-extended immediate byte

6B /r ib IMUL r32,r/m32,imm8 13-42 doubleword reg — r/m32 [kign-extended immediate byte
6B /r ib IMUL r16,imm8 13-26 word reg — word reg [kign-ext. immediate byte

6B /rib IMUL r32,imm8 13-42 doubleword reg — doubleword reg [sign-ext. immediate byt
69 /r iw IMUL r16,r/m16,imm16 13-26 word reg « r/m16 Ommediate word

69 /rid IMUL r32,r/m32,imm32 13-42 doubleword reg ~ r/m32 Ommediate doubleword

69 /r iw IMUL r16,imm16 13-26 word reg < r/m16 CO0mmediate word

69 /rid IMUL r32,imm32 13-42 doubleword reg — r/m32 OOmmediate doubleword

1%

Actual clock count depends on the most-significant bit location in the optimizing multiplier. If the multipler (m)
is 0, the clock count is 9; otherwise clock = max (ceiling(log, |m|), 3) + 6. If mis a memory operand, add 3.

Operation
result — multiplicand Ol ti plier
Description

IMUL performs signed multiplication. Some forms of the instruction use implicit register
operands.

Flags Affected

SF, ZF, AF, and PF are undefined. IMUL clears CF and OF under certain conditions. If you
use the accumulator form (IMUL r/m8, IMUL r/m16, or IMUL r/32), IMUL clears the flags if
the result equals the sign-extended value of the source register (AL, AX, or EAX respec-
tively). For IMUL r16,r/m16; IMUL r/32,r/m32; IMUL r16,r/m16,imm16; or IMUL r32,r/m32,
imm32; IMUL clears the flags if the result fits exactly in the destination register.

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Note: For the accumulator forms (IMUL r/m8, IMUL r/m16, or IMUL r/m32), the result of
the multiplication is available even if the Overflow Flag is set because the result is twice
the size of the multiplicand and multiplier. This is large enough to handle any possible result.

Am486 Microprocessor Instruction Set 2-125

b‘l AMD

2.120 IN Inputs Data from Port
Opcode Instruction Clocks Description
E4ib IN AL,imm8 All forms: Inputs byte from immediate port into AL.
E5ib IN AX,imm8 rm=14,vm =27 Inputs word from immediate port into AX.
E5ib IN EAX,imm8 If CPL < IOPL, Inputs doubleword from immediate port into EAX.
EC IN AL,DX pm=8 Inputs byte from port DX into AL.
ED IN AX,DX If CPL>IOPL, Inputs word from port DX into AX.
ED IN EAX,DX pm = 28 Inputs doubleword from port DX into EAX.
Operation

IF (PE = 1) AND ((WM=1) OR (CPL > | OPL))

THEN (* Virtual 8086 Mdde, or Protected Mode with CPL > | OPL *)
IF NOT I /O Permission (SRC, width (SRC))
THEN CGeneral Protection Fault (13);
Fl;

Fl;

DEST ~ [SRC]; (* Reads from |/ O address space *)

Description

The IN instruction transfers a data byte, word, or doubleword from the port numbered by
the second operand into the register (AL, AX, or EAX) specified by the first operand. Access
any port from 0 to 65535 by placing the port number in the DX register and using an IN
instruction with the DX register as the second parameter. These I/O instructions can be
shortened by using an 8-bit port I/O in the instruction. The upper eight bits of the port
address will be 0 when 8-bit port I/O is used.

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates the current privilege level is larger (has less privi-
lege) than the 1/O privilege level and any of the corresponding I/O permission bits in TSS
equals 1.

Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that at least one of the corresponding I/O permission
bits in TSS equals 1.

2-126 Am486 Microprocessor Instruction Set

AMDH

2.121

INC Increments by One

Opcode Instruction Clocks Description

FE /0 INC r/m8 1/3 Increments r/m byte by 1.

FF /0 INC r/m16 1/3 Increments r/m word by 1.

FF /6 INC r/m32 1/3 Increments r/m doubleword by 1.

40 + rw INC r16 1 Increments word register by 1.

40 +rd INC r32 1 Increments doubleword register by 1.
Operation

DEST ~ DEST + 1
Description

The INC instruction adds 1 to the operand. It does not change CF. To affect CF, use the
ADD instruction with a second operand of 1.

Flags Affected
OF, SF, ZF, AF, and PF are set according to the result.
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-127

b‘l AMD

2.122 INS/INSB/INSD/INSW Inputs Data from Port to String

Opcode Instruction Clocks Description

6C INS r/m8,DX All forms: Inputs byte from port DX into ES:DI.

6D INS r/m16,DX If CPL < IOPL, Inputs word from port DX into ES:DI.

6D INS r/m32,DX 17, pm =10 Inputs doubleword from port DX into ES:EDI.
6C INSB If CPL>IOPL, Inputs byte from port DX into ES:DI.

6D INSD 32, vm =30 Inputs doubleword from port DX into ES:EDI.
6D INSW Inputs word from port DX into ES:DI.

Operation

IF (PE =1) AND ((VWM= 1) OR (CPL > |OPL))

THEN (* Virtual 8086 Mdde, or Protected Mode with CPL > | OPL *)
I'F NOT | /O Pernission (SRC, w dth(SRC))
THEN CGeneral Protection Fault (13);
Fl ;

Fl ;

| F OperandSize = 8 (* byte *)

THEN
ES:DI « [DX]; (* Reads byte at DX from I/ O address space *)
IF DF = 0 THEN I ncDec ~ 1 ELSE IncDec -~ -1;Fl;

IF OperandSize = 16 (* word *)

THEN
ES:DI ~ [DX]; (* Reads word at DX from I/O address space *)
IF DF = 0 THEN IncDec ~ 2 ELSE IncDec « =2; FI;
IF OperandSize = 32 (* doubleword *)
THEN
ES:EDI ~ [DX]; (* Reads doubleword at DX from I/O address space *)
IF DF = 0 THEN IncDec ~ 4 ELSE IncDec ~ —4; Fl,
FI;

source-index = source-index + IncDec;
destination-index = destination-index + IncDec

Description

INS transfers data from the input port numbered by the DX register to the memory byte,
word, or doubleword at ES:(E)DI. The memory operand must be addressable from the ES
register; no segment override is possible. The destination register is the DI register if the
address-size attribute of the instruction is 16 bits, or the EDI register if the address-size
attribute is 32 bits.

The INS instruction does not allow the specification of the port number as an immediate
value. You must address the port through the DX register value. Similarly, the destination
index register determines the destination address. You must preload the DX register value
into the DX register and the correctindex into the destination index register before executing
the INS instruction.

After the transfer is made, the DI or EDI register advances automatically. If DF is 0 (a CLD
instruction was executed), the DI or EDI register increments; if DF is 1 (an STD instruction
was executed), the Dl or EDI register decrements. The Dl register increments or decrements
by 1 if the input is a byte, by 2 if it is a word, or by 4 if it is a doubleword.

The INSB, INSW, and INSD instructions are synonyms of the byte, word, and doubleword
INS instructions. INS instructions can use the REP prefix for block input of CX bytes or
words. Refer to the REP instruction for details of this operation.

2-128 Am486 Microprocessor Instruction Set

AMDH

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates the current privilege level is numerically greater
than the 1/O privilege level and any of the corresponding I/O permission bits in TSS equals
1. General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates either that one of the corresponding I/O permission
bits in TSS equals 1, or that part of the operand lies outside the effective address space:
0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17)
indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-129

b‘l AMD

2.123 INT/INTO Call to Interrupt Procedure
Opcode Instruction Clocks Description
CC INT 3 26 Interrupt 3 — trap to debugger
CC INT 3 44 Interrupt 3 — Protected Mode, same privilege
CC INT 3 71 Interrupt 3 — Protected Mode, more privilege
CcC INT 3 82 Interrupt 3 — from V86 Mode to PL O
CC INT 3 37 +ts* Interrupt 3 — Protected Mode via task gate
CDib INT imm8 30 Interrupt numbered by immediate byte
CDib INT imm8 44 Interrupt — Protected Mode, same privilege
CDib INT imm8 71 Interrupt — Protected Mode, more privilege
CDib INT imm8 86 Interrupt — from V86 Mode to PL O
CDib INT imm8 37 + ts* Interrupt — Protected Mode, via task gate
CE INTO Pass = 28; Fail =3 Interrupt 4 — if Overflow Flag is 1
CE INTO 46 Interrupt 4 — Protected Mode, same privilege
CE INTO 73 Interrupt 4 — Protected Mode, more privilege
CE INTO 84 Interrupt 4 — from V86 Mode to PL 0
CE INTO 39 + ts* Interrupt 4 — Protected Mode, via task gate
*ts = 199 for 486 TSS, 180 for 286 TSS, or 177 for VM TSS

Operation

Note: The following operational description applies not only to the above instructions but
also to external interrupts and exceptions.

IF PE=0

THEN GOTO REAL- ADDRESS- MODE;
ELSE GOTO PROTECTED- MODE;

Fl;

REAL - ADDRESS- MODE:
Push (FLAGS);
IF « 0; (* Clear Interrupt Flag *)
TF ~ 0; (* Cear Trap Flag *)
Push(CS);
Push(IP);
(* No error codes are pushed *)
CS — IDT[interrupt nunber 0O4].selector;
IP — IDT[Interrupt nunber 0O4].of fset;

(* Start execution in Real Address Mde *)
PROTECTED- MODE:
Interrupt vector nmust be within IDT table limts,
el se Ceneral Protection Fault(vector nunber 08 + 2 + EXT);
Descri ptor ARbyte nmust indicateinterrupt gate, trap gate, or task gate,
el se General Protection Fault(vector nunber 08 + 2 + EXT);
| F software interrupt (* i.e. caused by INT n, INT 3, or INTO *)
THEN
| F gate descriptor DPL < CPL
THEN Ceneral Protection Fault(vector nunber 08 + 2 + EXT);
Fl ;
Fl ;
Gate nust be present,
ELSE Segnent Not Present(vector number 08 + 2 + EXT);
IF trap gate OR interrupt gate
THEN GOTO TRAP- GATE- OR- | NTERRUPT- GATE;
ELSE GOTO TASK- GATE;
Fl ;

2-130 Am486 Microprocessor Instruction Set

ANW)::'

TRAP- GATE- OR- | NTERRUPT- GATE:
Exami ne CS sel ector and descriptor given in the gate descriptor
Sel ector must be non-null, else General Protection Fault(EXT);
Selector nmust be within its descriptor table linits
ELSE General Protection Fault(selector + EXT);
Descriptor AR byte nust indicate code segnment
ELSE CGeneral Protection Fault(selector + EXT);
Segnment must be present, el se Segrment Not Present (11)(sel ector + EXT);
| F code segnent is non-conform ng AND DPL < CPL
THEN GOTO | NTERRUPT- TO- | NNER- PRI VI LEGE;
ELSE
| F code segnent is conform ng OR code segment DPL = CPL
THEN GOTO | NTERRUPT- TO- SAMVE- PRI VI LEGE- LEVEL;
ELSE General Protection Fault(CS selector + EXT);
Fl ;
Fl;

| NTERRUPT- TO- | NNER- PRI VI LEGE
Check sel ector and descriptor for new stack in current TSS;
Sel ector must be non-null, ELSE Invalid TSS(EXT);
Sel ector index nust be within its descriptor table linits
ELSE Invalid TSS(SS sel ector+ EXT);
Selector’s RPL nust equal DPL of code segnent,
ELSE Invalid TSS(SS sel ector+ EXT);
Stack segment DPL nust equal DPL of code segnent,
ELSE Invalid TSS(SS sel ector+ EXT);
Descriptor nust indicate witable data segnment,
ELSE Invalid TSS(SS sel ector + EXT);
Segnent must be present, else Stack Fault(SS sel ector+ EXT);
| F 32-bit gate
THEN New stack must have room for 20 bytes el se Stack Fault
ELSE New stack nust have room for 10 bytes el se Stack Fault
Fl ;
I nstruction pointer nmust be within CS segnent boundaries
ELSE General Protection Fault;
If VM= 1 in EFLAGS
Then Goto | NTERRUPT from V-86- MODE
Load new SS and eSP val ue from TSS
IF 32-bit gate
THEN CS: EIP ~ selector:offset from gate;
ELSE CS:IP ~ selector:offset from gate;
Fl ;
Load CS descriptor into invisible portion of CS register
Load SS descriptor into invisible portion of SS register
I F 32-bit gate
THEN
Push (long pointer to old stack) (* 3 words padded to 4 *);
Push (EFLAGS);
Push (Il ong pointer to return location) (* 3 words padded to 4 *);
ELSE
Push (long pointer to old stack) (* 2 words *);
Push (FLAGS);
Push (long pointer to return location) (* 2 words *);
Fl;
Set CPL to new code segnment DPL;
Set RPL of CS to CPL;
IF interrupt gate THENIF O (* Interrupt Flag to O (disabled) *); FlI

Am486 Microprocessor Instruction Set 2-131

b‘l AMD

TF < O;
NT ~ O;

| NTERRUPT- FROM V86- MODE:
TenpEFl ags ~ EFLAGS;
VM <« O;
TF ~ O;
| F service through Interrupt Gate THEN IF ~ O;
TenpSS ~ SS;
TenpESP ~ ESP;
SS « TSS. SSO (* Change to level 0 stack segment *)
ESP ~ TSS. ESPO (* Change to level 0 stack pointer *)
Push(GS); (* padded to two words *)
Push(FS); (* padded to two words *)
Push(DS); (* padded to two words *)
Push(ES); (* padded to two words *)
GS ;1D 0;
FS < 0;
DS ~ 0;
ES - 0;
Push(TenpSS); (* padded to two words *)
Push(TenpESP) ;
Push(TenmpEFI ags) ;
Push(CS); (* padded to two words *)
Push(EIP); CS:EIP <- selector:offset frominterrupt gate;
(* Starts execution of new routine in Protected Mdde *)

| NTERRUPT- TO- SAME- PRI VI LEGE- LEVEL:

IF 32-bit gate

THEN Current stack limts nust all ow pushi ng 10 bytes, el se Stack Faul t
(12);

ELSE Current stack limts nmust all ow pushing 6 bytes, el se Stack Fault
(12);

Fl;

IF interrupt was caused by exception with error code

THEN Stack linmits nust allow push of two nore bytes;

ELSE Stack Fault (12);

Fl ;

I nstruction pointer nust bein CSlimt, else General Protection Fault
(13) (0);

| F 32-bit gate

THEN

Push (EFLAGS);
Push (long pointer to return location); (* 3 words padded to 4 *)
CS. EIP « selector:offset from gate;
ELSE (* 16-bit gate *)
Push (FLAGS);
Push (long pointer to return location); (* 2 words *)
CS.IP ~ selector:offset from gate;
Fl ;
Load CS descriptor into invisible portion of CS register;
Set the RPL field of CS to CPL;
Push (error code); (* if any *)
IF interrupt gate THEN IF ~ 0; FI;
TF < 0;
NT ~ O;

TASK- GATE:
Exani ne selector to TSS, given in task gate descriptor;

2-132 Am486 Microprocessor Instruction Set

AMDH

Must specify global inthelocal/global bit, elselnvalidTSS(10)(TSS
sel ector);
I ndex nust bewithin GDTlimits, elselnvalidTSS (10)(TSS sel ector);
AR byte nmust specify available TSS (bottom bits 00001),
el se Invalid TSS (10)(TSS sel ector);
TSS must be present, el se Segnent Not Present (11)(TSS sel ector);
SW TCH TASKS with nesting to TSS;
I F interrupt was caused by fault with error code
THEN
Stack imts nmust al |l owpush of two nore bytes, el se Stack Fault (12);
Push error code onto stack;
Fl;
Instruction pointer nmust bein CSlimt, else General Protection Fault
(13)

Description

The INT ninstruction generates a call to an interrupt handler via software. The immediate
operand, from 0 to 255, gives the index number into the Interrupt Descriptor Table (IDT) of
the called interrupt routine. In Protected Mode, the IDT consists of an array of 8-byte
descriptors; the invoked interrupt descriptor must indicate an interrupt, trap, or task pointer.
In Real Address Mode, the IDT is an array of 4-byte pointers. In Protected and Real Address
Modes, the base linear address of the IDT is defined by the contents of the IDTR.

The INTO conditional software instruction is identical to the INT ninterruptinstruction except
that the interrupt number is implicitly 4, and the interrupt is made only if the Am486 micro-
processor Overflow Flag is set.

The first 32 interrupts are reserved for system use. Some of these interrupts are used for
internally generated exceptions.

The INT ninstruction generally behaves like a far call except that the contents of the FLAGS
register are pushed onto the stack before the return address. Interrupt procedures return
via the IRET instruction, which pops the flags and return address from the stack.

In Real Address Mode, the INT n instruction pushes the flags, the CS register, and the
return IP onto the stack, in that order, then jumps to the long pointer indexed by the interrupt
number.

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13), Segment Not Present (11), Stack Fault (12), and Invalid TSS
(10) can occur as indicated under ‘Operation’ above.

Real Address Mode Exceptions

None. However, if when INT or INTO starts executing, the SP or ESP registeris 1, 3, or 5,
the processor shuts down due to insufficient stack space.

Virtual 8086 Mode Exceptions

General Protection Fault (13) occurs if IOPL is less than 3, for the INT n instruction only,
as part of the mode emulation; Interrupt 3 (OCCh) generates a breakpoint exception; the
INTO instruction generates an overflow exception if OF is set.

Am486 Microprocessor Instruction Set 2-133

i"l AMD

2.124 INVD Invalidates Cache
Opcode Instruction Clocks Description
OF 08 INVD 4 Invalidates entire cache.
Operation
FLUSH | NTERNAL CACHE
SI GNAL EXTERNAL CACHE TO FLUSH
Description
The processor flushes the internal cache and issues a special-function bus cycle that
indicates that the external cache should be flushed. Any data held in write-back external
cache is discarded.
Flags Affected
None
Protected Mode Exceptions
The INVD instruction is a privileged instruction. General Protection Fault (13) indicates the
current privilege level is not 0.
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
General Protection Fault (13); the INVD instruction is a privileged instruction.
Note: This instruction is implementation-dependent; its function may be implemented
differently on future AMD microprocessors. It is the responsibility of the designer to ensure
that the hardware responds to the external cache flush indication.
This instruction is not supported by Am386® microprocessors.
2-134 Am486 Microprocessor Instruction Set

ANW)::'

2.125

INVLPG Invalidates TLB Entry
Opcode Instruction Clocks Description

OF 01/7 INVLPG m 12 for hit Invalidates TLB entry.
Operation

| NVALI DATE TLB ENTRY
Description

INVLPG invalidates a single entry in the TLB (the cache used for page table entries). If the
TLB contains a valid entry that maps the address of the memory operand, that TLB entry
is marked invalid.

Flags Affected
None
Protected Mode Exceptions

INVLPG is a privileged instruction; General Protection Fault (13) indicates the current
privilege level is not 0. An invalid-opcode exception is generated when used with a register
operand.

Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions

An invalid-opcode exception is generated when used with a register operand. General
Protection Fault (13); the INVLPG instruction is a privileged instruction.

Note: This instruction is not supported on Am386 microprocessors.

Am486 Microprocessor Instruction Set 2-135

b‘l AMD

2.126 IRET/IRETD Interrupt Return
Opcode Instruction Clocks Description
CF IRET 15 Interrupt return (far return and pop FLAGS)
CF IRET 36 Interrupt return to lesser privilege
CF IRET 32 +ts* Interrupt return, different task (NT = 1)
CF IRETD 15 Interrupt return, (far return and pop FLAGS)
CF IRETD 36 Interrupt return to lesser privilege
CF IRETD 15 Interrupt return to V86 Mode
CF IRETD 32 +ts* Interrupt return, different task (NT = 1)
*ts = 199 for 486 TSS, 180 for 286 TSS, or 177 for VM TSS

Operation

IFPE=0
THEN (* Real Address Mode *)
| F OperandSize = 32 (* Instruction = | RETD *)
THEN EI P ~ Pop();
ELSE (* Instruction = | RET *)
I P « Pop();
Fl ;
CS ~ Pop();
| F OperandSi ze = 32 (* Instruction
THEN Pop(); EFLAGS — Pop();
ELSE (* Instruction = | RET *)
FLAGS ~ Pop();
Fl ;
ELSE (* Protected Mde)
IFVW=1
THEN Ceneral Protection Fault (13);
ELSE
IF NT =1
THEN GOTO TASK- RETURN;
ELSE
IF VM= 1in FLAGS i mage on stack
THEN GO TO STACK- RETURN- TO- V86;
ELSE GOTO STACK- RETURN,;
Fl; Fl; Fl;
Fl ; STACK- RETURN- TO V86: (* Interrupted procedure was in Virtual 8086 Mde *)
IF top 36 bytes of stack not within linmts
THEN St ack Fault (12);
Fl ;
I F instruction pointer not within code segrment linit
THEN CGeneral Protection Fault (13);
Fl;
EFLAGS —~ SS.[ESP + 8]; (* Sets VMin interrupted routine *)
EIP « Pop();
CS < Pop(); (* CS behaves as in 8086, due to VM= 1 *)
t hrowaway < Pop(); (* pop away EFLAGS already read *)
TenpESP ~ Pop();
TenmpSS « Pop();
ES « Pop(); (* pop 2 words; throw away hi gh-order word *)
DS —~ Pop(); (* pop 2 words; throw away hi gh-order word *)
FS « Pop(); (* pop 2 words; throw away hi gh-order word *)
GS « Pop(); (* pop 2 words; throw away hi gh-order word *)
SS: ESP ~ TenpSS: TenpESP;

| RETD *)

(* Resune execution in Virtual 8086 Mde *)

2-136 Am486 Microprocessor Instruction Set

AMDH

TASK- RETURN:
Exani ne Back Link Selector in TSS addressed by the current task
register:

Must specify global in the local/global bit,

ELSE Invalid TSS(new TSS sel ector);

I ndex nust be within GDT linmts, else Invalid TSS(new TSS sel ector;

AR byte nmust specify TSS, else Invalid TSS(new TSS sel ector);

New TSS nust be busy, else Invalid TSS(new TSS sel ector);

TSS must be present, el se Segnent Not Present(new TSS sel ector);
SW TCH TASKS wi t hout nesting to TSS specified by back link sel ector;
Mark the task just abandoned as NOT BUSY;

I nstruction pointer nust be within code segnment linit

ELSE General Protection Fault);

STACK- RETURN:
| F OperandSi ze = 32
THEN Thi rd word on stack nust be withinstack limts, el se Stack Fault;
ELSE Second word on stack nust be within stack linmts, else Stack Faul t
Fl;
Return CS sel ector RPL nmust be =>CPL,
ELSE General Protection Fault(Return selector);
IF return selector RPL = CPL
THEN GOTO RETURN- SAME- LEVEL;
ELSE GOTO RETURN- OQUTER- LEVEL;
FI;

RETURN- SAME- LEVEL :
| F OperandSi ze = 32
THEN
Top 12 bytes on stack nust be within linmts, else Stack Fault;
Return CS selector (at eSP+ 4) nust be non-null,
ELSE General Protection Fault;
ELSE
Top 6 bytes on stack nust be within linits, else Stack Fault;
Return CS selector (at eS P + 2) nust be non-null,
ELSE Ceneral Protection Fault; FI;
Sel ector index nust be within its descriptor table linits,
ELSE General Protection Fault
Return selector; AR byte nust indicate code segnent,
ELSE General Protection Fault(Return selector);
| F non-conform ng THEN code segment DPL nust = CPL;
ELSE Ceneral Protection Fault(Return selector); FI;
I F conform ng
THEN code segnment DPL nust be < CPL,
ELSE Ceneral Protection Fault(Return selector);
Segrent nust be present, el se Segnment Not Present (11) (Return sel ector);
I nstruction pointer nmust be within code segnment boundari es,
ELSE Ceneral Protection Fault; FI;
| F OperandSi ze = 32
THEN
Load CS: EIP from stack;
Load CS-register with new code segnment descriptor;
Load EFLAGS with third doubl eword from stack;
I ncrement eSP by 12;
ELSE
Load CS-register with new code segnment descriptor;
Load FLAGS with third word on stack;
I ncrement eSP by 6; FI;

Am486 Microprocessor Instruction Set 2-137

b‘l AMD

RETURN- QUTER- LEVEL:
| F OperandSi ze = 32
THEN Top 20 bytes on stack nust be ithin linmts, else Stack Fault;
ELSE Top 10 bytes on stack nust be within linmts, else Stack Fault;
Fl ;
Exanine return CS sel ector and associ ated descriptor:
Sel ector nust be non-null, else General Protection Fault;
Sel ector index nust be within its descriptor table linits;
ELSE General Protection Fault(Return selector);
AR byte must indicate code segnent,
ELSE General Protection Fault (Return selector);
I F non-conform ng
THEN code segnent DPL nust = CS selector RPL;
ELSE General Protection Fault(Return selector); Fl;
| F conform ng
THEN code segnent DPL nust be > CPL;
ELSE General Protection Fault(Return selector); FI;
Segment nust be present,
ELSE Segnent Not Present(Return sel ector);
Examine return SS sel ector and associ ated descriptor:
Sel ector nust be non-null, ELSE General Protection Fault;
Sel ector index nust be within its descriptor table linmts
ELSE General Protection Fault(SS selector);
Sel ector RPL nust equal the RPL of the return CS sel ector
ELSE General Protection Fault(SS selector);
AR byte nust indicate a witable data segnent,
ELSE Ceneral Protection Fault(SS sel ector);
Stack segnment DPL nust equal the RPL of the return CS sel ector
ELSE General Protection Fault(SS selector);
SS nmust be present, el se Segnent Not Present(SS selector);
I nstruction pointer nmust be within code segnent limt
ELSE General Protection Fault;
I F OperandSi ze = 32
THEN
Load CS: EIP from st ack;
Load EFLAGS with values at (eSP + 8);
ELSE
Load CS:I P from st ack;
Load FLAGS with values at (eSP + 4) ;
Fl;
Load SS: eSP from st ack;
Set CPL to the RPL of the return CS sel ector;
Load the CS register with the CS descriptor;
Load the SS register with the SS descriptor;
FOR each of ES, FS, GS, and DS
DO,
IF the current value of the register is not valid for the outer I|evel;
THEN zero the register and clear the valid fl ag;
Fl;
To be valid, theregister setting nust satisfythe foll ow ng properties:
Sel ector index nust be within descriptor table limts;
AR byte nmust indicate data or readabl e code segnent;
| F segnent is data or non-conforning code,
THEN DPL nust be > CPL, or DPL nust be < RPL;

2-138

Am486 Microprocessor Instruction Set

AMDH

Description

In Real Address Mode, the IRET instruction pops the instruction pointer, the CS register,
and the FLAGS register from the stack and resumes the interrupted routine.

In Protected Mode, the action of the IRET instruction depends on the setting of the Nested
Task flag (NT) bit in the EFLAGS register. When the new flag image is popped from the
stack, the IOPL bits in the EFLAGS register are changed only when CPL equals 0.

If the NT flag is cleared, the IRET instruction returns from an interrupt procedure without a
task switch. The code returned to must be equally or less privileged than the interrupt routine
(as indicated by the RPL bits of the CS selector popped from the stack). If the destination
code is less privileged, the IRET instruction also pops the stack pointer and SS from the
stack.

If the NT flag is set, the IRET instruction reverses the operation of a CALL or INT that
caused a task switch. The updated state of the task executing the IRET instruction is saved
in its task state segment. If the task is re-entered later, the code that follows the IRET
instruction is executed.

Flags Affected
All flags are affected; the FLAGS or EFLAGS register is popped from stack.
Protected Mode Exceptions

General Protection Fault (13), Segment Not Present (11), or Stack Fault (12), occurs as
indicated under ‘Operation’ above.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand being popped lies beyond
address OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates the I/O privilege level is less than 3, as part of the
emulation.

Am486 Microprocessor Instruction Set 2-139

b‘l AMD

2.127 JA Jumps If Above (see also JNBE)
Opcode Instruction Clocks Description
77 cb JA rel8 3 (true),1 (false) Jumps short if above (CF =0 and ZF = 0).
OF 87 cw/cd JA rell6/32 3 (true), 1 (false) Jumps near if above (CF = 0 and ZF = 0).
Operation
IFCF=0ANDZF =0
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND OO0OFFFFH,;
Fl ;
Fl
Description
JA tests the flag set by a previous instruction. ‘Above’ indicates an unsigned integer com-
parison. If the given condition is true, ajump is made to the location provided as the operand.
Flags Affected
None
Protected Mode Exceptions
General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.
2-140 Am486 Microprocessor Instruction Set

AMDH

2.128

JAE Jumps If Above or Equal (see also JNB and JNC)

Opcode Instruction Clocks Description
73 cb JAE rel8 3 (true), 1 (false) Jumps short if above or equal (CF = 0).
OF 83 cw/cd JAE rell6/32 3 (true), 1 (false) Jumps near if above or equal (CF = 0).
Operation
IFCF=0
THEN

EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JAE tests the flag set by a previous instruction. ‘Above’ indicates an unsigned integer
comparison. If the given condition is true, a jump is made to the location provided as the
operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

Am486 Microprocessor Instruction Set 2-141

b‘l AMD

2.129 JB Jumps If Below (see also JC and JNAE)
Opcode Instruction Clocks Description
72 cb JB rel8 3 (true), 1 (false) Jumps short if below (CF = 1).
OF 82 cw/cd JBrell6/32 3 (true), 1 (false) Jumps near if below (CF = 1).
Operation
IFCF=1
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EI P - EIP AND 0000FFFFh;
Fl ;
Fl
Description
JB tests the flag set by a previous instruction. ‘Below’ indicates an unsigned integer com-
parison. If the given condition is true, ajump is made to the location provided as the operand.
Flags Affected
None
Protected Mode Exceptions
General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.
2-142 Am486 Microprocessor Instruction Set

AMDH

2.130

JBE Jumps If Below or Equal (see also JNA)
Opcode Instruction Clocks Description
76 cb JBE rel8 3 (true), 1 (false) Jumps short if below or equal (CF =1 or ZF = 1).

OF 86 cw/cd JBE rell16/32 3 (true), 1 (false) Jumps near if below or equal (CF =1 or ZF = 1).

Operation

IFCF=10RZF =1
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JBE tests the flag set by a previous instruction. ‘Below’ indicates an unsigned integer
comparison. If the given condition is true, a jump is made to the location provided as the
operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

Am486 Microprocessor Instruction Set 2-143

b‘l AMD

2.131

JC Jumps If Carry (see also JB and JNAE)

Opcode Instruction Clocks Description

72 cb JCrel8 3 (true), 1 (false) Jumps short if carry (CF = 1).
OF 86 cw/cd JC rell6/32 3 (true), 1 (false) Jumps near if carry (CF = 1).

Operation

IFCF=1
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JC tests the flag set by a previous instruction. If the given condition is true, a jump is made
to the location provided as the operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

2-144

Am486 Microprocessor Instruction Set

AMDH

2.132

JCXZ Jumps Short If CX Register is O (see also JECXZ)

Opcode Instruction Clocks Description

E3 cb JCXZ rel8 8 (true), 5 (false) Jumps short if CX register is 0.
Operation

IFCX =0

THEN

EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JCXZ tests the flag set by a previous instruction. If the given condition is true, a jump is
made to the location provided as the operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: JCXZ takes longer to execute than a two-instruction sequence that compares the
count register to zero and jumps if the count is zero.

The instruction converts all branches into 16-byte code fetches regardless of jump address
or cacheability.

Am486 Microprocessor Instruction Set 2-145

b‘l AMD

2.133

JE Jumps Short If Equal (see also JZ)

Opcode Instruction Clocks Description

74 cb JE rel8 3 (true), 1 (false) Jumps short if equal (ZF = 1).
OF 84 cw/cd JE rell6/32 3 (true), 1 (false) Jumps near if equal (ZF = 1).

Operation

IF ZF =1
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JE tests the flag set by a previous instruction. If the given condition is true, a jump is made
to the location provided as the operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

2-146

Am486 Microprocessor Instruction Set

AMDH

2.134

JECXZ Jumps Short If ECX Register is O (see also JCXZ)

Opcode Instruction Clocks Description

E3 cb JECXZ rel8 8 (true), 5 (false) Jumps short if ECX register is 0.
Operation

IF ECX =0

THEN

EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JECXZ tests the flag set by a previous instruction. ‘Above’ indicates an unsigned integer
comparison. If the given condition is true, a jump is made to the location provided as the
operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: JECXZ takes longer to execute than a two-instruction sequence that compares the
count register to zero and jumps if the count is zero.

The instruction converts all branches into 16-byte code fetches regardless of jump address
or cacheability.

Am486 Microprocessor Instruction Set 2-147

b‘l AMD

2.135 JG Jumps If Greater (see also JNLE)
Opcode Instruction Clocks Description
7F cb JG rel8 3 (true), 1 (false) Jumps short if greater (ZF = 0 and SF = OF).
OF 84 cw/cd JG rell16/32 3 (true), 1 (false) Jumps near if greater (ZF = 0 and SF = OF).
Operation
IF ZF = 0 AND SF = CF
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EI P - EIP AND 0000FFFFh;
Fl ;
Fl
Description
JG tests the flag set by a previous instruction. ‘Greater’ indicates a signed integer compar-
ison. If the given condition is true, a jump is made to the location provided as the operand.
Flags Affected
None
Protected Mode Exceptions
General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.
2-148 Am486 Microprocessor Instruction Set

AMDH

2.136

JGE Jumps If Greater or Equal (see also JNL)

Opcode Instruction Clocks Description

7D cb JGE rel8 3 (true), 1 (false) Jumps short if greater or equal (SF = OF).
OF 8D cw/cd JGE rell16/32 3 (true), 1 (false) Jumps near if greater or equal (SF = OF).
Operation

IF SF = OF

THEN

EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JGE tests the flag set by a previous instruction. ‘Greater’ indicates a signed integer com-
parison. If the given condition is true, ajump is made to the location provided as the operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

Am486 Microprocessor Instruction Set 2-149

b‘l AMD

2.137 JL Jumps If Less (see also JNGE)
Opcode Instruction Clocks Description
7Ccd JL rel8 3 (true), 1 (false) Jumps short if less (SF # OF).
OF 8C cw/cd JL rell6/32 3 (true), 1 (false) Jumps near if less (SF # OF).
Operation
IF SF # OF
THEN

EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JL tests the flag set by a previous instruction. ‘Less’ indicates a sighed integer comparison.
If the given condition is true, a jump is made to the location provided as the operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

2-150 Am486 Microprocessor Instruction Set

AMDH

2.138

JLE Jumps If Less or Equal (see also JNG)
Opcode Instruction Clocks Description
7E cb JLE rel8 3 (true), 1 (false) Jumps short if less or equal (ZF = 1 and SF # OF).

OF 8E cw/cd JLE rel16/32 3 (true), 1 (false) Jumps near if less or equal (ZF = 1 and SF # OF).

Operation

IF ZF = 1 AND SF£OF
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JLE teststhe flag set by a previous instruction. ‘Less’ indicates a signed integer comparison.
If the given condition is true, a jump is made to the location provided as the operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

Am486 Microprocessor Instruction Set 2-151

b‘l AMD

2.139 JMP Jump
Opcode Instruction Clocks Description
EB cb JMP rel8 3 Jumps short.
E9 cw JMP rell6 3 Jumps near, displacement relative to next instruction.
FF /4 JMP r/m16 5/5 Jumps near indirect.
EA cd JMP ptrl6:16 17,pm =19 Jumps far to 4-byte intermediate address.
EA cd JMP ptr 16:16 32 Jumps to call gate, same privilege.
EA cd JMP ptr 16:16 42 + ts* Jumps via task state segment.
EA cd JMP ptr 16:16 43 + ts* Jumps via task gate.
FF /5 JMP m16:16 13,pm =18 Jumps r/m16:16 indirect and far.
FF /5 JMP m16:16 31 Jumps to call gate, same privilege.
FF /5 JMP m16:16 41 + ts* Jumps via task state segment.
FF /5 JMP m16:16 42 + ts* Jumps via task gate.
E9 cd JMP rel32 3 Jumps near with displacement relative to next instruction.
FF /4 JMP r/m32 5/5 Jumps near, indirect.
EA cp JMP ptrl6:32 13,pm =18 Jumps far to 6-byte immediate address.
EA cp JMP ptrl6:32 31 Jumps to call gate, same privilege.
EA cp JMP ptrl6:32 42 + ts* Jumps via task state segment.
EA cp JMP ptrl6:32 43 + ts* Jumps via task gate.
FF /5 JMP m16:32 13,pm =18 Jumps far to address in r/m doubleword.
FF /5 JMP m16:32 31 Jumps to call gate, same privilege.
FF /5 JMP m16:32} 41 + ts* Jumps via task state segment.
FF /5 JMP m16:32 42 + ts* Jumps via task gate.
*ts = 199 for 486 TSS, 180 for 286 TSS, or 177 for VM TSS

Operation

I F instruction = relative JW

(* i.e. operand is rel8, rel 16, or rel 32 *)
THEN

EIP —« EIP + rel 8/ 16/ 32,

| F OperandSi ze = 16

THEN EIP ~ EIP AND 000OFFFFh;

Fl;
Fl ;

IF instruction = near indirect JMP
(* i.e. operand is r/nl6 or r/nB2 *)
THEN
| F OperandSi ze = 16
THEN
EIP « [r/nml6] AND OOQ0FFFFh
ELSE (* OperandSize = 32 *)
EIP « [r/nB2];
Fl ;
Fl ;

IF (PE=0OR(PE=1AND VM= 1)) (* Real Mdde or Virtual 8086 Mde *)
AND instruction = far JWP
(* i.e., operand type is m16:16, m 16: 32, ptrl6:16, ptrl1l6:32 *)
THEN GOTO REAL- OR- V86- MODE
| F operand type = ml6: 16 or ml6: 32
THEN (* indirect *)
I F OperandSi ze = 16
THEN
CS. 1P « [nml6:16];
EIP —« EIP AND 0000FFFFh; (* clear upper 16 bits *)
ELSE (* OperandSize = 32 *)
CS:EIP ~ [nl6:32];

2-152 Am486 Microprocessor Instruction Set

AMDH

Fl;
Fl;
| F operand type = ptrl16:16 or ptr16:32
THEN
| F OperandSi ze = 16
THEN
CS:IP ~ ptrl6: 16,
EIP —~ EIP AND OOOFFFFh; (* dear upper 16 bits *)
ELSE (* OperandSize = 32 *)
CS EIP ~ ptrl6: 32,
Fl;
Fl;
Fl;

IF (PE=1 AND VM= 0) (* Protected Mdde, not Virtual 8086 Mde *)
AND instruction = far JMP
THEN
| F operand type = ml6 or ml6: 32
THEN (* indirect *)
check access of EA doubl eword;
CGeneral Protection Fault or Stack Fault IF limt violation;
Fl ;
Destination selector is not null ELSE General Protection Fault
Destination selector index is withinits descriptor table linits ELSE
Ceneral Protection Fault(selector)
Dependi ng on AR byte of destination descriptor:
GOTO CONFORM NG- CODE- SEGVENT;
GOTO NONCONFORM NG- CODE- SEGVENT;
GOTO CALL- GATE;
GOTO TASK- GATE;
GOTO TASK- STATE- SEGVENT;
ELSE General Protection Fault(selector); (* illegal ARin descriptor *)
Fl ;

CONFORM NG- CODE- SEGVENT:
Descriptor DPL nmust be < CPL ELSE General Protection Fault(selector);
Segnent must be present ELSE Segnment Not Present(sel ector);
I nstruction pointer nust be within code-segnent lint
ELSE General Protection Fault;
| F OperandSi ze = 32
THEN Load CS: EIP from destination pointer;
ELSE Load CS:|IP from destination pointer;
Fl;
Load CS register with new segnent descri ptor;

NONCONFORM NG- CODE- SEGVENT:
RPL of destination selector nmust be < CPL
ELSE CGeneral Protection Fault (selector);
Descriptor DPL nmust = CPL ELSE General Protection Fault(selector);
Segnent nust be present ELSE Segnent Not Present (11)(selector);
I nstruction pointer nmust be within code-segnent limt
ELSE General Protection Fault;
| F OperandSi ze = 32 THEN Load CS: EIP from destination pointer;
ELSE Load CS:IP from destination pointer;
Fl;
Load CS register with new segnent descri ptor;
Set RPL field of CS register to CPL;

Am486 Microprocessor Instruction Set 2-153

b‘l AMD

CALL- GATE:

Descriptor DPL nust be = CPL
ELSE General Protection Fault(gate sel ector);
Descriptor DPL rmust be > gate selector RPL
ELSE General Protection Fault(gate sel ector);
Gat e nust be present ELSE Segnent Not Present(gate selector);
Exani ne sel ector to code segnent given in call gate descriptor:
Sel ector must not be null ELSE General Protection Fault;
Sel ector nust be within its descriptor table limt
ELSE General Protection Fault(CS selector);
Descriptor AR byte nust indicate code segnment
ELSE General Protection Fault(CS selector);
| F non- conf orm ng
THEN code- segnent descriptor DPL nmust = CPL
ELSE General Protection Fault(CS selector); FlI
| F conform ng
THEN code-segnent descriptor DPL nust be < CPL;
ELSE General Protection Fault (13)(CS sel ector
Code segnent nust be present ELSE Segnent Not Present (CS sel ector);
I nstruction pointer nmust be within code-segnment linit
ELSE General Protection Fault;
| F OperandSi ze = 32
THEN Load CS:EIP fromcall gate
ELSE Load CS:IP fromcall gate; FlI
Load CS register with new code-segment descriptor
Set RPL of CS to CPL

TASK- GATE:

Gat e descriptor DPL nust be = CPL
ELSE General Protection Fault(gate sel ector);
Gat e descriptor DPL nust be = gate selector RPL
ELSE Ceneral Protection Fault(gate sel ector);
Task Gate nust be present ELSE Segnment Not Present(gate selector);
Exami ne selector to TSS, given in Task Gate descriptor:
Must specify global in the local/global bit
ELSE General Protection Fault(TSS sel ector);
I ndex must be within GDT linits
ELSE Ceneral Protection Fault(TSS selector);
Descriptor AR byte nust specify available TSS (bottombits 00001);
ELSE CGeneral Protection Fault(TSS selector);
Task State Segnent nust be present
ELSE Segnent Not Present (TSS sel ector);
SW TCH TASKS (wi t hout nesting) to TSS;
I nstruction pointer nmust be within code-segnent limt
ELSE General Protection Fault;

TASK- STATE- SEGVENT:

TSS DPL nust be CPL ELSE General Protection Fault(TSS sel ector);
TSS DPL nust be TSS sel ector RPL
ELSE Ceneral Protection Fault(TSS selector);
Descriptor AR byte nust specify available TSS (bottom bits 00001)
ELSE General Protection Fault(TSS sel ector);
Task State Segnent nust be present
ELSE Segnent Not Present (TSS sel ector);
SW TCH TASKS (wi thout nesting) to TSS
I nstruction pointer nmust be within code-segment linit
ELSE General Protection Fault

>
=

2-154

Am486 Microprocessor Instruction Set

AMDH

Description

JMP transfers control to a different point in the instruction stream without recording return
information. The instruction has several different forms, as follows:

m Near Direct Jumps: The JMP r/m16 and JMP r/m32 forms specify a register or memory
location from which the procedure absolute offset is fetched. The offset is 32 bits for
r/m32, or 16 bits for r/m16.

m Near Indirect Jumps: To determine the destination, the JMP rel16 and JMP rel32 forms
add an offset to the address of the instruction following the JMP. The rell6 form is used
for 16-bit operand-size attributes (segment-size attribute 16 only); rel32 is used for 32-
bit operand-size attributes (segment-size attribute 32 only). The result is stored in the
32-bit EIP register. With rell6, the upper 16 bits of the EIP register are cleared, which
results in an offset that does not exceed 16 bits.

m Far Jumps: The JMP ptrl6:16 and ptrl6:32 forms use a 4-byte or 6-byte operand as a
long pointer to the destination. The IMP m16:16 and m16:32 forms fetch the long pointer
from the specified memory location (indirection). In Real or Virtual 8086 Mode, the long
pointer provides 16 bits for the CS register and 16 or 32 bits for the EIP register (de-
pending on operand-size). In Protected Mode, both forms consult the Access Rights
(AR) byte in the descriptor indexed by the selector part of the long pointer. Depending
on the value of the AR byte, the jump performs one of the following control transfer types:

— A jump to a code segment at the same privilege level
— A task switch
Flags Affected

All if a task switch occurs; none if no task switch occurs.
Protected Mode Exceptions

Near direct jumps: General Protection Fault (13) indicates the procedure is outside the
code segment limits. If CPL is 3, Alignment Check (17) indicates there is an unaligned
memory reference.

Near indirect jumps: General Protection Fault (13) indicates either that the result is in a
non-writable segment or there is an illegal memory-operand effective address in the code
or data segments. Stack Fault (12) indicates an illegal SS segment address. General
Protection Fault (13) indicates the indirect offset is beyond the code segment limits. Page
Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates there is an
unaligned memory reference.

Far jumps: General Protection Fault (13), Segment Not Present (11), Stack Fault (12), and
Invalid TSS (10), as listed in the ‘Operations’ section starting on page 2-152.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand is outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Note: All branches are converted into 16-byte code fetches regardless of jump address or
cacheability.

Am486 Microprocessor Instruction Set 2-155

b‘l AMD

2.140 JNA Jumps If Not Above (see also JBE)
Opcode Instruction Clocks Description
76 cb JNA rel8 3 (true), 1 (false) Jumps short if not above (CF =1 or ZF = 1).
OF 86 cw/cd INArel16/32 3 (true), 1 (false) Jumps near if not above (CF =1 or ZF = 1).
Operation
IFCF=1O0ORZF =1
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EI P - EIP AND 0000FFFFh;
Fl ;
Fl
Description
JNA tests the flag set by a previous instruction. “Above” indicates an unsigned integer
comparison. If the given condition is true, a jump is made to the location provided as the
operand.
Flags Affected
None
Protected Mode Exceptions
General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.
2-156 Am486 Microprocessor Instruction Set

AMDH

2.141

JNAE Jumps If Not Above or Equal (see also JB and JC)

Opcode Instruction Clocks Description
72 cb JNAE rel8 3 (true), 1 (false) Jumps short if not above or equal (CF = 1).
OF 82 cw/cd JINAE rell6/32 3 (true), 1 (false) Jumps near if not above or equal (CF = 1).
Operation
IFCF=1
THEN

EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JNAE tests the flag set by a previous instruction. “Above” indicates an unsigned integer
comparison. If the given condition is true, a jump is made to the location provided as the
operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

Am486 Microprocessor Instruction Set 2-157

b‘l AMD

2.142 JNB Jumps If Not Below (see also JAE and JNC)
Opcode Instruction Clocks Description
73 cb JNB rel8 3 (true), 1 (false) Jumps short if not below (CF = 0).
OF 83 cw/cd JINB rel16/32 3 (true), 1 (false) Jumps near if not below (CF = 0).
Operation
IFCF=0
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EI P - EIP AND 0000FFFFh;
Fl ;
Fl
Description
JNB tests the flag set by a previous instruction. “Below” indicates an unsigned integer
comparison. If the given condition is true, a jump is made to the location provided as the
operand.
Flags Affected
None
Protected Mode Exceptions
General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.
2-158 Am486 Microprocessor Instruction Set

AMDH

2.143

JNBE Jumps If Not Below or Equal (see also JA)
Opcode Instruction Clocks Description
77 cb JNBE rel8 3 (true), 1 (false) Jumps short if not below or equal (CF =0 and ZF = 0).

OF 87 cw/cd JINBE rell6/32 3 (true), 1 (false) Jumps near if not below or equal (CF =0 and ZF = 0).

Operation

IFCF=0ANDZF =0
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JNBE tests the flag set by a previous instruction. ‘Below’ indicates an unsigned integer
comparison. If the given condition is true, a jump is made to the location provided as the
operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

Am486 Microprocessor Instruction Set 2-159

b‘l AMD

2.144 JNC Jumps If Not Carry (see also JAE and JNB)
Opcode Instruction Clocks Description
73 cb JNC rel8 3 (true), 1 (false) Jumps short if not carry (CF = 0).
OF 83 cw/cd JINC rell6/32 3 (true), 1 (false) Jumps near if not carry (CF = 0).
Operation
IFCF=0
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EI P - EIP AND 0000FFFFh;
Fl ;
Fl
Description
JNC tests the flag set by a previous instruction. If the given condition is true, a jump is made
to the location provided as the operand.
Flags Affected
None
Protected Mode Exceptions
General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.
2-160 Am486 Microprocessor Instruction Set

AMDH

2.145

JNE Jumps If Not Equal (see also JNZ)
Opcode Instruction Clocks Description
75 cb JNE rel8 3 (true), 1 (false) Jumps short if not equal (ZF = 0).
OF 85cw/cd JNE rell6/32 3 (true), 1 (false) Jumps near if not equal (ZF = 0).
Operation

IF ZF =0

THEN

EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JNE tests the flag set by a previous instruction. If the given condition is true, a jump is made
to the location provided as the operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

Am486 Microprocessor Instruction Set 2-161

b‘l AMD

2.146 JNG Jumps If Not Greater (see also JLE)
Opcode Instruction Clocks Description
7E cb JING rel8 3 (true), 1 (false) Jumps short if not greater (ZF = 1 and SF # OF).
OF 8E cw/cd ING rell16/32 3 (true), 1 (false) Jumps near if not greater (ZF = 1 and SF # OF).
Operation
IF ZF = 1 AND SF # OF
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP - EIP AND 0000FFFFh;
Fl ;
Fl
Description
JNG tests the flag set by a previous instruction. ‘Greater’ indicates a signed integer com-
parison. If the given condition is true, ajump is made to the location provided as the operand.
Flags Affected
None
Protected Mode Exceptions
General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.
2-162 Am486 Microprocessor Instruction Set

AMDH

2.147

JNGE Jumps If Not Greater or Equal (see also JL)

Opcode Instruction Clocks Description

7Ccb JNGE rel8 3 (true), 1 (false) Jumps short if not greater or equal (SF # OF).
OF 8C cw/cd INGE rel16/32 3 (true), 1 (false) Jumps near if not greater or equal (SF # OF).
Operation

IF SF # OF

THEN

EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JNGE tests the flag set by a previous instruction. ‘Greater’ indicates a signed integer
comparison. If the given condition is true, a jump is made to the location provided as the
operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

Am486 Microprocessor Instruction Set 2-163

b‘l AMD

2.148 JNL Jumps If Not Less (see also JGE)
Opcode Instruction Clocks Description
7D cb JNL rel8 3 (true), 1 (false) Jumps short if not less (SF = OF).
OF 8D cwi/cd JNL rel16/32 3 (true), 1 (false) Jumps near if not less (SF = OF).
Operation
IF SF = OF
THEN

EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JNL tests the flag set by a previous instruction. ‘Less’ indicates a signed integer comparison.
If the given condition is true, a jump is made to the location provided as the operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

2-164 Am486 Microprocessor Instruction Set

AMDH

2.149

JNLE Jumps If Not Less or Equal (see also JG)
Opcode Instruction Clocks Description
7F cb JNLE rel8 3 (true), 1 (false) Jumps short if not less or equal (ZF = 0 and SF = 0).

OF 8F cw/cd JINLE rell6/32 3 (true), 1 (false) Jumps near if not less or equal (ZF = 0 and SF = 0).

Operation

IF ZF = 0 AND SF = 0
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JNLE tests the flag set by a previous instruction. ‘Less’ indicates a signed integer compar-
ison. If the given condition is true, a jump is made to the location provided as the operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

Am486 Microprocessor Instruction Set 2-165

b‘l AMD

2.150 JNO Jumps If Not Overflow
Opcode Instruction Clocks Description
71cb JNO rel8 3 (true), 1 (false) Jumps short if not overflow (OF = 0).
OF 81 cw/cd JINO rell6/32 3 (true), 1 (false) Jumps near if not overflow (OF = 0).
Operation
IFOF=0
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EI P - EIP AND 0000FFFFh;
Fl ;
Fl
Description
JNO tests the flag set by a previous instruction. If the given condition is true, a jump is made
to the location provided as the operand.
Flags Affected
None
Protected Mode Exceptions
General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.
2-166 Am486 Microprocessor Instruction Set

AMDH

2.151

JNP Jumps If Not Parity (see also JPO)
Opcode Instruction Clocks Description
7B cb JNP rel8 3 (true), 1 (false) Jumps short if not parity (PF = 0).
OF 8B cw/cd JNP rell6/32 3 (true), 1 (false) Jumps near if not parity (PF = 0).
Operation
IFPF=0
THEN

EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JNP tests the flag set by a previous instruction. If the given condition is true, a jump is made
to the location provided as the operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

Am486 Microprocessor Instruction Set 2-167

b‘l AMD

2.152 JNS Jumps If Not Sign
Opcode Instruction Clocks Description
79 cb JNS rel8 3 (true), 1 (false) Jumps short if not sign (SF = 0).
OF 89 cw/cd JNS rel16/32 3 (true), 1 (false) Jumps near if not sign (SF = 0).
Operation
IF SF=0
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EI P - EIP AND 0000FFFFh;
Fl ;
Fl
Description
JNS tests the flag set by a previous instruction. If the given condition is true, a jump is made
to the location provided as the operand.
Flags Affected
None
Protected Mode Exceptions
General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.
2-168 Am486 Microprocessor Instruction Set

AMDH

2.153

JNZ Jumps If Not Zero (see also JNE)

Opcode Instruction Clocks Description

75 cb JINZ rel8 3 (true), 1 (false) Jumps short if not zero (ZF = 0).
OF 85 cw/cd JINZ rell6/32 3 (true), 1 (false) Jumps near if not zero (ZF = 0).
Operation

IF ZF =0
THEN

EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JNZ tests the flag set by a previous instruction. If the given condition is true, a jump is made
to the location provided as the operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

Am486 Microprocessor Instruction Set 2-169

b‘l AMD

2.154

JO Jumps If Overflow

Opcode Instruction Clocks Description

70 cb JO rel8 3 (true), 1 (false) Jumps short if overflow (OF = 1).
OF 80 cw/cd JO rel16/32 3 (true), 1 (false) Jumps near if overflow (OF = 1).

Operation

IFOF =1
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JO tests the flag set by a previous instruction. If the given condition is true, a jump is made
to the location provided as the operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

2-170

Am486 Microprocessor Instruction Set

AMDH

2.155

JP Jumps If Parity (see also JPE)
Opcode Instruction Clocks Description
7A cb JP rel8 3 (true), 1 (false) Jumps short if parity (PF = 1).
OF 8A cw/cd JP rell6/32 3 (true), 1 (false) Jumps near if parity (PF = 1).
Operation

IFPF=1

THEN

EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JP tests the flag set by a previous instruction. If the given condition is true, a jump is made
to the location provided as the operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

Am486 Microprocessor Instruction Set 2-171

b‘l AMD

2.156 JPE Jumps If Parity Even (see also JP)
Opcode Instruction Clocks Description
7A cb JPE rel8 3 (true), 1 (false) Jumps short if parity even (PF = 1).
OF 8A cw/cd JPE rel16/32 3 (true), 1 (false) Jumps near if parity even (PF = 1).
Operation
IF PF =1
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EI P - EIP AND 0000FFFFh;
Fl ;
Fl
Description
JPE tests the flag set by a previous instruction. If the given condition is true, a jump is made
to the location provided as the operand.
Flags Affected
None
Protected Mode Exceptions
General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.
2-172 Am486 Microprocessor Instruction Set

AMDH

2.157

JPO Jumps if Parity Odd (see also JNP)
Opcode Instruction Clocks Description
7B cb JPO rel8 3 (true), 1 (false) Jumps short if parity odd (PF = 0).
OF 8B cw/cd JPO rell16/32 3 (true), 1 (false) Jumps near if parity odd (PF = 0).
Operation
IFPF=0
THEN

EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JPO tests the flag set by a previous instruction. If the given condition is true, a jump is made
to the location provided as the operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

Am486 Microprocessor Instruction Set 2-173

b‘l AMD

2.158

JS Jumps If Sign

Opcode Instruction Clocks Description

78 cb JS rel8 3 (true), 1 (false) Jumps short if sign (SF = 1).
OF 88 cw/cd JS rell6/32 3 (true), 1 (false) Jumps near if sign (SF = 1).

Operation

IF SF =1
THEN
EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JS tests the flag set by a previous instruction. If the given condition is true, a jump is made
to the location provided as the operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

2-174

Am486 Microprocessor Instruction Set

AMDH

2.159

JZ Jumps If O (see also JE)
Opcode Instruction Clocks Description
74 cb JZ rel8 3 (true), 1 (false) Jumps short if 0 (ZF = 1).
OF 84 cw/cd JZ rell6/32 3 (true), 1 (false) Jumps near if 0 (ZF = 1).
Operation

IF ZF =1

THEN

EIP « EIP + SignExtend(rel 8/16/32)
| F OperandSi ze = 16
THEN EIP —~ EIP AND 0000FFFFh;
Fl ;
FI

Description

JZ tests the flag set by a previous instruction. If the given condition is true, a jump is made
to the location provided as the operand.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the limits of the code segment.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The instruction converts all branches into 16-byte code fetches regardless of jump
address or cacheability.

Am486 Microprocessor Instruction Set 2-175

i"l AMD

2.160 LAHF Loads Flags into AH
Opcode Instruction Clocks Description
9F LAHF 3 Loads the FLAGS register into AH.
Operation
AH ~ SF: ZF: xx: AF: xx: PF: xx: CF
Description
The LAHF instruction transfers the FLAGS register (low byte of the EFLAGS register) to
the AH register. After the transfer, the bits shadow the flags as follows:
m AH bit 0 = Carry Flag
m AH bit 2 = Parity Flag
m AH bit 4 = Auxiliary Flag
m AH bit 6 = Zero Flag
m AH bit 7 = Sign Flag
Flags Affected
None
Protected Mode Exceptions
None
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
2-176 Am486 Microprocessor Instruction Set

AMDH

2.161

LAR Loads Access Rights Byte

Opcode Instruction Clocks Description

OF 02 /r LAR r16,r/m16 11/11 rl6 — r/m16 masked by FFOOh

OF 02 /r LAR r32,r/m32 11/11 r32 — r/m32 masked by O0FxFFOO0h
Description

If the source selector is visible at the current privilege level (modified by the selector’'s RPL)
and is a valid descriptor type within the descriptor limits, LAR stores the high-order dou-
bleword of the descriptor masked by 00FxFFOQO in the destination register, and sets ZF. The
x indicates that the four bits corresponding to the upper four bits of the limit are undefined
in the value loaded by the LAR instruction. If the selector is invisible or of the wrong type,
LAR clears ZF. If the 32-bit operand size is specified, the entire 32-bit value is loaded into
the 32-bit destination register. If the 16-bit operand size is specified, the lower 16 bits of
this value are stored in the 16-bit destination register. All code and data segment descriptors
are valid for LAR.

The valid special segment and gate descriptor types for the LAR instruction are given in
the following table:

Type Name Valid/Invalid
0 Invalid Invalid
1 Available 80286 TSS Valid
2 LDT Valid
3 Busy 80286 TSS Valid
4 80286 call gate Valid
5 80286/486 task gate Valid
6 80286 trap gate Valid
7 80286 interrupt gate Valid
8 Invalid Invalid
9 Available 486 TSS Valid
A Invalid Invalid
B Busy 486 TSS Valid
C 486 call gate Valid
D Invalid Invalid
E 486 trap gate Valid
F 486 interrupt gate Valid

Flags Affected
If the selector is invisible or of the wrong type, LAR clears ZF; otherwise, it sets ZF.
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

Invalid Opcode (6) occurs. LAR is unrecognized in Real Address Mode.
Virtual 8086 Mode Exceptions

Invalid Opcode (6) occurs. LAR is unrecognized in Virtual 8086 Mode.

Am486 Microprocessor Instruction Set 2-177

b‘l AMD

2.162

LDS Loads Pointer Using DS

Opcode Instruction Clocks Description

C51/r LDS r16,m16:16 6/12 Loads DS:r16 with pointer from memory.
C51/r LDS r32,m16:32 6/12 Loads DS:r32 with pointer from memory.

Operation

| F (OperandSi ze = 16)
THEN
rié6 — [Effective Address]; (* 16-bit transfer *)
DS —~ [Effective Address + 2]; (* 16-bit transfer *)
ELSE (* OperandSize = 32 *)
r32 - [Effective Address]; (* 32-bit transfer *)
DS —~ [Effective Address + 4]; (* 16-bit transfer *) FI;
| F Protected Mbde and DS is |oaded with a non-null selector:
Index is within limts ELSE General Protection Fault(selector);
AR byte indicates data segment ELSECGeneral ProtectionFault(selector);
| F data or non-conform ng code
THEN RPL and CPL are < DPL in AR byte ELSEzen.Protect. Fault(sel ector);
Segnment nust be nmarked present ELSE Segnent Not Present(sel ector);
Load segnent register with selector and RPL bits;
Load segnent register with descriptor;
| F Protected Mbde and DS is |oaded with a null selector:
Load segnent register with selector; Cear descriptor valid bit

Description

LDS reads a full pointer from memory and stores it in a register pair consisting of the DS
register and a second operand-specified register. The first 16 bits are in DS and the re-

maining 16 or 32 bits (as specifed by the operand size) are placed into the register specified
by the r16 or r32 register operand. The segment register descriptor comes from the selector
descriptor table entry. Loading a null selector (values 0000—-0003) into DS does not cause
a protection exception, but any subsequent reference to a segment with a null selector

causes a General Protection Fault (13) and no memory reference to the segment occurs.

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates anillegal SS segment address. Invalid Opcode (6) indicates the second
operand is a register. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check
(17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

2-178

Am486 Microprocessor Instruction Set

AMDH

2.163

LEA Loads Effective Address

Opcode Instruction Clocks Description

8D Ir LEA r16,m[16-bit] 1 Stores effective address for m in 16-bit register.
8D /Ir LEA r32,m[16-bit] 1 Stores effective address for m in 32-bit register.
8D /Ir LEA r16,m[32-bit] 1 Stores effective address for m in 16-bit register.
8D /Ir LEA r32,m[32-bit] 1 Stores effective address for m in 32-bit register.

Operation

| F OperandSi ze = 16 AND AddressSi ze
THEN r 16 Addr(m;
| F OperandSi ze = 16 AND AddressSize = 32
THEN r16 ~ Truncate_to_16bits(Addr(m)); (* 32-bit address *)
| F OperandSi ze = 32 AND AddressSize = 16
THEN r32 « Truncate_to _16bits(Addr(m);
| F OperandSi ze = 32 AND AddressSize = 32
THEN r32 ~ Addr(m;

16

Fl
Description

LEA calculates the effective address (offset part) and stores it in the specified register. The
operand-size attribute of the instruction (represented by OperandSize in ‘Operation’ above)
is determined by the chosen register. The address-size attribute (represented by Address-
Size) is determined by the USE attribute of the segment containing the second operand.
The address-size and operand-size attributes affect the action performed by the LEA in-
struction, as follows:

m 16-bit operand, 16-bit address: LEA calculates the effective 16-bit address and stores
it in the 16-bit destination register.

m 16-bit operand, 32-bit address: LEA calculates the effective 32-bit address and stores
the lower 16 bits in the 16-bit destination register.

m 32-bitoperand, 16-bit address: LEA calculates the effective 16-bit address, zero extends
it, and stores it in the 32-bit destination register.

m 32-bit operand, 32-bit address: LEA calculates the effective 32-bit address and stores
it in the 32-bit destination register.

Flags Affected

None

Protected Mode Exceptions

Invalid Opcode (6) indicates the second operand is a register.
Real Address Mode Exceptions

Invalid Opcode (6) indicates the second operand is a register.
Virtual 8086 Mode Exceptions

Invalid Opcode (6) indicates the second operand is a register.

Am486 Microprocessor Instruction Set 2-179

b‘l AMD

2.164 LEAVE High Level Procedure Exit
Opcode Instruction Clocks Description
C9 LEAVE 5 Sets SP to BP, then pops BP.
C9 LEAVE 5 Sets ESP to EBP, then pops EBP.
Operation
| F StackAddr Si ze = 16
THEN
SP ~ BP;
pop BP;
ELSE (* StackAddrSize = 32 *)
ESP — EBP;
pop EBP;
Fl
Description
The LEAVE instruction reverses the actions of the ENTER instruction. By copying the frame
pointer to the stack pointer, the LEAVE instruction releases the stack space used by a
procedure for its local variables. The old frame pointer is popped into the BP or EBP register,
restoring the caller’s frame. A subsequent RET nn instruction removes any arguments
pushed onto the stack of the exiting procedure.
Flags Affected
None
Protected Mode Exceptions
Stack Fault (12) indicates the BP or EBP register does not point to a location within the
limits of the current stack segment.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.
2-180 Am486 Microprocessor Instruction Set

AMDH

2.165

LES Loads Pointer Using ES
Opcode Instruction Clocks Description
Calr LES r16,m16:16 6/12 Loads ES:rl16 with pointer from memory.
Calr LES r32,m16:32 6/12 Loads ES:r32 with pointer from memory.
Operation

| F (OperandSi ze = 16)
THEN
rié6 — [Effective Address]; (* 16-bit transfer *)
ES ~ [Effective Address + 2]; (* 16-bit transfer *)
ELSE (* OperandSize = 32 *)
r32 - [Effective Address]; (* 32-bit transfer *)
ES - [Effective Address + 4]; (* 16-bit transfer *)
Fl ;
| F Protected Mbde and ES is | oaded with a non-null selector:
Index is within limts ELSE General Protection Fault(selector);
AR byte indicates data segment ELSECGeneral ProtectionFault(selector);
| F data or non-conform ng code
THEN RPL and CPL are < DPL in AR byte ELSEzen. Protect.Fault(sel ector);
Segnent is nmarked present ELSE Segment Not Present Faul t(sel ector);
Load segnent register with selector and RPL bits;
Load segnent register with descriptor;
| F Protected Mbde and ES is |oaded with a null selector:
Load segnent register with selector; Cear descriptor valid bit

Description

LES reads a full pointer from memory and stores it in a register pair consisting of the ES
register and a second operand-specified register. The first 16 bits are in ES and the re-

maining 16 or 32 bits (as specifed by the operand size) are placed into the register specified
by the r16 or r32 register operand. The segment register descriptor comes from the selector
descriptor table entry. Loading a null selector (values 0000-0003) into ES does not cause
a protection exception, but any subsequent reference to a segment with a null selector

causes a General Protection Fault (13) and no memory reference to the segment occurs.

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates anillegal SS segment address. Invalid Opcode (6) indicates the second
operand is a register. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check
(17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-181

b‘l AMD

2.166

LFS Loads Pointer Using FS

Opcode Instruction Clocks Description

04 B4 Ir LFS r16,m16:16 6/12 Loads FS:r16 with pointer from memory.
04 B4 Ir LFS r32,m16:32 6/12 Loads FS:r32 with pointer from memory.

Operation

| F (OperandSi ze = 16)
THEN
rié6 — [Effective Address]; (* 16-bit transfer *)
FS — [Effective Address + 2]; (* 16-bit transfer *)
ELSE (* OperandSize = 32 *)
r32 - [Effective Address]; (* 32-bit transfer *)
FS « [Effective Address + 4]; (* 16-bit transfer *)
Fl ;
I F Protected Mbde and FS is | oaded with a non-null selector:
Index is within limts ELSE General Protection Fault(selector);
AR byte indicates data segment ELSE Gen.Protect. Fault(sel ector);
| F data or non-conform ng code
THEN RPL and CPL are < DPL in AR byte ELSEzen. Protect.Fault(sel ector);
Segnent is marked present ELSE Segnment Not Present(sel ector);
Load segnent register with selector and RPL bits;
Load segnent register with descriptor;
| F Protected Mbde and FS is |oaded with a null selector:
Load segnent register with selector; Cear descriptor valid bit;

Description

LFS reads a full pointer from memory and stores it in a register pair consisting of the FS
register and a second operand-specified register. The first 16 bits are in FS and the re-
maining 16 or 32 bits (as specifed by the operand size) are placed into the register specified
by the r16 or r32 register operand. The segment register descriptor comes from the selector
descriptor table entry. Loading a null selector (values 0000-0003) into FS does not cause
a protection exception, but any subsequent reference to a segment with a null selector
causes a General Protection Fault (13) and no memory reference to the segment occurs.

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates anillegal SS segment address. Invalid Opcode (6) indicates the second
operand is a register. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check
(17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

2-182

Am486 Microprocessor Instruction Set

AMDH

2.167

LGDT Loads GDTR
Opcode Instruction Clocks Description

OF 01 /2 LGDT m16&32 11 Loads m into GDTR.
Operation

| F OperandSi ze = 16

THEN GDTR. Linmt: Base ~ ml6:24 (* 24 bits of base | oaded *)
ELSE GDTR Linmit: Base ~ ml6: 32,

Fl ;

Description

LGDT loads a linear base address and limit value from a 6-byte data operand in memory
into the GDTR. If a 16-bit operand is used with the LGDT instruction, the register is loaded
with a 16-bit limit and a 24-bit base, and the high-order 8 bits of the 6-byte data operand
are not used. If a 32-bit operand is used, a 16-bit limit and a 32-bit base are loaded; the
high-order 8 bits of the 6-byte operand are used as high-order base address bits.

The SGDT instruction always stores into all 48 bits of the 6-byte data operand. With the
80286 microprocessor, the upper 8 bits are undefined after SGDT executes. With the
Am386DX or Am486 microprocessors, the upper 8 bits are written with the high-order 8
address bits, for both a 16-bit operand and a 32-bit operand. If the LGDT instruction is used
with a 16-bit operand to load the register stored by the SGDT instruction, the upper 8 bits
are stored as zeros.

The LGDT instruction appears in operating system software. It is not used in application
programs. LGDT and LIDT are the only instructions that load a linear address directly (i.e.,
not a segment relative address) in Protected Mode.

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates one of three conditions: the current privilege level
is not 0, the result destination is a non-writable segment, or the code or data segments
have an illegal memory-operand effective address. Invalid Opcode (6) indicates the source
operand is a register. Stack Fault (12) indicates an illegal SS segment address. Page Fault
(14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates there is an unaligned
memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Invalid Opcode (6) indicates the source operand is a register.

Note: This instruction is valid in Real Address Mode to allow power-up initialization for
Protected Mode.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Invalid Opcode (6) indicates the source operand is a register.
Page Fault (14) indicates a page fault.

Am486 Microprocessor Instruction Set 2-183

b‘l AMD

2.168

LGS Loads Pointer Using GS

Opcode Instruction Clocks Description

OFB5 Ir LGS r16,m16:16 6/12 Loads GS:rl16 with pointer from memory.
OFB5 Ir LGS r32,m16:32 6/12 Loads GS:r32 with pointer from memory.

Operation

| F (OperandSi ze = 16)
THEN
rié6 — [Effective Address]; (* 16-bit transfer *)
GS ~ [Effective Address + 2]; (* 16-bit transfer *)
ELSE (* OperandSize = 32 *)
r32 - [Effective Address]; (* 32-bit transfer *)
GS ~ [Effective Address + 4]; (* 16-bit transfer *)
Fl ;
I F Protected Mbde and GS is | oaded with a non-null selector:
I ndex must be within limts ELSE General Protection Fault(selector);
AR byte indicates data segment ELSE Gen.Protect. Fault(sel ector);
| F data or non-conform ng code
THEN RPL and CPL are < DPL in AR byte ELSEzen. Protect.Fault(sel ector);
Segnent mnust be marked present ELSE Segnent Not Present(sel ector);
Load segnent register with selector and RPL bits;
Load segnent register with descriptor;
| F Protected Mbde and GS is |loaded with a null selector:
Load segnent register with selector; Cear descriptor valid bit;

Description

LGS reads a full pointer from memory and stores it in a register pair consisting of the GS
register and a second operand-specified register. The first 16 bits are in GS and the re-

maining 16 or 32 bits (as specifed by the operand size) are placed into the register specified
by the r16 or r32 register operand. The segment register descriptor comes from the selector
descriptor table entry. Loading a null selector (values 0000—-0003) into GS does not cause
a protection exception, but any subsequent reference to a segment with a null selector

causes a General Protection Fault (13) and no memory reference to the segment occurs.

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates anillegal SS segment address. Invalid Opcode (6) indicates the second
operand is a register. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check
(17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

2-184

Am486 Microprocessor Instruction Set

AMDH

2.169

LIDT Loads IDTR
Opcode Instruction Clocks Description
OF01/3 LIDT m16&32 11 Loads minto IDTR.

Operation

| F OperandSi ze = 16

THEN IDTR Limt: Base ~ ml6:24 (* 24 bits of base | oaded *)
ELSE IDTR Linmit: Base ~ ml6: 32

Fl ;

Description

The LIDT instruction loads a linear base address and limit value from a 6-byte data operand
in memory into the IDTR. If a 16-bit operand is used with the LIDT instruction, the register
is loaded with a 16-bit limit and a 24-bit base, and the high-order 8 bits of the 6-byte data
operand are not used. If a 32-bit operand is used, a 16-bit limit and a 32-bit base are loaded;
the high-order 8 bits of the 6-byte operand are used as high-order base address bits.

The SIDT instruction always stores into all 48 bits of the 6-byte data operand. With the
80286 microprocessor, the upper 8 bits are undefined after SIDT executes. With the
Am386DX or Am486 microprocessors, the upper 8 bits are written with the high-order 8
address bits, for both a 16-bit operand and a 32-bit operand. If the LIDT instruction is used
with a 16-bit operand to load the register stored by the SIDT instruction, the upper 8 bits
are stored as zeros.

The LIDT instruction appears in operating system software. It is not used in application
programs. LGDT and LIDT are the only instructions that directly load a linear address (i.e.,
not a segment relative address) in Protected Mode.

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates one of three conditions: the current privilege level
is not 0, the result destination is a non-writable segment, or the code or data segments
have an illegal memory-operand effective address. Invalid Opcode (6) indicates the source
operand is a register. Stack Fault (12) indicates an illegal SS segment address. Page Fault
(14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates there is an unaligned
memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Invalid Opcode (6) indicates the source operand is a register.

Note: This instruction is valid in Real Address Mode to allow power-up initialization for
Protected Mode.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Invalid Opcode (6) indicates the source operand is a register.
Page Fault (14) indicates a page fault.

Am486 Microprocessor Instruction Set 2-185

b‘l AMD

2.170 LLDT Loads LDTR
Opcode Instruction Clocks Description
OF 00 /2 LLDT r/m16 11/11 Loads selector r/m16 into LDTR.
Operation
LDTR ~ SRC
Description
The LLDT instruction loads the Local Descriptor Table register (LDTR). The word operand
(memory or register) used with the LLDT instruction must contain a selector to the Global
Descriptor Table (GDT). The GDT entry must be a Local Descriptor Table; the LDTR loads
from the entry. The segment registers DS, ES, SS, FS, GS, and CS are not affected. The
LDT field in the task state segment does not change. The selector operand can be 0; if so,
the LDTR is marked invalid. All descriptor references (except by the LAR, VERR, VERW,
or LSL instructions) cause a General Protection Fault (13).
Note: The LLDT instruction is used in operating system software. Itis not used in application
programs.
Flags Affected
None
Protected Mode Exceptions
General Protection Fault (13) indicates one of three conditions: the current privilege level
is not 0, the result destination is a non-writable segment, or the code or data segments
have an illegal memory-operand effective address. General Protection Fault (13) indicates
the selector operand does not point into the Global Descriptor Table, or if the entry in the
GDT is nota Local Descriptor Table. Segment Not Present (11) indicates the LDT descriptor
is not present. Stack Fault (12) indicates an illegal SS segment address. Page Fault (14)
indicates a page fault.
Real Address Mode Exceptions
Invalid Opcode (6) occurs because the LLDT instruction is not recognized in Real Address
Mode.
Virtual 8086 Mode Exceptions
Invalid Opcode (6) occurs because the LLDT instruction is not recognized in Virtual 8086
Mode.
Note: The operand-size attribute has no effect on this instruction.

2-186 Am486 Microprocessor Instruction Set

AMDH

2171

LMSW Loads Machine Status Word

Opcode Instruction Clocks Description

OF0l1/6 LMSW r/m16 13/13 Loads r/m16 into the machine status word.
Operation

MSW — r/ml6; (* 16 bits is stored in the machine status word *)
Description

The LMSW instruction loads the machine status word (part of the CRO register) from the
source operand. This instruction can be used to switch to Protected Mode; if so, it must be
followed by an intrasegment jump to flush the instruction queue. The LMSW instruction will
not switch back to Real Address Mode.

Note: The LMSW instruction is used only in operating system software. It is not used in
application programs.

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates one of three conditions: the current privilege level
is not 0, the result destination is a non-writable segment, or the code or data segments
have an illegal memory-operand effective address. Stack Fault (12) indicates anillegal SS
segment address. Page Fault (14) indicates a page fault.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault.

Note: The operand-size attribute has no effect on this instruction. This instruction is
provided for compatibility with the 80286 microprocessor; programs for the Am486
microprocessor should use the MOV CRO, ... instruction instead. The LMSW instruction
does not affect the PG or ET bits, and it cannot be used to clear the PE bit.

Am486 Microprocessor Instruction Set 2-187

b‘l AMD

2.172 LOCK Asserts LOCK Signal Prefix
Opcode Instruction Clocks Description
FO LOCK 1 Asserts LOCK signal for the next instruction.
Description
The LOCK prefix causes the processor to assert the LOCK signal during execution of the
following instruction. In a multiprocessor environment, use of this signal ensures that the
processor has exclusive use of any shared memory while LOCK is asserted. The read-
modify-write sequence typically used to implement test and set on the processor is the BTS
instruction.
LOCK functions only with the following instructions:
BTS, BTR, BTC mem, reg/imm
XCHG reg, mem
XCHG mem, reg
ADD, OR, ADC, SBB, AND, SLTB, XOR mem, reg/imm
NOT, NEG, INC, DEC mem
CMPXCHG, XADD reg/mem, reg
Using the LOCK prefix with any instruction not listed above generates an undefined opcode
trap.
The XCHG instruction always asserts LOCK regardless of the presence or absence of the
LOCK prefix. The integrity of the LOCK prefix is not affected by the alignment of the memory
field. Memory locking is observed for arbitrarily misaligned fields.
Flags Affected
None
Protected Mode Exceptions
Invalid Opcode (6) indicates the LOCK prefix is used with an instruction not listed in the
‘Description’ section above; other exceptions can be generated by the subsequent (locked)
instruction.
Real Address Mode Exceptions
Invalid Opcode (6) indicates the LOCK prefix is used with an instruction not listed in the
‘Description’ section above; other exceptions can be generated by the subsequent (locked)
instruction.
Virtual 8086 Mode Exceptions
Invalid Opcode (6) indicates the LOCK prefix is used with an instruction not listed in the
‘Description’ section above; exceptions can still be generated by the subsequent (locked)
instruction.

2-188 Am486 Microprocessor Instruction Set

AMDH

2.173

LODS/LODSB/LODSD/LODSW Loads String Operand
Opcode Instruction Clocks Description

AC LODS m8 5 Loads byte (E)SI into AL.

AD LODS m16 5 Loads word (E)SI into AX.

AD LODS m32 5 Loads doubleword (E)SI into EAX.

AC LODSB 5 Loads byte DS:(E)SI into AL.

AD LODSD 5 Loads doubleword DS:(E)SI into EAX.

AD LODSW 5 Loads word DS:(E)SI into AX.
Operation

AddressSi ze = 16

THEN use SI for source-index

ELSE (* AddressSize = 32 *)
use ESI for source-index;

Fl;
| F byte type of instruction
THEN
AL ~ [source-index); (* byte load *)
IF DF = 0 THEN I ncDec « 1 ELSE IncDec ~ -1;Fl;
ELSE
IF OperandSize = 16
THEN
AX < [source-index]; (* word load *)
IF DF = 0 THEN IncDec ~ 2 ELSE IncDec « =2; FI;
ELSE (* OperandSize = 32 *)
EAX < [source-index]; (* doubleword load *)
IF DF = 0 THEN IncDec ~ 4 ELSE IncDec ~ —4; Fl,
Fl;
FI;
source-index ~ source-index + IncDec
Description

LODS loads the memory byte, word, or doubleword at the location pointed to by the source-
index register into the AL, AX, or EAX register. After the transfer, the instruction automati-
cally advances the source-index register. If DF = 0 (the CLD instruction was executed), the
source index increments; if DF = 1 (the STD instruction was executed), it decrements. The
increment/decrement rate is 1 for a byte, 2 for a word, or 4 for a doubleword. If the address-
size attribute is 16 bits, the Sl register is the source-index register; otherwise, the ESI

registeris used. The source data address is determined solely by the contents of the source-
index register; load the correctindex value into the register before executing LODS. LODSB,
LODSW, and LODSD are synonyms for the byte, word, and doubleword LODS instructions.

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
or there is an illegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-189

i"l AMD

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

2-190 Am486 Microprocessor Instruction Set

AMDH

2.174

LOOP/LOOPE/LOOPNE/LOOPNZ/LOOPZ Loop Control CX Counter

Opcode Instruction Clocks Description

E2 LOOP rel8 2,6 Decrements count; jumps short if CX # 0.

Elcb LOOPE rel8 9,6 Decrements count; jumps short if CX # 0 and ZF = 1.

EO cb LOOPNE rel8 9,6 Decrements count; jumps short if CX # 0 and ZF = 0.

EO cb LOOPNZ rel8 9,6 Decrements count; jumps short if CX # 0 and ZF = 0.

Elcb LOOPZ rel8 9,6 Decrements count; jumps short if CX # 0 and ZF = 1.
Operation

| F AddressSize = 16 THEN CountReg is CX ELSE CountReg is ECX; FI;
Count Reg ~ CountReg -1;

IF instruction #LOOP
THEN
IF (instruction = LOOPE) OR (instruction = LOOPZ)
THEN BranchCond ~ (ZF = 1) AND (CountReg # 0); FI,
IF (instruction = LOOPNE) OR (instruction = LOOPNZ)
THEN BranchCond ~ (ZF = 0) AND (CountReg % 0); FI; FI;
IF BranchCond
THEN
IF OperandSize = 16
THEN

IP ~ IP + SignExtend(re/8);
ELSE (* OperandSize = 32 *)
EIP « EIP + SignExtend(re/8); FI; FI

Description

LOOP instructions provide iteration control, combining loop index management with con-
ditional branching. Load an unsigned iteration count into the count register, then code the
LOOP instruction at the end of the iterative instruction series. Make the LOOP destination
the label at the beginning of the iteration. When executed, LOOP decrements the CX or
ECX register without changing any flags. Then it checks the register and, if required, ZF.
If the conditions are met, LOOP executes a short jump to the label. The address-size
attribute determines whether to use the CX (16-bit) or ECX (32-bit) register as the count
register. The LOOP operand must be in the range from 128 (decimal) bytes before the
instruction to 127 bytes after the instruction.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates the offset is beyond the current code segment limits.
Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: The unconditional LOOP instruction takes longer to execute than a 2-instruction
sequence that decrements the count register and jumps if the count does not equal zero.
All branches are converted into 16-byte code fetches regardless of jump address or
cacheability.

Am486 Microprocessor Instruction Set 2-191

b‘l AMD

2,175 LSL Loads Segment Limit
Opcode Instruction Clocks Description
OF 03 /r LSLr16,//m16 10/10 rl6 — segment limit, selector r/m16 (byte granular)
OF 03 /r LSL r32,/m32 10/10 r32 — segment limit, selector r/m32 (byte granular)
OF 03 /r LSLr16,//m16 10/10 rl6 — segment limit, selector r/m16 (page granular)
OF 03 /r LSL r32,r/m32 10/10 r32 — segment limit, selector r/m32 (page granular)
Description
If the source selector within the descriptor table is visible at the CPL and RPL, and the
descriptor is a type accepted by LSL, the instruction loads a register with an unscrambled
segment limit and sets ZF. Otherwise, ZF is cleared and the destination register is un-
changed. The segment limit loads as a byte-granular value. If the descriptor has a page-
granular segment limit, LSL translates it to a byte limit before loading it into the destination
register (shifts the 20-bit “raw” limit from descriptor 12 bits left, then ORs with 00000FFFh).
The 32-bit forms of the LSL instruction store the 32-bit byte granular limit in the 32-bit
destination register. Code and data segment descriptors are valid for the LSL instruction.
The valid special segment and gate descriptor types for LSL are in the following table:
Type Name Valid/Invalid

0 Invalid Invalid

1 Available 80286 TSS Valid

2 LDT Valid

3 Busy 80286 TSS Valid

4 80286 call gate Invalid

5 80286/486 task gate Invalid

6 80286 trap gate Invalid

7 80286 interrupt gate Invalid

8 Invalid Valid

9 Available 486 TSS Valid

A Invalid Invalid

B Busy 486 TSS Valid

C 486 call gate Invalid

D Invalid Invalid

E 486 trap gate Invalid

F 486 interrupt gate Invalid
Flags Affected
If the selector is invisible or of the wrong type, LSL clears ZF; otherwise, it is set.
Protected Mode Exceptions
General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
Invalid Opcode (6) occurs because LSL is not recognized in Real Address Mode.
Virtual 8086 Mode Exceptions
Invalid Opcode (6) occurs because LSL is not recognized in Virtual 8086 Mode. If CPL is
3, Alignment Check (17) indicates there is an unaligned memory reference.

2-192 Am486 Microprocessor Instruction Set

AMDH

2.176

LSS Loads Pointer Using SS

Opcode Instruction Clocks Description

OF B2 Ir LSS r16,m16:16 6/12 Loads SS:r16 with pointer from memory.
OF B2 Ir LSS r32,m16:32 6/12 Loads SS:r32 with pointer from memory.
Operation

| F (OperandSi ze = 16)
THEN

rié6 — [Effective Address]; (* 16-bit transfer *)

SS ~ [Effective Address + 2]; (* 16-bit transfer *)

(* I'n Protected Mode, | oad the descriptor into the segnent register *)
ELSE (* OperandSize = 32 *)

r32 - [Effective Address]; (* 32-bit transfer *)

SS ~ [Effective Address + 4]; (* 16-bit transfer *)

(* I'n Protected Mode, | oad the descriptor into the segnent register *)
Fl ;
| F selector is null THEN General Protection Fault; FI;

Selector index is in linmts ELSE General Protection Fault(selector);

Selector’s RPL = CPL ELSE General Protection Fault(selector);

AR byte indicates a witable data segnment

ELSE Ceneral Protection Fault(selector);

DPL in the AR byte equal s CPL ELSE General Protection Fault(selector);

Segrment is marked present ELSE Stack Faul t(selector);

Load SS with selector;

Load SS with descriptor;

Description

LSS reads a full pointer from memory and stores it in a register pair consisting of the SS
register and a second operand-specified register. The first 16 bits are in SS and the re-
maining 16 or 32 bits (as specifed by the operand size) are placed into the register specified
by the r16 or r32 register operand. The segment register descriptor comes from the selector
descriptor table entry.

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates anillegal SS segment address. Invalid Opcode (6) indicates the second
operand is a register. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check
(17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-193

i"l AMD

2177 LTR Loads Task Register
Opcode Instruction Clocks Description
OF 00 /3 LTR r/m16 20/20 Loads EA word into task register.
Description
The LTR instruction loads the task register from the source register or memory location
specified by the operand. The loaded TSS is marked busy. A task switch does not occur.
Note: The LTR instruction is used only in operating system software. It is not used in
application programs.
Flags Affected
None
Protected Mode Exceptions
General Protection Fault (13) indicates either that the current privilege level is not 0 or that
there is an illegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. General Protection Fault (13) with a
selector indicates the object named by the source selector is not a TSS or is already busy.
Segment Not Present (11) with a selector indicates the TSS is marked “not present.” Page
Fault (14) indicates a page fault.
Real Address Mode Exceptions
Invalid Opcode (6) occurs because the LTR instruction is not recognized in Real Address
Mode.
Virtual 8086 Mode Exceptions
Invalid Opcode (6) occurs because the LTR instruction is not recognized in Virtual 8086
Mode.
Note: The operand-size attribute has no effect on this instruction.

2-194 Am486 Microprocessor Instruction Set

AMDH

2.178 MOV Moves Data/Registers
Opcode Instruction Clocks Description
88 /r MOV r/m8,r8 1 Moves byte register to r/m byte.
89 /r MOV r/m16,r16 1 Moves word register to r/m word.
89 /r MOV r/m32,r32 1 Moves doubleword register to r/m doubleword.
8AIr MOV r8,r/m8 1 Moves r/m byte to byte register.
8B /r MOV r16,r/m16 1 Moves r/m word to word register.
8B /r MOV r32,r/m32 1 Moves r/m doubleword to doubleword register.
8C Ir MOV r/m16,Sreg 3/3 Moves segment register to r/m word.
8E /r MOV Sreg,r/m16 3/9 Moves r/m word to segment register.
AO MOV AL,moffs8 1 Moves byte at (seg:offset) to AL.
Al MOV AX,moffs16 1 Moves word at (seg:offset) to AX.
Al MOV EAX,moffs32 1 Moves doubleword at (seg:offset) to EAX.
A2 MOV moffs8,AL 1 Moves AL to (seg:offset).
A3 MOV moffs16,AX 1 Moves AX to (seg:offset).
A3 MOV moffs32,EAX 1 Moves EAX to (seg:offset).
BO +rb MOV reg8,imm8 1 Moves immediate byte to register.
B8+rw MOV regl6,imml6 1 Moves immediate word to register.
B8 +rd MOV reg32,imm32 1 Moves immediate doubleword to register.
C6 MOV r/m8,imm8 1 Moves immediate byte to r/m byte.
Cc7 MOV r/m16,imm16 1 Moves immediate word to r/m word.
Cc7 MOV r/m32,imm32 1 Moves immediate doubleword to r/m doubleword.
Special Registers:
OF22/r MOV CRO,r32 16 Moves (register) to (control register).
OF20/r MOV r32,CRO/CR2/CR3 4 Moves (control register) to (register).
OF22/r MOV CR2/CR3,r32 4 Moves (register) to (control register).
OF21/r MOV r32,DRO/DR1/DR2/DR3 10 Moves (debug register) to (register).
OF21/r MOV r32,DR6/DR7 10 Moves (debug register) to (register).
OF23/r MOV DRO -3,r32 11 Moves (register) to (debug register).
OF 23/r MOV DR6/DR7,r32 11 Moves (register) to (debug register).
OF 24 /r MOV r32,TR4/TR5/TR6/TR7 4 Moves (test register) to (register).
OF26/r MOV TR4/TR5/TR6/TR7,r32 4 Moves (register) to (test register).
OF 24 /r MOV r32,TR3 3 Moves (test register3) to (register).
OF26/r MOV TR3,r32 6 Moves (registers) to (test register3).
Note: moffs8, moffs16, and moffs32 all consist of a simple offset relative to the segment
base. The 8, 16, and 32 refer to the data size. The address-size attribute of the instruction
determines the size of the offset, either 16 or 32 bits.

Operation
DEST ~ SRC
Description

The MOV instruction copies the second operand to the first operand. If the destination is
a segment register (DS, ES, SS, etc.), then descriptor data is also loaded into the register.
The data for the register is obtained from the descriptor table entry for the selector given.
You can load a null selector (values 0000—0003) into the DS and ES registers without
causing an exception; however, use of the DS or ES register causes a General Protection
Fault (13) exception and no memory reference occurs. A MOV into SS instruction inhibits
all interrupts until after the execution of the next instruction (which is presumably a MOV
into ESP instruction).

Am486 Microprocessor Instruction Set 2-195

b‘l AMD

Loading a segment register under Protected Mode results in special checks and actions,
as described in the following listing:

| F SS is | oaded;
THEN
IF selector is null THEN General Protection Fault; FI;
I ndex must be within limts el se General Protection Fault(selector);
Selector’s RPL equals CPL el se General Protection Fault(selector);
AR byte indicates a witable data segnent
ELSE General Protection Fault(selector);
DPL in the AR byte equals CPL ELSE General Protection Fault(selector);
Segrment is marked present ELSE Stack Faul t(selector);
Load SS with selector;
Load SS with descriptor; FI;
IF DS, ES, FS or GSis loaded with non-null selector;
THEN
Index is within limts ELSE General Protection Fault(selector);
AR byte indicates data or readabl e code segnent
ELSE General Protection Fault(selector);
| F data or non-conform ng code segnment
THEN RPL and CPL are < DPL in AR byte;
ELSE Gen. Protect. Faul t (sel ector); Fl;
Segnment is nmarked present ELSE Segnent Not Present Fault(selector);
Load segnent register with sel ector;
Load segnent register with descriptor;Fl;
IF DS, ES, FS or GSis loaded with a null selector;
THEN
Load segnent register with sel ector;
Cl ear descriptor valid bit; FI

The last eleven listed forms of the MOV instruction store or load the following special
registers in or from a general purpose register:

m Control registers CR0O, CR2, and CR3
m Debug Registers DRO, DR1, DR2, DR3, DR6, and DR7
m Test Registers TR3, TR4, TR5, TR6, and TR7

Note: 32-bit operands are always used with these instructions, regardless of the operand-
Size attribute.

Flags Affected

MOV data: None
MOV register: OF, SF, ZF, AF, PF, and CF are undefined.

Protected Mode Exceptions

MOV data: General Protection Fault (13), Stack Fault (12), and Segment Not Present (11)
occur if a segment register is being loaded; otherwise, General Protection Fault (13) indi-
cates either that the resultis in a non-writable segment or there is an illegal memory-operand
effective address in the code or data segments. Stack Fault (12) indicates an illegal SS
segment address. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17)
indicates there is an unaligned memory reference.

MOV register: General Protection Fault (13) indicates the current privilege level is not 0.

2-196

Am486 Microprocessor Instruction Set

AMDH

Real Address Mode Exceptions

MOV data: General Protection Fault (13) indicates that part of the operand lies outside the
effective address space: 0 to OFFFFh.

MOV register: None
Virtual 8086 Mode Exceptions

MOV data: General Protection Fault (13) indicates that part of the operand lies outside the
effective address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3,
Alignment Check (17) indicates there is an unaligned memory reference.

MOV register: General Protection Fault (13) occurs if instruction execution is attempted.

Note: MOV register instructions must be executed at privilege level 0 or in Real Address
Mode, otherwise, a protection exception will be raised. The reg field within the ModR/M
byte specifies which of the special registers in each category is involved. The two bits in
the mod field are always 11. The r/m field specifies the general register involved. Always
set undefined or reserved bits to the value previously read.

Am486 Microprocessor Instruction Set 2-197

b‘l AMD

2.179

MOVS/MOVSB/MOVSD/MOVSW Moves Data from String to String

Opcode Instruction Clocks Description

A4 MOVS m8,m8
A5 MOVS m16,m16
A5 MOVS m32,m32
A4 MOVSB

A5 MOVSD

A5 MOVSW

Moves byte (E)SI to ES:(E)DI.
Moves word (E)SI to ES:(E)DI.
Moves doubleword (E)SI to ES:(E)DI.
Moves byte (E)SI to ES:(E)DI.
Moves doubleword (E)SI to ES:(E)DI.
Moves word (E)SI to ES:(E)DI.

NN NN

Operation

IF (instruction = MOVSD) OR (instruction has doubl eword operands)
THEN Oper andSi ze ~ 32;
ELSE OperandSi ze ~ 16;
| F AddressSi ze = 16
THEN use SI for source-index and DI for destination-index;
ELSE (* AddressSize = 32 *)
use ESI for source-index and EDI for destination-index; Fl;
| F byte type of instruction
THEN
[destination-index] ~ [source-index); (* byte assignnent *)
IF DF = 0 THEN IncDec —~ 1 ELSE IncDec ~ -1;Fl;
ELSE
IF OperandSize = 16
THEN
[destination-indeXx] ~ [source-index]; (* word assignment *)
IF DF =0 THEN IncDec ~ 2 ELSE IncDec ~ =2; Fl,
ELSE (* OperandSize = 32 *)
[destination-index] — [source-index); (* doubleword assignment *)
IF DF = 0 THEN IncDec ~ 4 ELSE IncDec < —4; FI;
FI;
Fl;
source-index ~ source-index + IncDec;
destination-index ~ destination-index + IncDec

Description

MOVS copies the byte, word, or doubleword at Sl or ESI to the byte, word, or doubleword
at ES:DI or ES:EDI. The destination operand must be addressable from the ES register;
no segment override is possible for the destination. You can use a segment override for
the source operand; the default is the DS register. The contents of Sl and DI (or ESI and
EDI for 32-bit values) determine the source and destination addresses. Load the correct
index values into the Sl and DI (or ESI and EDI) registers before executing the MOVS
instruction. After moving the data, MOVS advances the Sl and DI (or ESl and EDI) registers
automatically. If the Direction Flag (DF) is O (see STC), the registers increment; if DF is 1
(see STD), the registers decrement. The stepping is 1 for a byte, 2 for a word, or 4 for a
doubleword operand.

MOVSB, MOVSW, and MOVSD are synonyms for the byte, word, and doubleword MOVS
instructions.

You can use the REP prefix with MOVS for movement of CX bytes or words.
Flags Affected

None

2-198

Am486 Microprocessor Instruction Set

AMDH

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-199

b‘l AMD

2.180 MOVSX Moves with Sign Extension
Opcode Instruction Clocks Description
OFBE Ir MOVSX r16,r/m8 3/3 Moves byte to word with sign-extend.
OFBE Ir MOVSX r32,r/m8 3/3 Moves byte to doubleword with sign-extend.
OF BF Ir MOVSX r32,r/m16 3/3 Moves word to doubleword with sign-extend.
Operation
DEST ~ Si gnExtend(SRC)
Description
The MOVSX instruction reads the contents of the effective address or register as a byte or
a word, sign-extends the value to the operand-size attribute of the instruction (16 or 32
bits), and stores the result in the destination register.
Flags Affected
None
Protected Mode Exceptions
General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

2-200 Am486 Microprocessor Instruction Set

AMDH

2.181

MOVZX Moves with Zero Extension
Opcode Instruction Clocks Description
OF B6 Ir MOVZX r16,r/m8 3/3 Moves byte to word with zero-extend.
OF B6 Ir MOVZX r32,r/m8 3/3 Moves byte to doubleword with zero-extend.
OF B7 Ir MOVZX r32,r/m16 3/3 Moves word to doubleword with zero-extend.
Operation

DEST ~ Zer oExt end(SRC)
Description

The MOVZX instruction reads the contents of the effective address or register as a byte or
a word, zero extends the value to the operand-size attribute of the instruction (16 or 32
bits), and stores the result in the destination register.

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-201

b‘l AMD

2.182 MUL Unsigned Multiply
Opcode Instruction Clocks Description
F6 /4 MUL AL,r/m8 13/18,13/18 Unsigned multiply (AX — AL [r/m byte)
F7 14 MUL AX,r/m16 13/26,13/26 Unsigned multiply (DX:AX — AX [/m word)
F71/4 MUL EAX,r/m32 13/42,13/42 Unsigned multiply (EDS:EAX — EAX [r/m doubleword)
Actual clock count depends on the most-significant bit location in the optimizing multiplier. If the multipler (m)
=0, the clock count is 9. Otherwise clock = max (ceiling(log, |m|), 3) + 6.

Operation

| F byte-size operation

THEN AX — AL [t/nB

ELSE (* word or doubl eword operation *)

| F OperandSi ze = 16

THEN DX: AX — AX [t/ nil6

ELSE (* OperandSize = 32 *)
EDX: EAX — EAX [/ nB2

Fl ;

Fl

Description

The MUL instruction performs unsigned multiplication. Its actions depend on the size of its

operand, as follows:

m A byte operand is multiplied by the AL value; the result is left in the AX register. The CF
and OF flap are cleared if the AH value is 0; otherwise, they are set.

m A word operand is multiplied by the AX value; the result is left in the DX:AX register pair.
The DX register contains the high-order 16 bits of the product. CF and OF are cleared
if the DX value is 0; otherwise, they are set.

m Adoubleword operand is multiplied by the EAX value and the resultis leftinthe EDX:EAX
register. The EDX register contains the high-order 32 bits of the product. CF and OF are
cleared if the EDX value is 0; otherwise, they are set.

Flags Affected

OF and CF are cleared if the upper half of the result is 0; otherwise they are set. SF, ZF,

AF, and PF are undefined.

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment

orthereis anillegal memory-operand effective address in the code or data segments. Stack

Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.

If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective

address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective

address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment

Check (17) indicates there is an unaligned memory reference.

2-202 Am486 Microprocessor Instruction Set

AMDH

2.183

NEG Two’s Complement Negation

Opcode Instruction Clocks Description

F6 /3 NEG r/m8 1/3 Performs a two’s complement negation of r/m byte.

F71/3 NEG r/m16 1/3 Performs a two’s complement negation of r/m word.

F71/3 NEG r/m32 1/3 Performs a two’s complement negation of r/m doubleword.
Operation

IFr/m=0 THEN CF - 0 ELSE CF ~ 1; FI;

r/m — —r/m

Description

The NEG instruction replaces the value of a register or memory operand with its two’s
complement. The operand is subtracted from zero and the result is placed in the operand.

NEG sets CF if the operand is not zero. If the operand is zero, NEG clears CF.

Flags Affected

CF is set unless the operand is zero. OF, SF, ZF, and PF are set according to the result.
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-203

i"l AMD

2.184 NOP No Operation
Opcode Instruction Clocks Description
920 NOP 1 No operation is performed.
Description
The NOP instruction performs no operation. The NOP instruction is a 1-byte instruction that
takes up space but affects none of the machine context except the instruction pointer.
The NOP instruction is an alias mnemonic for the XCHG AX, AX or XCHG EAX, EAX
instruction.
Flags Affected
None
Protected Mode Exceptions
None
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
2-204 Am486 Microprocessor Instruction Set

AMDH

2.185

NOT One’s Complement Negation

Opcode Instruction Clocks Description

F6 /2 NOT r/m8 1/3 Reverses each bit in r/m byte.

F712 NOT r/m16 1/3 Reverses each bit in r/m word.

F7 /2 NOT r/m32 1/3 Reverses each bit in r/m doubleword.
Operation

rfm — NOT r/m

Description

The NOT instruction inverts the operand; every 1 becomes a 0, and vice versa.
Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-205

b‘l AMD

2.186 OR Logical Inclusive OR

Opcode Instruction Clocks Description

0Cib OR AL,imm8 1 ORs immediate byte to AL.

0D iw OR AX,imm16 1 ORs immediate word to AX.

oD id OR EAX,imm32 1 ORs immediate doubleword to EAX.

80/1ib OR r/m8,imm8 1/3 ORs immediate byte to r/m byte.

81/1iw OR r/m16,imm16 1/3 ORs immediate word to r/m word.

81/1id OR r/m32,imm32 1/3 ORs immediate word to r/m doubleword.

83/1ib OR r/m16,imm8 1/3 ORs sign-extended immediate byte to r/m word.
83/1ib OR r/m 32,imm8 1/3 ORs sign-ext. immediate byte to r/m doubleword.

08 /r OR r/m8,r8 1/3 ORs byte register to r/m byte.

09 /r OR r/m16,r16 1/3 ORs word register to r/m word.

09 /r OR r/m32,r32 1/3 ORs doubleword register to r/m doubleword.

OA/r OR r8,r/m8 1/2 ORs r/m byte to byte register.

OB /r OR r16,r/m16 1/2 ORs r/m word to word register.

OB /r OR r32,r/m32 1/2 ORs r/m doubleword to doubleword register.
Operation

DEST ~ DEST OR SRC;

CF ~ 0O

OoF « 0

Description
The OR instruction computes the inclusive OR of its two operands and places the result in
the first operand. Each bit of the result is 0 if both corresponding bits of the operands are
0; otherwise, each bit is 1.

Flags Affected

OF and CF are cleared. SF, ZF, and PF are set according to the result. AF is undefined.
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.
Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.
2-206 Am486 Microprocessor Instruction Set

AMDH

2.187 ouT Outputs to Port
Opcode Instruction Clocks* Description
E6 ib OUT imm8,AL All forms: Outputs byte AL to immediate port number.
E7ib OUT imm8,AX rm=16,vm=29 Outputs word AX to immediate port number.
E7 ib OUT imm8,EAX If CPL<I0PL, Outputs doubleword EAX to imm. port number.
EE OUT DX,AL pm = 11,10 Outputs byte AL to port number in DX.
EF OUT DX,AX If CPL>IOPL, Outputs word AX to port number in DX.
EF OUT DX,EAX pm = 31,30 Outputs double EAX to port number in DX.
*rm is Real Mode, vm is Virtual 8086 Mode, pm is Protected Mode. For pm, the first number is the
value for the imm8 form, and the second number is for the DX form of the port number.

Operation

IF (PE = 1) AND ((WM=1) OR (CPL > | OPL))

THEN (* Virtual 8086 Mdde, or Protected Mode with CPL > | OPL *)
I F NOT | /O Perm ssion (DEST, w dth(DEST))
THEN CGeneral Protection Fault (13);
Fl ;

Fl ;

[DEST] ~ SRC, (* I/O address space used *)

Description

The OUT instruction transfers a data byte or data word from the register (AL, AX, or EAX)
given as the second operand to the output port numbered by the first operand. Output to
any port from 0 to 65535 is performed by placing the port number in the DX register and
then using an OUT instruction with the DX register as the first operand. If the instruction

contains an 8-bit port ID, that value is zero-extended to 16 bits.

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates the current privilege level is higher (has less privi-
lege) than the 1/O privilege level, and any of the corresponding 1/O permission bits in the
TSS equals 1.

Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that one of the corresponding I/O permission bits
in the TSS equals 1.

Am486 Microprocessor Instruction Set 2-207

b‘l AMD

2.188

OUTS/OUTSB/OUTSD/OUTSW Output String to Port

Opcode Instruction Clocks Description

6E OUTS DX,r/m8 All forms: Outputs byte (E)SI to port in DX.
6F OUTS DX,r/m16 rm=17,vm=30 Outputs word (E)SI to port in DX.
6F OUTS DX,r/m32 If CPL<I0OPL, Outputs doubleword (E)SI to port in DX.
6E OUTSB pm =10 Outputs byte (E)SI to port in DX.
6F OuUTSD If CPL>IOPL, Outputs word (E)SI to port in DX.
6F OUTSW pm = 32 Outputs doubleword (E)SI to port in DX.

Operation

| F AddressSi ze = 16

THEN use SI for source-index;

ELSE (* AddressSize = 32 *)
use ESI for source-index;

Fl;

IF (PE =1) AND ((VWM=1) OR (CPL > |OPL))
THEN (* Virtual 8086 Mdde, or Protected Mode with CPL > | OPL *)
I F NOT |/ O Permnission (DEST, w dth(DEST))
THEN CGeneral Protection Fault (13);
Fl ;
Fl ;
| F byte type of instruction
THEN
[DX] « [source-index]; (* Wite byte at DX 1/0 address *)
IF DF = 0 THEN I ncDec ~ 1 ELSE IncDec -~ -1;Fl;
FI;
IF OperandSize = 16
THEN
[DX] « [source-index]; (* Write word at DX 1/O address *)
IF DF = 0 THEN IncDec ~ 2 ELSE IncDec « =2; FI;
FI;
IF OperandSize = 32
THEN
[DX] « [source-index]; (* Write doubleword at DX I/O address *)
IF DF = 0 THEN IncDec ~ 4 ELSE IncDec « —4; FI;
FI;
FI;
source-index ~ source-index + IncDec

Description

OUTS transfers data from the address indicated by the source-index register Sl (16-bit
addresses) or ESI (32-bit addresses) to the output port addressed by the DX register. OUTS
does not allow specification of the port number as an immediate value. You must address
the port through the DX register value. Load the correct values into the DX register and the
source-index (Sl or ESI) register before executing the OUTS instruction.

After the transfer, the source-index register advances automatically. If the Direction Flag
(DF) is 0 (see CLD), the source-index register increments; if DF is 1 (see STD), it decre-
ments. The increment/decrement rate is 1 for a byte, 2 for a word, or 4 for a doubleword.

OUTSB, OUTSW, and OUTSD are synonyms for the byte, word, and doubleword OUTS
instructions.

You can use the REP prefix with the OUTS instruction for block output of CX bytes or words.

2-208

Am486 Microprocessor Instruction Set

AMDH

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates one of three conditions: the current privilege level
is greater than the I/O privilege level and at least one of the I/O permission bits in TSS
equals 1, the result destination is a non-writable segment, or the code or data segments
have an illegal memory-operand effective address. Stack Fault (12) indicates anillegal SS
segment address. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17)
indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that at least one of the corresponding I/O permission
bits in TSS equals 1. General Protection Fault (13) indicates that part of the operand lies
outside the effective address space: 0 to OFFFFh. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-209

b‘l AMD

2.189 POP Pops Word from Stack
Opcode Instruction Clocks Description
8F /0 POP m16 6 Pops top of stack into memory word.
8F /0 POP m32 6 Pops top of stack into memory doubleword.
58 + rw POP ri16 4 Pops top of stack into word register.
58 + rd POP r32 4 Pops top of stack into doubleword register.
1F POP DS 3 Pops top of stack into DS.
07 POP ES 3 Pops top of stack into ES.
17 POP SS 3 Pops top of stack into SS.
OF A1 POP FS 3 Pops top of stack into FS.
OF A9 POP GS 3 Pops top of stack into GS.
Operation
| F StackAddr Si ze = 16
THEN
| F OperandSi ze = 16
THEN
DEST ~ (SS:SP); (* copy a word *)
SP ~ SP + 2;

ELSE (* OperandSize = 32 *)
DEST ~ (SS:SP); (* copy a doubleword *)
SP - SP + 4 FI;
ELSE (* StackAddrSize = 32 *)
| F OperandSi ze = 16
THEN
DEST ~ (SS: ESP); (* copy a word *)
ESP - ESP + 2;
ELSE (* OperandSize = 32 *)
DEST ~ (SS:.ESP); (* copy a doubl eword *)
ESP ~ ESP + 4 FI; Fl;
(* Protected Mode execution uses the follow ng special checks and actions *)
I F SS is | oaded:
| F selector is null THEN General Protection Fault;
Selector index is within its descriptor table linmts
ELSE General Protection Fault(selector);
Sel ector’s RPL equals CPL ELSE Ceneral Protection Fault(selector);
AR byte indicates witable data segnent
ELSE Ceneral Protection Fault(selector);
DPL in the AR byte equals CPL ELSE General Protection Fault(selector);
Segnent nust be marked present ELSE Stack Faul t(sel ector);
Load SS register with sel ector;
Load SS register with descriptor;

IF DS, ES, FS or GSis loaded with non-null selector:
AR byte nust indicate data or readabl e code segnent
ELSE Ceneral Protection Fault(selector);
| F data or non-conform ng code
THEN RPL and CPL nust be less than or equal to DPL in
AR byte
ELSE Ceneral Protection Fault (13)(selector) FI;
Segnent must be marked present ELSE Segnent Not Present (11)(selector);
Load segnent register with sel ector;
Load segnent register with descriptor;

IF DS, ES, FS, or GSis |loaded with a null selector:
Load segnent register with sel ector
Clear valid bit in invisible portion of register

2-210 Am486 Microprocessor Instruction Set

AMDH

Description

POP loads the word at the top of the processor stack into the destination specified by the
operand. The top of the stack is specified by the contents of SS and either stack pointer
register: SP for 16-bit addresses or ESP for 32-bit addresses. The stack pointer increments
by 2 for a 16-bit operand or by 4 for a 32-bit operand to point to the new top of stack.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the value popped
must be a selector. In Protected Mode, loading the selector initiates automatic loading of
the descriptor information associated with that selector into the hidden part of the segment
register; loading also initiates validation of both the selector and the descriptor information.

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without
causing a protection exception. An attempt to reference a segment whose corresponding
segment register is loaded with a null value causes a General Protection Fault (13) excep-
tion. No memory reference occurs. The saved value of the segment register is null.

A POP SS instruction inhibits all interrupts, including NMI, until after execution of the next
instruction. This allows sequential execution of POP SS and POP SP (or POP ESP) in-

structions without danger of having an invalid stack during an interrupt. However, use of
the LSS instruction is the preferred method of loading the SS and SP (or ESP) registers.

A POP-to-memory instruction that uses the stack pointer as a base register references
memory after the POP. The base is the value of the stack pointer after the instruction
executes.

Note: POP CS is not a 486-processor instruction; use RET to pop from the stack into CS.
Flags Affected

None

Protected Mode Exceptions

Segment Not Present (11) occurs if the segment descriptor indicates the segment is not
present in memory; a Stack Fault (12) and a General Protection Fault (13) occur automat-
ically with this error. By itself, a Stack Fault (12) indicates either that the current top of stack
is not within the stack segment, or thatthe SS segment address isillegal. By itself, a General
Protection Fault (13) indicates either that the result is in a hon-writable segment or there
is an illegal memory-operand effective address in the code or data segments. Page Fault
(14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates there is an unaligned
memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Note: Back-to-back PUSH/POP instruction sequences are allowed without incurring an
additional clock. The SSB bit determines the Stack Address Size. Pop ESP instructions
increment the stack pointer (ESP) before data at the old top of stack is written into the
destination.

Am486 Microprocessor Instruction Set 2-211

i"l AMD

2.190 POPA Pops All 16-Bit General Registers
Opcode Instruction Clocks Description
61 POPA 9 Pops DI, SI, BP, BX, DX, CX, and AX.
Operation
D~ Pop();
Sl « Pop();
BP ~ Pop();
Increnent SP by 2 (* skip next 2 bytes of stack *)
BX « Pop();
DX « Pop();
CX « Pop();
AX < Pop()
Description
POPA pops the eight 16-bit general registers, but it discards the SP value instead of loading
it into the SP register. POPA reverses a previous PUSHA, restoring the general registers
to their values before the PUSHA instruction was executed. POPA pops the DI register first.
Flags Affected
None
Protected Mode Exceptions
Stack Fault (12) indicates the starting or ending stack address is not within the stack
segment. Page Fault (14) indicates a page fault.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault.
2-212 Am486 Microprocessor Instruction Set

AMDH

2.191

POPAD Pops All 32-Bit General Registers

Opcode Instruction Clocks Description
61 POPAD 9 Pops EDI, ESI, EBP, EDX, ECX, and EAX.

Operation

EDI ~ Pop();
ESI « Pop();
EBP ~ Pop();
increnent SP by 4 (* skip next 4 bytes of stack *)
EBX ~ Pop();
EDX « Pop();
ECX « Pop();
EAX ~ Pop()

Description

POPAD pops the eight 32-bit general registers, but discards the ESP value instead of
loading it into the ESP register. POPAD reverses the previous PUSHAD instruction, restor-
ing the general registers to their values before the PUSHAD instruction executed. POPAD
pops the EDI register first.

Flags Affected
None
Protected Mode Exceptions

Stack Fault (12) indicates the starting or ending stack address is not within the stack
segment. Page Fault (14) indicates a page fault.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault.

Am486 Microprocessor Instruction Set 2-213

b‘l AMD

2.192

POPF/POPFD Pops Stack into FLAGS or EFLAGS Register

Opcode Instruction Clocks Description

9D POPF 9,pm=6 Pops word on top of stack into FLAGS.
9D POPFD 9,pm=6 Pops doubleword on top of stack into EFLAGS.

Operation
Fl ags < Pop()
Description

POPF and POPFD instructions pop a word or doubleword on the top of the stack and store
the value in the FLAGS or EFLAGS register. If the instruction operand-size attribute is 16
bits, aword is popped and stored in the FLAGS register. If the operand-size attribute is 32
bits, a doubleword is popped and stored in the EFLAGS register.

Note: Note that bits 16 and 17 of the EFLAGS register, called the VM and RF flags,
respectively, are not affected by the POPF or POPFD instruction.

The I/O privilege level is altered only when executing at privilege level 0. The Interrupt Flag
is altered only when executing at a level at least as privileged as the I/O privilege level.
(Real Address Mode is equivalent to privilege level 0.) If a POPF instruction is executed
with insufficient privilege, an exception does not occur and the privileged bits do not change.

Flags Affected

All except the VM and RF flags are affected.

Protected Mode Exceptions

Stack Fault (12) indicates the top of stack is not within the stack segment.
Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

To maintain emulation, General Protection Fault (13) indicates the I/O privilege level is less
than 3.

2-214

Am486 Microprocessor Instruction Set

AMDH

2.193

PUSH Pushes Operand onto Stack
Opcode Instruction Clocks Description
FF /6 PUSH m16 4 Pushes memory word
FF /6 PUSH m32 4 Pushes memory doubleword
50+ /r PUSH r16 1 Pushes register word
50 + /r PUSH r32 1 Pushes register doubleword
6A PUSH imm8 1 Pushes immediate byte
68 PUSH imm16 1 Pushes immediate word
68 PUSH imm32 1 Pushes immediate doubleword
OE PUSH CS 3 Pushes CS
16 PUSH SS 3 Pushes SS
1E PUSH DS 3 Pushes DS
06 PUSH ES 3 Pushes ES
OF AO PUSH FS 3 Pushes FS
OF A8 PUSH GS 3 Pushes GS
Operation
| F StackAddr Si ze = 16
THEN
| F OperandSi ze = 16 THEN
SP - SP 2;
(SS:SP) ~ (SOURCE); (* word assignnent *)
ELSE
SP ~ SP-4;

(SS:SP) ~ (SOURCE); (* doubleword assignment *) FlI;
ELSE (* StackAddrSize = 32 *)
IF OperandSize = 16
THEN
ESP ~ ESP -2;
(SS:ESP) ~ (SOURCE); (* word assignment *)
ELSE
ESP - ESP -4;
(SS:ESP) < (SOURCE); (* doubleword assignment *) FlI;
Fl

Description

PUSH decrements the stack pointer by 2 (16-bit operands) or 4 (32-bit operands). Then
PUSH places the operand on the new stack top, indicated by the stack pointer.

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates either that the new value of SP or ESP register is outside the stack
segment limit, or that there is an illegal SS segment address. Page Fault (14) indicates a
page fault. If CPL is 3, Alignment Check (17) indicates there is an unaligned memory
reference.

Real Address Mode Exceptions

None, but if SP or ESP is 1, the processor shuts down due to a lack of stack space.

Am486 Microprocessor Instruction Set 2-215

b‘l AMD

Virtual 8086 Mode Exceptions

Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates there is

an unaligned memory reference. If SP or ESP is 1, the processor shuts down due to a lack
of stack space.

Note: When used with a memory operand, PUSH takes longer to execute than a two-
instruction sequence that moves the operand through a register. Back-to-back PUSH/POP

instruction sequences are allowed without incurring an additional clock. Selective pushes
write only to the top of the stack.

2-216

Am486 Microprocessor Instruction Set

AMDH

2.194

PUSHA Pushes All 16-Bit General Registers

Opcode Instruction Clocks Description

60 PUSHA 11 Pushes AX, CX, DX, BX, original SP, BP, SlI, and DI.

Operation

Temp ~ (SP);
Push(AX) ;
Push(CX);
Push(DX) ;
Push(BX) ;
Push(Temp) ;
Push(BP) ;
Push(Sl);
Push(Dl)

Description

PUSHA saves the 16-bit general registers on the processor stack. PUSHA decrements the
stack pointer (SP) by 16 to accommodate the required 8-word field. Because the registers
are pushed onto the stack in the order in which they were given, they appear in the 16 new
stack bytes in reverse order. The last register pushed is the DI register.

Flags Affected
None
Protected Mode Exceptions

Stack Fault (12) indicates the starting or ending stack address is outside the stack segment
limit. Page Fault (14) indicates a page fault.

Real Address Mode Exceptions

General Protection Fault (13) occurs if SP equals 7, 9, 11, 13, or 15. If the SP register
equals 1, 3, or 5 before executing the PUSHA instruction, the processor shuts down.

Virtual 8086 Mode Exceptions

General Protection Fault (13) occurs if SP equals 7, 9, 11, 13, or 15. If the SP register
equals 1, 3, or 5 before executing the PUSHA instruction, the processor shuts down. Page
Fault (14) indicates a page fault.

Am486 Microprocessor Instruction Set 2-217

i"l AMD

2.195 PUSHAD Pushes All 32-Bit General Registers
Opcode Instruction Clocks Description
60 PUSHAD 11 Pushes EAX, ECX, EDX, EBX, original ESP, EBP, ESI, and EDI.
Operation
Temp ~ (ESP);
Push(EAX) ;
Push(ECX) ;
Push(EDX) ;
Push(EBX) ;
Push(Temp) ;
Push(EBP) ;
Push(ESI) ;
Push(EDI)
Description
PUSHAD saves the 32-bit general registers on the processor stack. PUSHAD decrements
the stack pointer (ESP) by 32 to accommodate the eight doubleword values. Because the
registers are pushed onto the stack in the order in which they were given, they appear in
the 32 new stack bytes in reverse order. The last register pushed is the EDI register.
Flags Affected
None
Protected Mode Exceptions
Stack Fault (12) indicates the starting or ending stack address is outside the stack segment
limit. Page Fault (14) indicates a page fault.
Real Address Mode Exceptions
General Protection Fault (13) occurs if SP equals 7, 9, 11, 13, or 15. If the SP register
equals 1, 3, or 5 before executing the PUSHAD instruction, the processor shuts down.
Virtual 8086 Mode Exceptions
General Protection Fault (13) occurs if SP equals 7, 9, 11, 13, or 15. If the SP register
equals 1, 3, or 5 before executing the PUSHAD instruction, the processor shuts down.
Page Fault (14) indicates a page fault.

2-218 Am486 Microprocessor Instruction Set

AMDH

2.196

PUSHF/PUSHFD Pushes FLAGS Register onto the Stack
Opcode Instruction Clocks Description

9C PUSHF 4,pm=3 Pushes FLAGS.

9C PUSHFD 4,pm=3 Pushes EFLAGS.

Operation

| F OperandSi ze = 32
THEN push(EFLAGS) ;
ELSE push(FLAGS);

Fl

Description

The PUSHF instruction decrements the stack pointer by 2 and copies the FLAGS register
to the new top of stack; the PUSHFD instruction decrements the stack pointer by 4, and
copies the EFLAGS register to the new stack top pointed to by SS:ESP.

Flags Affected
None
Protected Mode Exceptions

Stack Fault (12) indicates the new value of the ESP register is outside the stack segment
boundaries.

Real Address Mode Exceptions
None; the processor shuts down due to a lack of stack space.
Virtual 8086 Mode Exceptions

To maintain emulation, General Protection Fault (13) indicates the I/O privilege level is less
than 3.

Am486 Microprocessor Instruction Set 2-219

b‘l AMD

2.197 RCL Rotates through Carry Left
Opcode Instruction Clocks Description
DO /2 RCL r/m8,1 3/4 Rotates 9 bits (CF,r/m byte) left once.
D2 /2 RCL r/8,CL 3-30/9-31 Rotates 9 bits (CF,r/m byte) left CL times.
C0/2ib RCL r/m8,imm8 8-30/9-31 Rotates 9 bits (CF,r/m byte) left imm8 times.
D1/2 RCL r/m16,1 3/4 Rotates 17 bits (CF,r/m word) left once.
D3 /2 RCL r/m16,CL 8-30/9-31 Rotates 17 bits (CF,r/m word) left CL times.
Cl/2ib RCL r/m16,imm8 8-30/9-31 Rotates 17 bits (CF,r/m word) left imm8 times.
D1 /2 RCL r/m32,1 3/4 Rotates 33 bits (CF,r/m doubleword) left once.
D3 /2 RCL r/m32,CL 8-30/9-31 Rotates 33 bits (CF,r/m doubleword) left CL times.
Cl/2ib RCL r/m32,imm8 8-30/9-31 Rotates 33 bits (CF,r/m doubleword) left imm8 times.
Operation
tenp COUNT;
VWHI LE (tenp # 0)
DO

tnmpcf ~ high-order bit of (r/m;
rlm r/mm@ + (tnpcf);
tenmp ~ temp-1,;
OD;
IF COUNT =1
THEN
IF high-order bit of r/m #CF
THEN OF - 1,
ELSE OF -~ O;
Fl;
ELSE OF ~ undefined FI

Description

RCL shifts CF into the bottom bit and shifts the top bitinto CF. The second operand indicates
the number of rotations. The operand is either an immediate number or the CL register
contents. The processor does not allow rotation counts greater than 31, using only the
bottom five bits of the operand if it is greater than 31. Virtual 8086 Mode masks rotation
counts.

Flags Affected

OF is affected only by single-bit rotations but is undefined otherwise. CF contains the value
of the bit shifted into it. SF, ZF, AF, and PF are not affected.

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17)
indicates there is an unaligned memory reference.

2-220 Am486 Microprocessor Instruction Set

AMDH

2.198 RCR Rotates through Carry Right
Opcode Instruction Clocks Description
DO /3 RCR r/m8,1 3/4 Rotates 9 bits (CF,r/m byte) right once.
D2 /3 RCR 1/8,CL 3-30/9-31 Rotates 9 bits (CF,r/m byte) right CL times.
C0/3ib RCR r/m8,imm8 8-30/9-31 Rotates 9 bits (CF,r/m byte) right imm8 times.
D1/3 RCR r/m16,1 3/4 Rotates 17 bits (CF,r/m word) right once.
D3/3 RCR r/m16,CL 8-30/9-31 Rotates 17 bits (CF,r/m word) right CL times.
C1/3ib RCR r/m16,imm8 8-30/9-31 Rotates 17 bits (CF,r/m word) right imm8 times.
D1/3 RCR r/m32,1 3/4 Rotates 33 bits (CF,r/m doubleword) right once.
D3 /3 RCR r/m32,CL 8-30/9-31 Rotates 33 bits (CF,r/m doubleword) right CL times.
C1/3ib RCR r/m32,imm8 8-30/9-31 Rotates 33 bits (CF,r/m doubleword) right imm8 times.

Operation

tenp ~ COUNT,;

WHI LE (tenp # 0)

DO
tnmpcf ~ loworder bit of (r/m;
rim— r/m/ 2 + (tnpcf @width(r/m);
tenmp ~ temp-1,

OD;

IF COUNT =1

THEN
IF (high-order bit of r/m) # (bit next to high-order bit of r/m)
THEN OF - 1,
ELSE OF -~ O;
FI;

ELSE OF ~ undefined FI

Description

RCR shifts CF into the top bit and shifts the bottom bitinto CF. The second operand indicates
the number of rotations. The operand is either an immediate number or the CL register
contents. The processor does not allow rotation counts greater than 31, using only the
bottom five bits of the operand if it is greater than 31. Virtual 8086 Mode masks rotation
counts.

Flags Affected

OF is affected only by single-bit rotations but is undefined otherwise. CF contains the value
of the bit shifted into it. SF, ZF, AF, and PF are not affected.

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17)
indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-221

b‘l AMD

2.199 REP/REPE/REPNE/REPNZ/REPZ Repeats Specified String Operation
Opcode Instruction Clocks* Description
F36C REP INS r/8,DX rm = 16+8(E)CX | Inputs (E)CX bytes from port DX into ES:(E)DI.
If CPL<IOPL,
F3 6D REP INS r/m16,DX pm = 10+8(E)CX | Inputs (E)CX words from port DX into ES:(E)DI.
If CPL>IOPL,
F3 6D REP INS r/m32,DX pm = 30+8(E)CX | Inputs (E)CX doublewords from port DX into
vm = 29+8(E)CX | ES:(E)DI.
F3 A4 REP MOVS m8,m8 If (E)CX=0 Moves (E)CX bytes from (E)SI to ES:(E)DI.
5
F3 A5 REP MOVS m16,m16 If (E)CX=1 Moves (E)CX words from (E)SI to ES:(E)DI.
13
F3 A5 REP MOVS m32,m32 If (E)CX>1 Moves (E)CX doublewords from (E)SI to
12+3(E)CX ES:(E)DI.
F3 6E REP OUTS DX,r/m8 rm =17+5(E)CX | Outputs (E)CX bytes to port DX from ES:(E)DI.
If CPL<IOPL,
F3 6F REP OUTS DX,r/m16 pm = 11+5(E)CX | Outputs (E)CX words to port DX from ES:(E)DI.
If CPL>IOPL,
F3 6F REP OUTS DX,r/m32 pm = 31+5(E)CX | Outputs (E)CX doublewords to port DX from
vm = 30+5(E)CX | ES:(E)DL.
F2 AC REP LODS m8 Loads (E)CX bytes from (E)SI to AL.
F2 AD REP LODS m16 If (E)CX =0, Loads (E)CX words from (E)SI to AX.
F2 AD REP LODS m32 5 Loads (E)CX doublewords from (E)SI to EAX.
IF (E)CX >0,
F3 AA REP STOS m8 7+4(E)CX Fills (E)CX bytes at ES:(E)DI with AL.
F3 AB REP STOS m16 Fills (E)CX words at ES:(E)DI with AX.
F3 AB REP STOS m32 Fills (E)CX doublewords at ES:(E)DI with EAX.
F3 A6 REPE CMPS m8,m8 Finds nonmatching bytes in ES:(E)DI and (E)SI.
F3 A7 REPE CMPS m16,m16 Finds nonmatching words in ES:(E)DI and (E)SI.
F3 A7 REPE CMPS m32,m32 Finds nonmatching doublewordsin ES:(E)DIl and
(E)SI.
F3 AE REPE SCAS m8 Finds non-AL byte starting at ES:(E)DI.
F3 AF REPE SCAS m16 Finds non-AX word starting at ES:(E)DI.
F3 AF REPE SCAS m32 Finds non-EAX doubleword starting at ES:(E)DI.
F2 A6 REPNE CMPS m8,m8 Finds matching bytes in ES:(E)DI and (E)SI.
F2 A7 REPNE CMPS m16,m16 Finds matching words in ES:(E)DI and (E)SI.
F2 A7 REPNE CMPS m32,m32 Finds matching doublewords in ES:(E)DI and
(E)SI.
F2 AE REPNE SCAS m8 Finds AL, starting at ES:(E)DI.
F2 AF REPNE SCAS m16 Finds AX, starting at ES:(E)DI.
F2 AF REPNE SCAS m32 Finds EAX, starting at ES:(E)DI.
*Clock data is grouped by category. The category applies to all instructions to the left of the enclosed cell.
Modes: rm = Real, pm = Protected, vm = Virtual. If no Mode is indicated, values apply to all modes.
2-222 Am486 Microprocessor Instruction Set

AMDH

Operation

| F AddressSi ze = 16
THEN use CX for Count Reg;
ELSE (* AddressSize = 32 *) use ECX for CountReg Fl;
WHI LE CountReg # O
DO
service pending interrupts (if any);
performprimtive string instruction;
Count Reg ~ CountReg - 1;
IF primitive operation is CMPSB, CMPSW, SCASB, or SCASW
THEN
IF (instruction is REP/REPE/REPZ) AND (ZF = 0)
THEN exit WHILE loop
ELSE
IF (instruction is REPNZ or REPNE) AND (ZF = 1)
THEN exit WHILE loop FI FI FI;
oD

Description

The REPeat string instructions are prefixes used with string instructions. The prefix causes
the string instruction to repeat the number of times indicated in the count register (CX or
ECX) or (for the REPE/REPZ and REPNE/REPNZ prefixes) until the indicated condition in
ZF is no longer met. You can only apply a REP prefix to one string instruction at a time. To
repeat an instruction block, use the LOOP instruction or another looping construct.

REP begins by checking the address size to select the correct count register: CX (16-bit)
or ECX (32-bit). Then REP checks the count register. If it is zero, execution moves to the
next instruction. REP then allows the processor to acknowledge any pending interrupts.
After interrupt servicing, the processor performs the string operation and decrements the
countregister by one. REP checks ZF if the string operation is a SCAS or CMPS instruction.
If the prefix is REPE or REPZ and ZF = 0 (last comparison was not equal), exit the interation
and continue with the next instruction. If the prefix is REPNE or REPNZ and ZF = 1 (last
comparison was equal), exit the iteration and continue with the next instruction. Otherwise
REP checks the count register to start the next iteration. Repeated CMPS and SCAS
instructions can be exited if either the count goes to O or if ZF fails the repeat condition.
You can use either the JCXZ instruction or the conditional jumps that test ZF (the JZ, INZ,
and JNE instructions) to distinguish why iterations stopped.

Flags Affected

ZF is affected by the REP CMPS and REP SCAS as described above.
Protected Mode Exceptions

None

Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Note: Not all I/O ports can handle the rate at which REP INS and REP OUTS execute. Do
not use REP with the LOORP instruction; it yields unpredictable results. The processor
ignores REP when it is used with non-string instructions.

Am486 Microprocessor Instruction Set 2-223

b‘l AMD

2.200 RET Returns from Procedure
Opcode Instruction Clocks Description
C3 RET 5 Returns near to caller.
CB RET 13, pm =18 Returns far to caller at same privilege.
CB RET 13, pm =18 Returns far at lesser privilege, switches stacks.
C2iw RET imm16 5 Returns near, pops imm16 bytes of parameters.
CAiw RET imm16 14, pm =17 Returns far to same privilege, pops imm16 bytes.
CAiw RET imm16 14, pm =17 Returns far to lesser privilege, pops imm16 bytes.
Operation
I F instruction = near RET
THEN;
| F OperandSi ze = 16
THEN

P~ Pop();
EIP — EIP AND 0000FFFFh;
ELSE (* OperandSize = 32 *)
EIP « Pop();
Fl ;
I F instruction has i nmedi ate operand THEN eSP ~ eSP + i mml6;
Fl ;
Fl ;

IF (PE=0 OR(PE=1AND VM= 1)) (* Real Mdde or Virtual 8086 Mde *)
AND instruction = far RET
THEN;
| F OperandSi ze = 16
THEN
P~ Pop();
EIP — EIP AND O000OFFFFh;
CS « Pop(); (* 16-bit pop *)
ELSE (* OperandSize = 32 *)
EIP —~ Pop();
CS « Pop(); (* 32-bit pop, high-order 16-bits discarded *)
Fl;
IF instruction has i medi ate operand THEN eSP ~ eSP + i mnl6;
Fl;
Fl;

IF (PE =1 AND VM= 0) (* Protected Mdde, not V86 Mbde *)
AND instruction = far RET
THEN
| F OperandSi ze = 32
THEN Third word on stack nust be within stack limts else Stack Fault;
ELSE Second word on stack nust be within stack limts el se Stack Fault;
Fl;
Return selector RPL is = CPL ELSE Gen. Protection Fault(return sel ector)
IF return selector RPL = CPL
THEN GOTO SAME- LEVEL;
ELSE GOTO QUTER- PRI VI LEGE- LEVEL;
Fl;
Fl;

2-224 Am486 Microprocessor Instruction Set

AMDH

SAME- LEVEL:
Return sel ector must be non-null ELSE General Protection Fault
Selector index iswithinlimts ELSE General Protection Fault(sel ector)
Descriptor AR byte indicates code segnent
ELSE General Protectection Fault(selector)
| F non- conform ng
THEN code segnent DPL nust equal CPL;
ELSE General Protection Fault(selector);
Fl ;
I F conform ng
THEN code segnent DPL nust be < CPL;
ELSE General Protection Fault(selector);
Fl ;
Code segment must be present ELSE Segnment Not Present(sel ector);
Top word on stack must be within stack lints ELSE Stack Fault;
| P nust be in code segnent limt ELSE General Protection Fault;
| F OperandSi ze = 32
THEN
Load CS: EIP from stack
Load CS register with descriptor
Increnent eSP by 8 plus the imediate offset if it exists
ELSE (* OperandSize = 16 *)
Load CS: I P from stack
Load CS register with descriptor
Increnent eSP by 4 plus the imediate offset if it exists
Fl ;

OQUTER- PRI VI LEGE- LEVEL:
| F OperandSi ze = 32
THEN Top (16 + inmedi ate) bytes on stack nust be within stack linits
ELSE Stack Fault;
ELSE Top (8 +i medi ate) bytes on stack nmust be within stack linmts
ELSE Stack Fault;
Fl ;
Examine return CS sel ector and associ ated descriptor:
Sel ector must be non-null ELSE General Protection Fault;
Selector index is within linmts ELSE Gen. Protection Fault(sel ector)
Descriptor AR byte indicates code segnent
ELSE General Protection Fault(selector);
| F non- conf orm ng
THEN code segnment DPL nust equal return selector RPL
ELSE Ceneral Protection Fault(selector);
Fl ;
I F conform ng
THEN code segnment DPL nust be < return sel ector RPL;
ELSE Ceneral Protection Fault(selector);
Fl ;
Segnent nust be present ELSE Segnent Not Present(sel ector)
Examine return SS sel ector and associ ated descri ptor:
Sel ector nmust be non-null ELSE General Protection Fault;
Selector indexiswithinlimts ELSE Gen. Protection Fault (sel ector);
Selector RPL = RPL of the return CS sel ector
ELSE CGeneral Protection Fault(selector);
Descriptor AR byte indicates a witable data segnent
ELSE Ceneral Protection Fault(selector);
Descriptor DPL = RPL of the return CS sel ector
ELSE CGeneral Protection Fault(selector);
Segnent nust be present ELSE Segnent Not Present(sel ector);

Am486 Microprocessor Instruction Set 2-225

b‘l AMD

| P nust be in code segnent limt ELSE General Protection Fault;
Set CPL to the RPL of the return CS selector;

| F OperandSi ze = 32

THEN

Load CS: EIP from stack;

Set CS RPL to CPL;

Increnent eSP by 8 plus the immediate offset if it exists;

Load SS: eSP from st ack;

ELSE (* OperandSize = 16 *)

Load CS:I P from stack;

Set CS RPL to CPL;

Increnent eSP by 4 plus the immediate offset if it exists;

Load SS: eSP from st ack;

Fl ;

Load the CS register with the return CS descriptor;
Load the SS register with the return SS descriptor;
For each of ES, FS, GS, and DS

DO

| F the current register setting is not valid for the outer |evel,
set the register to null (selector -« AR ~ 0);

To be valid, register setting nust satisfy the foll owi ng properties:
Sel ector index nust be within descriptor table limts;
Descriptor AR byte nust indicate data or readable code segnent;
| F segment is data or non-conformng code, THEN

DPL rmust be =CPL, or DPL rnust be = RPL;
Fl ;
oD

Description

RET transfers control to a return address located on the stack. The address is usually
placed on the stack by a CALL instruction, and the return is made to the instruction that
follows the CALL instruction. The optional numeric parameter to the RET instruction gives
the number of stack bytes (OperandMode = 16) or words (OperandMode = 32) to be
released after the return address is popped. These items are typically used as input pa-
rameters to the procedure called. For the intrasegment (near) return, the address on the
stack is a segment offset, which is popped into the instruction pointer. The CS register is
unchanged.

For the intersegment (far) return, the address on the stack is a long pointer. The offset is
popped first, followed by the selector. In Real Mode, the CS and IP registers are loaded
directly. In Protected Mode, an intersegment return causes the microprocessor to check
the descriptor addressed by the return selector. The AR byte of the descriptor mustindicate
a code segment of equal or lesser privilege (or greater or equal numeric value) than the
current privilege level. Returns to a lesser privilege level cause the stack to be reloaded
from the value saved beyond the parameter block.

The DS, ES, FS, and GS segment registers can be cleared by the RET instruction during
an interlevel transfer. If these registers refer to segments that cannot be used by the new
privilege level, they are cleared to prevent unauthorized access from the new privilege level.

Flags Affected

None

2-226

Am486 Microprocessor Instruction Set

AMDH

Protected Mode Exceptions

General Protection Fault (13), Segment Not Present (11), or Stack Fault (12) occur as
described under ‘Operation.’ Page Fault (14) indicates a page fault.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault.

Am486 Microprocessor Instruction Set 2-227

b‘l AMD

2.201 ROL Rotates Left
Opcode Instruction Clocks Description
DO /0 ROL r/m8,1 3/4 Rotates 8 bits r/m byte left once.
D2 /0 ROL 1/8,CL 3/4 Rotates 8 bits r/m byte left CL times.
CO0/0ib ROL r/m8,imm8 2/4 Rotates 8 bits r/m byte left imm8 times.
D1/0 ROL r/m16,1 3/4 Rotates 16 bits r/m word left once.
D3 /0 ROL r/m16,CL 3/4 Rotates 16 bits r/m word left CL times.
Cl/0ib ROL r/m16,imm8 214 Rotates 16 bits r/m word left imm8 times.
D1/0 ROL r/m32,1 3/4 Rotates 32 bits r/m doubleword left once.
D3 /0 ROL r/m32,CL 3/4 Rotates 32 bits r/m doubleword left CL times.
C1/0ib ROL r/m32,imm8 2/4 Rotates 32 bits r/m doubleword left imm8 times.
Operation
tenp COUNT;
VWHI LE (tenp # 0)
DO

tnmpcf ~ high-order bit of (r/m;
rlm r/mm@® + (tnpcf);
tenmp ~ temp-1,;

OD;

IF COUNT =1

THEN
IF high-order bit of r/m #CF
THEN OF - 1,
ELSE OF ~ O;Fl;

ELSE OF ~ undefined;Fl

Description

ROL shifts the bits upward, except for the top bit, which becomes the bottom bit; ROL also
copies the bit to CF. The second operand indicates the number of rotations. The operand
is either an immediate number or the CL register contents. The processor does not allow
rotation counts greater than 31, using only the bottom five bits of the operand if it is greater
than 31. The 486 processor in Virtual 8086 Mode masks rotation counts.

Flags Affected

OF is only defined for single-bit rotations but is undefined otherwise. CF contains the value
of the top bit copied into it. SF, ZF, AF, and PF are not affected.

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17)
indicates there is an unaligned memory reference.

2-228 Am486 Microprocessor Instruction Set

AMDH

2.202 ROR Rotates Right
Opcode Instruction Clocks Description
D0 /1 RCR r/m8,1 3/4 Rotates 8 bits r/m byte right once.
D2 /1 RCR r/8,CL 3/4 Rotates 8 bits r/m byte right CL times.
CO0/1ib RCR r/m8,imm8 2/4 Rotates 8 bits r/m byte right imm8 times.
D1/1 RCR r/m16,1 3/4 Rotates 16 bits r/m word right once.
D3/1 RCR r/m16,CL 3/4 Rotates 16 bits r/m word right CL times.
Cl/1ib RCR r/m16,imm8 2/4 Rotates 16 bits r/m word right imm8 times.
D1/1 RCR r/m32,1 3/4 Rotates 32 bits r/m doubleword right once.
D3/1 RCR r/m32,CL 3/4 Rotates 32 bits r/m doubleword right CL times.
Cl/1ib RCR r/m32,imm8 2/4 Rotates 32 hits r/m doubleword right imm8 times.
Operation

tenp ~ COUNT,;

VWHI LE (tenmp # 0)

DO
tnmpcf ~ loworder bit of (r/m;
rlm r/m/ 2 + (tnpcf @ width(r/m);
tenmp ~ temp-1,;

OD;

IF COUNT =1

THEN
IF (high-order bit of r/m) # (bit next to high-order bit of r/m)
THEN OF - 1;
ELSE OF ~ O;FI;

ELSE OF ~ undefined FI

Description

ROR shifts the bits downward, except for the bottom bit, which becomes the top bit; ROR
also copies the bit to CF. The second operand indicates the number of rotations to make.
The operand is either an immediate number or the CL register contents. The processor

does not allow rotation counts greater than 31, using only the bottom five bits of the operand
if it is greater than 31. The 486 processor in Virtual 8086 Mode does mask rotation counts.

Flags Affected

OF is only defined for single-bit rotations but is undefined otherwise. CF contains the value
of the top bit copied into it. SF, ZF, AF, and PF are not affected.

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17)
indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-229

i"l AMD

2.203 SAHF Stores AH into Flags
Opcode Instruction Clocks Description
9E SAHF 2 Stores AH into EFLAGS bits SF, ZF, AF, PF, CF.
Operation
SF: ZF: xx: AF: xx: PF: xx: CF ~ AH
Description
The SAHF instruction loads the SF, ZF, AF, PF, and CF bits in the EFLAGS register with
values from the AH register, from bits 7, 6, 4, 2, and 0, respectively.
Flags Affected
SF, ZF, AF, PF, and CF are loaded with values from the AH register.
Protected Mode Exceptions
None
Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions
None
2-230 Am486 Microprocessor Instruction Set

AMDH

2.204 SAL Shifts Arithmetic Left
Opcode Instruction Clocks Description
DO /4 SAL r/m8,1 3/4 Multiplies r/m byte by 2, once.
D2 /4 SAL r/m8,CL 3/4 Multiplies r/m byte by 2, CL times.
CO0/4ib SAL r/m8,imm8 2/4 Multiplies r/m byte by 2, imm8 times.
D1/4 SAL r/m16,1 3/4 Multiplies r/m word by 2, once.
D3 /4 SAL r/m16,CL 3/4 Multiplies r/m word by 2, CL times.
Cl/4ib SAL r/m16,imm8 2/4 Multiplies r/m word by 2, imm8 times.
D1 /4 SAL r/m32,1 3/4 Multiplies r/m doubleword by 2, once.
D3 /4 SAL r/m32,CL 3/4 Multiplies r/m doubleword by 2, CL times.
Cl/4ib SAL r/m32,imm8 2/4 Multiplies r/m doubleword by 2, imm8 times.

Operation

(* COUNT is the second paraneter *)
(tenmp) ~ COUNT;
VWHI LE (tenp # 0)
DO
CF ~ high-order bit of r/im
rlm « r/ml2;

temp ~ temp 1 ;
O B
| F COUNT = 1
THEN

OF < high-order bit of rim# (CF);
Fl

Description

SAL (or its synonym, SHL) shifts the bits of the operand upward. SAL shifts the high-order
bitinto CF and clears the Low order bit. The second operand indicates the number of shifts
to make. The operand is either an immediate number or the CL register contents. The
processor does not allow shift counts greater than 31; it uses only the bottom five bits of
the operand if it is greater than 31.

Flags Affected

OF is defined for single-bit shifts; otherwise, it is undefined. The result determines the CF,
ZF, PF, and SF settings.

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-231

b‘l AMD

2.205 SAR Shifts Arithmetic Right
Opcode Instruction Clocks Description
DO /7 SAR r/m8,1 3/4 Performs a signed divide* r/m byte by 2 once.
D2 /7 SAR r/m8,CL 3/4 Performs a signed divide* r/m byte by 2 CL times.
CO/7ib SAR r/m8,imm8 2/4 Performs a signed divide* r/m byte by 2 imm8 times.
D1 /7 SAR r/m16,1 3/4 Performs a signed divide* r/m word by 2 once.
D3 /7 SAR r/m16,CL 3/4 Performs a signed divide* r/m word by 2 CL times.
Cl/7ib SAR r/m16,imm8 2/4 Performs a signed divide* r/m word by 2 imm8 times.
D1 /7 SAR r/m32,1 3/4 Performs a signed divide* r/m doubleword by 2 once.
D3 /7 SAR r/m32,CL 3/4 Performs a signed divide* r/m doubleword by 2 CL times.
Cl/7ib SAR r/m32,imm8 2/4 Performs a signed divide* r/m doubleword by 2 imm8 times.
*Not the same division as IDIV; rounding is toward negative infinity.
Operation
(* COUNT is the second paraneter *)
(tenp) ~ COUNT;
VWHI LE (tenp # 0)
DO
CF —~ loworder bit of r/im
rfm e r/m/ 2 (* Signed divide, rounding toward negative infinity *);
tenp « tenmp 1 ;
OB
IF COUNT = 1
THEN
OF -« 0 FI
Description
SAR shifts the bits of the operand downward. SAR shifts the Low order bit into CF. The
effect is to divide the operand by two. SAR performs a signed divide with rounding toward
negative infinity (not like IDIV); the high-order bit remains the same. The second operand
indicates the number of shifts to make. The operand is either an immediate number or the
Clregister contents. The processor does not allow shift counts greater than 31; it only uses
the bottom five bits of the operand if it is greater than 31.
Flags Affected
OF is cleared for single shifts; otherwise, it is undefined. The result determines the CF, ZF,
PF, and SF settings.
Protected Mode Exceptions
General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.
2-232 Am486 Microprocessor Instruction Set

AMDH

2.206

SBB Integer Subtract with Borrow
Opcode Instruction Clocks Description
1Cib SBB AL,imm8 1 Subtracts immediate byte from AL with borrow.
1D iw SBB AX,imm16 1 Subtracts immediate word from AX with borrow.
1D id SBB EAX,imm32 1 Subtracts immediate doubleword from EAX with borrow.
80/3ib SBB r/m8,imm8 1/3 Subtracts immediate byte from r/m byte with borrow.
81/3iw SBBr/m16,imm16 1/3 Subtracts immediate word from r/m word with borrow.
81/3id SBB r/m32,imm32 1/3 Subtracts imm. doubleword from r/m doubleword with borrow.
83/3ib SBB r/m16,imm8 1/3 Subtracts sign-extended imm. byte from r/m word with borrow.
83/3ib SBB r/m32,imm8 1/3 Subtracts sign-ext. imm. byte from r/m doubleword with borrow.
18 /r SBB r/m8,r8 1/3 Subtracts byte register from r/m byte with borrow.
19 /r SBB r/m16,r16 1/3 Subtracts word register from r/m word with borrow.
19 /r SBB r/m32,r32 1/3 Subtracts doubleword register from r/m doubleword with borrow.
1A Jr SBB r8,r/m8 1/3 Subtracts r/m byte from byte register with borrow.
1B Jr SBB r16,r/m16 1/2 Subtracts r/m word from word register with borrow.
1B Jr SBB r32,r/m32 1/2 Subtracts r/m doubleword from doubleword register with borrow.
Operation

IF SRCis a byte and DEST is a word or doubl eword
THEN DEST = DEST - (SignExtend(SRC) + CF)
ELSE DEST ~ DEST - (SRC + CF)

Description

The SBB instruction adds the second operand (SRC) to CF and subtracts the result from
the first operand (DEST). The result of the subtraction is assigned to the first operand
(DEST) and the flags are set accordingly.

Note: When an immediate byte value is subtracted from a word operand, the immediate
value is first sign-extended.

Flags Affected
OF, SF, ZF, AF, PF, and CF are set according to the result.
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-233

b‘l AMD

2.207

SCAS/SCASB/SCASD/SCASW Compares String Data

Opcode Instruction Clocks Description

AE SCAS m8 Compares bytes AL-ES:DI, updates (E)DI.
AF SCAS m16 Compares words AX—ES:DI, updates (E)DI.
AF SCAS m32 Compares doublewords EAX-ES:DI, updates (E)DI.
AE SCASB Compares bytes AL-ES:DI, updates (E)DI.
AF SCASD Compares doublewords EAX-ES:DI, updates (E)DI.
AF SCASW Compares words AX—ES:DI, updates (E)DI.

[e2)Ne>RNe RN e)N e)Ne))

Operation

| F AddressSi ze = 16
THEN use DI for dest-index;
ELSE (* AddressSize = 32 *) use EDI for dest-index;
Fl;
| F byte type of instruction
THEN
AL — [dest-index]; (* Compare byte in AL and dest *)
IF DF = 0 THEN IndDec ~ 1ELSE « IncDec-1;
FI;
ELSE
IF OperandSize = 16
THEN
AX — [dest-index] ; (* compare word in AL and dest *)
IF DF = 0 THEN IncDec ~ 2 ELSE IncDec - =2,
FI;
ELSE (* OperandSize = 32 *)
EAX — [dest-index];(* compare doubleword in EAX & dest *)
IF DF =0 THEN IncDec ~ 4 ELSE IncDec — —4;
FI;
FI;
Fl;
dest-index = dest-index + IncDec

Description

SCAS subtracts the memory byte, word, or doubleword at the destination register from the
AL, AX, or EAX register. The result is discarded; only the flags are set. The operand must
be addressable from the ES segment; no segment override is possible. The address size

determines whether the index register is DI (16-bit address) or EDI (32-bit address). The

contents of the destination register determine the address of the memory data being com-
pared, notthe SCAS instruction operand. The operand validates ES segment addressability
and determines the data type. Load the correct index value into the DI or EDI register before
executing the SCAS instruction.

After the comparison, the destination index register automatically updates. If the Direction
Flag (DF) is O (see CLD), the destination index register increments; if DF is 1 (see STD),
it decrements. The increment/decrement rate is 1 for bytes, 2 for words, or by 4 for
doublewords.

The SCASB, SCASW, and SCASD instructions are synonyms for the byte, word, and
doubleword SCAS instructions that do not require operands. They are simpler to code, but
provide no type or segment checking.

You can precede SCAS with the REPE or REPNE prefix for a block search of CX or ECX
bytes or words.

2-234

Am486 Microprocessor Instruction Set

AMDH

Flags Affected
OF, SF, ZF, AF, PF, and CF are set according to the result.
Protected Mode Exceptions

General Protection Fault (13) indicates that there is an illegal memory-operand effective
address in the ES segment. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-235

b‘l AMD

2.208 SETcc Sets Byte on Condition (see list below)
Opcode Instruction Clocks Description
OF 97 SETA r/m8 4/3 Sets byte if above (CF = 0 and ZF = 0).
OF 93 SETAE r/m8 4/3 Sets byte if above or equal (CF = 0).
OF 92 SETB r/m8 4/3 Sets byte if below (CF = 1).
OF 96 SETBE r/m8 4/3 Sets byte if below or equal (CF =1 or ZF = 1).
OF 92 SETC r/m8 4/3 Sets if carry (CF = 1).
OF 94 SETE r/m8 4/3 Sets byte if equal (ZF = 1).
OF 9F SETG r/m8 4/3 Sets byte if greater (ZF = 0 and SF = OF).
OF 9D SETGE r/m8 4/3 Sets byte if greater or equal (SF = OF).
OF 9C SETL r/m8 4/3 Sets byte if less (SF£OF).
OF 9E SETLE r/m8 4/3 Sets byte if less or equal (ZF = 1 or SF£OF).
OF 96 SETNA r/m8 4/3 Sets byte if not above (CF =1 or ZF = 1).
OF 92 SETNAE r/m8 4/3 Sets byte if not above or equal (CF = 1).
OF 93 SETNB r/m 8 4/3 Sets byte if not below (CF = 0).
OF 97 SETNBE r/m8 4/3 Sets byte if not below or equal (CF = 0 and ZF = 0).
OF 93 SETNC r/m8 4/3 Sets byte if not carry (CF = 0).
OF 95 SETNE r/m8 4/3 Sets byte if not equal (ZF = 0).
OF 9E SETNG r/m8 4/3 Sets byte if not greater (ZF = 1 or SF£OF).
OF 9C SETNEG r/m8 4/3 Sets byte if not greater or equal (SF£OF).
OF 9D SETNL r/m8 4/3 Sets byte if not less (SF = OF).
OF 9F SETNLE r/m8 4/3 Sets byte if not less or equal (ZF = 0 and SF = OF).
OF 91 SETNO r/m8 4/3 Sets byte if not overflow (OF = 0).
OF 9B SETNP r/m8 4/3 Sets byte if not parity (PF = 0).
OF 99 SETNS r/m8 4/3 Sets byte if not sign (SF = 0).
OF 95 SETNZ r/m8 4/3 Sets byte if not zero (ZF = 0).
OF 90 SETO r/m8 4/3 Sets byte if overflow (OF = 1).
OF 9A SETP r/m8 4/3 Sets byte if parity (PF = 1).
OF 9A SETPE r/m8 4/3 Sets byte if parity even (PF = 1).
OF 9B SETPO r/m8 4/3 Sets byte if parity odd (PF = 0).
OF 98 SETS r/m8 4/3 Sets byte if sign (SF = 1).
OF 94 SETZ r/m8 4/3 Sets byte if zero (ZF = 1).
Operation

IF condition THEN r/m8 —~ 1 ELSE r/nB ~ 0; FI

Description

SETcc loads a 1 (condition met) or a 0 (not met) into the r/m byte specified by the operand.
Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space.

Virtual 8086 Mode Exceptions

Same as Real Mode. Page Fault (14) indicates a page fault.

2-236 Am486 Microprocessor Instruction Set

AMDH

2.209

SGDT Store Global Descriptor Table Register
Opcode Instruction Clocks Description

OFO01/0 SGDT m 10 Store GDTR to m
Operation

DEST ~ 48-bit BASE/LIMT register contents
Description

SGDT copies the contents of the descriptor table register to the six bytes of memory indi-
cated by the operand. The LIMIT field of the register is assigned to the first word at the
effective address. If the operand-size attribute is 16 bits, the next three bytes are assigned
to the BASE field of the register and the fourth byte is undefined. Otherwise, if the operand-
size attribute is 32 bits, the next four bytes are assigned to the 32-bit BASE field of the
register.

Note: The SGDT instruction is used only in operating system software. It is not used in
application programs.

Flags Affected
None
Protected Mode Exceptions

Invalid Opcode (6) indicates the destination operand is a register. General Protection Fault
(13) indicates either that the destination is in a non-writable segment or there is an illegal
memory-operand effective address in the CS, DS, ES, FS, or GS segments. Stack Fault
(12) indicates an illegal address is in the SS segment. Page Fault (14) indicates a page
fault. If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

Invalid Opcode (6) indicates the destination operand is a register. General Protection Fault
(13) indicates that part of the operand lies outside of the effective address space from 0 to
OFFFFh.

Virtual 8086 Mode Exceptions

Invalid Opcode (6) indicates the destination operand is a register. General Protection Fault
(13) indicates that part of the operand lies outside of the effective address space from 0 to
OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates
there is an unaligned memory reference.

Note: The 16-bit forms of the SGDT instructions are compatible with the 286 processor if
the value in the upper eight bits is not referenced. The 286 processor stores a 1 in each of
the upper bits, whereas Am386 and Am486 microprocessors store a 0 if the operand-size
attribute is 16 bits.

Am486 Microprocessor Instruction Set 2-237

b‘l AMD

2.210 SHL Shift Left
Opcode Instruction Clocks Description
DO /4 SHL r/m8,1 3/4 Multiplies r/m byte by 2 once.
D2 /4 SHL r/m8,CL 3/4 Multiplies r/m byte by 2 CL times.
CO0/4ib SHL r/m8,imm8 2/4 Multiplies r/m byte by 2 imm8 times.
D1 /4 SHL r/m16,1 3/4 Multiplies r/m word by 2 once.
D3 /4 SHL r/m16,CL 3/4 Multiplies r/m word by 2 CL times.
Cl/4ib SHL r/m16,imm8 2/4 Multiplies r/m word by 2 imm8 times.
D1 /4 SHL r/m32,1 3/4 Multiplies r/m doubleword by 2 once.
D3 /4 SHL r/m32,CL 3/4 Multiplies r/m doubleword by 2 CL times.
Cl/4ib SHL r/m32,imm8 2/4 Multiplies r/m doubleword by 2 imm8 times.
Operation

(* COUNT is the second paraneter *)
(tenmp) ~ COUNT;
VWHI LE (tenmp # 0)
DO
CF ~ high-order bit of r/im
rim < r/m(2;
temp ~ tenmp 1;
oo,
IF COUNT = 1
THEN

OF « high-order bit of r/im# (CF);
Fl

Description

SHL (or its synonym, SAL) shifts the bits of the operand upward. SHL shifts the high-order
bit into CF and clears the Low order bit. The second operand indicates the number of shifts
to make. The operand is either an immediate number or the CL register contents. The
processor does not allow shift counts greater than 31; it uses only the bottom five bits of
the operand if it is greater than 31.

Flags Affected

OF is defined for single-bit shifts; otherwise, it is undefined. The result determines the CF,
ZF, PF, and SF settings. CF is undefined if the shift lengths are greater than the size of the
shifted operand.

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

2-238 Am486 Microprocessor Instruction Set

AMDH

2.211

SHLD Double Precision Shift Left
Opcode Instruction Clocks Description
OF A4 SHLD r/m16,r16,imm8 2/3 r/m16 gets SHL of /m16 concatenated with r16.
OF A4 SHLD r/m32,r32,imm8 2/3 r/m32 gets SHL of /m32 concatenated with r32.
OF A5 SHLD r/m16,r16,CL 3/4 r/m16 gets SHL of /m16 concatenated with r16.
OF A5 SHLD r/m32,r32,CL 3/4 r/m32 gets SHL of /m32 concatenated with r32.
Operation

(* count is an unsigned integer corresponding to the | ast operand of the
instruction, either an imedi ate byte or the byte in register CL *)
ShiftAm ~ count MOD 32;
inBits — register; (* Alow overl apped operands *)
IF ShiftAmt = 0
THEN no operation
ELSE
I F ShiftAmt =OperandSize
THEN (* Bad paraneters *)
r/ m — UNDEFI NED;
CF, OF, SF, ZF, AF, PF ~ UNDEFI NED,
ELSE (* Performthe shift *)
CF ~ BIT[Base, OperandSize — ShiftAmt];
(* Last bit shifted out on exit *)
FORi « OperandSize — 1 DOWNTO ShiftAmt

DO
BIT[Base, i] ~ BIT[Base, i — ShiftAmt];
OF;
FORi « ShiftAmt—1 DOWNTO 0
DO
BIT[Base, i] ~ BIT[inBits, i — ShiftAmt + OperandSize];
OD;

Set SF, ZF, PF (r/m);
(* SF, ZF, PF are set according to the value of the result *)
AF ~ UNDEFINED;
FI;
FI

Description

SHLD shifts the r/m word/doubleword specified by the first operand to the left as many bits
as indicated by the count operand, specified by an immediate byte or the CL register. The
second operand word/doubleword register (r16/ r32) provides the bits to shift in from the
right (starting with bit 0). SHLD then stores the result back into the r/m word/doubleword
specified by the first operand. The register remains unaltered.

The count operand is taken modulo 32 to provide a number between 0 and 31 by which to
shift. Because the bits to shift are provided by the specified registers, the operation is useful
for multiprecision shifts (64 bits or more).

Flags Affected

SF, ZF, and PF are set according to the result. CF is set to the value of the last bit shifted
out. OF is valid for a shift of one bit position only: 0 = no sign change occurred; 1 = sign
change occurred; for a multibit shift, OF is undefined. AF is undefined.

Am486 Microprocessor Instruction Set 2-239

b‘l AMD

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

2-240

Am486 Microprocessor Instruction Set

AMDH

2.212

SHR Shift Right
Opcode Instruction Clocks Description
DO /5 SHR r/m8,1 3/4 Performs unsigned divide r/m byte by 2 once.
D2 /5 SHR r/m8,CL 3/4 Performs unsigned divide r/m byte by 2 CL times.
CO/5ib SHR r/m8,imm8 2/4 Performs unsigned divide r/m byte by 2 imm8 times.
D1 /5 SHR r/m16,1 3/4 Performs unsigned divide r/m word by 2 once.
D3 /5 SHR r/m16,CL 3/4 Performs unsigned divide r/m word by 2 CL times.
Cl/5ib SHRr/m16,imm8 2/4 Performs unsigned divide r/m word by 2 imm8 times.
D1/5 SHR r/m32,1 3/4 Performs unsigned divide r/m doubleword by 2 once.
D3 /5 SHR r/m32,CL 3/4 Performs unsigned divide r/m doubleword by 2 CL times.
Ci1/5ib SHR/m32,imm8 2/4 Performs unsigned divide r/m doubleword by 2 imm8 times.
Operation

(* COUNT is the second paraneter *)

(tenmp) ~ COUNT;

VWHI LE (tenp # 0)

DO

CF —~ loworder bit of r/im

rfm r/m/ 2; (* Unsigned divide *);

temp ~ temp 1 ;

0
OF < high-order bit of operand;

FI

Description

SHR shifts the bits of the operand downward. SHR shifts the Low order bit into CF. The
effect is to divide the operand by 2. SHR performs an unsigned divide and clears the high-
order bit. The second operand indicates the number of shifts to make. The operand is either
animmediate number or the CL register contents. The processor does not allow shift counts
greater than 31; it only uses the bottom five bits of the operand if it is greater than 31.

Flags Affected

OF is set to the high-order bit of the original operand. The result determines the CF, ZF,
PF, and SF settings. CF is undefined if the shift lengths are greater than the size of the
shifted operand.

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-241

b‘l AMD

2.213 SHRD Double Precision Shift Right
Opcode Instruction Clocks Description
OF AC SHRD r/m16,r16,imm8 2/3 r/m16 gets SHR of r/m16 concatenated with r16.
OF AC SHRD r/m32,r32,imm8 2/3 r/m32 gets SHR of r/m32 concatenated wtih r32.
OF AD SHRD r/m16,r16,CL 3/4 r/m16 gets SHR of r/m16 concatenated with r16.
OF AD SHRD r/m32,r32,CL 3/4 r/m32 gets SHR of r/m32 concatenated with r32.
Operation
(* count is an unsigned integer corresponding to the | ast operand of the
instruction, either an imedi ate byte or the byte in register CL *)
ShiftAm ~ count MOD 32;
inBits — register; (* Alow overl apped operands *)
IF ShiftAmt = 0
THEN no operation
ELSE
I F ShiftAmt _ OperandSi ze
THEN (* Bad paraneters *)
r/m — UNDEFI NED;
CF, OF, SF, ZF, AF, PF ~ UNDEFI NED,
ELSE (* Performthe shift *)
CF ~ BIT[r/m, Shift — 1]; (* last bit shifted out on exit *)
FORi «~ 0 TO OperandSize — 1 — ShiftAmt
DO
BIT[r/m, i] « BIT[r/m, 1 — ShiftAmt];
OD;
FORi « OperandSize — ShiftAmt TO OperandSize — 1
DO;
BIT[r/m,i] ~ BIT[inBits,i +ShiftAmt — OperandSize];
OD;
(* SF, ZF, PF are set according to the value of the result *)
Set SF, ZF, PF (r/m);
AF — UNDEFINED;
FI;
Fi
Description
SHRD shifts the r/m word/doubleword specified by the first operand to the right as many
bits as indicated by the count operand, specified by an immediate byte or the CL register.
The second operand word/doubleword register (r16/ r32) provides the bits to shift in from
the left (starting with bit 31). SHRD then stores the result back into the r/m word/doubleword
specified by the first operand. The register remains unaltered.
The count operand is taken modulo 32 to provide a number between 0 and 31 by which to
shift. Because the bits to shift are provided by the specified registers, the operation is useful
for multiprecision shifts (64 bits or more).
Flags Affected
SF, ZF, and PF are set according to the result. CF is set to the value of the last bit shifted
out. OF is valid for a shift of one bit position only: 0 = no sign change occurred; 1 = sign
changed occurred; for a multibit shift, OF is undefined. AF is undefined.
2-242 Am486 Microprocessor Instruction Set

AMDH

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-243

b‘l AMD

2.214 SIDT Stores Interrupt Descriptor Table Register
Opcode Instruction Clocks Description
OFO01/1 SIDTm 10 Stores IDTR to m.
Operation
DEST ~ 48-bit BASE/LIMT register contents
Description
The SIDT instruction copies the contents of the descriptor table register to the 6 bytes of
memory indicated by the operand. The LIMIT field of the register is assigned to the first
word at the effective address. If the operand-size attribute is 16 bits, the next 3 bytes are
assigned the BASE field of the register and the fourth byte is undefined. Otherwise, if the
operand-size attribute is 32 bits, the next 4 bytes are assigned the 32-bit BASE field of the
register.
SIDT is only used in operating system software. It should not be used in application
programs.
Flags Affected
None
Protected Mode Exceptions
Invalid Opcode (6) indicates the destination operand is a register. General Protection Fault
(13) indicates the destination is in a non-writable segment or there is an illegal memory-
operand effective address in the code or data segments. Stack Fault (12) indicates anillegal
SSsegmentaddress. Page Fault (14) indicates a page fault. Alignment Check (17) indicates
an unaligned memory reference if the current privilege level is 3.
Real Address Mode Exceptions
Invalid Opcode (6) indicates the destination operand is a register. General Protection Fault
(13) indicates that part of the operand is referenced outside the effective address space
from O to OFFFFh.
Virtual 8086 Mode Exceptions
Invalid Opcode (6) indicates the destination operand is a register. General Protection Fault
(13) indicates that part of the operand is referenced outside the effective address space
from O to OFFFFh. Page Fault (14) indicates a page fault. Alignment Check (17) indicates
an unaligned memory reference if the current privilege level is 3.
Note: The 16-bit forms of the SIDT instructions are compatible with the 286 processor if
the value in the upper eight bits is not referenced. The 286 processor stores a 1 in each of
the upper bits, whereas Am386 and Am486 microprocessors store a 0 if the operand-size
attribute is 16 bits.

2-244 Am486 Microprocessor Instruction Set

AMDH

2.215

SLDT Stores Local Descriptor Table Register
Opcode Instruction Clocks Description

OF 00 /0 SLDT r/m16 2/3 Stores LDTR to EA word.
Operation

r/m6 ~ LDTR
Description

The SLDT instruction stores the Local Descriptor Table Register (LDTR) in the 2-byte
register or memory location indicated by the effective address operand. This register is a
selector that points into the Global Descriptor Table.

Note: The SLDT instruction is used only in operating system software. It is not used in
application programs.

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions
Invalid Opcode (6) occurs. SLDT is not recognized in Real Address Mode.
Virtual 8086 Mode Exceptions

Invalid Opcode (6) occurs. SLDT is not recognized in Virtual 8086 Mode. Page Fault (14)
indicates a page fault. If CPL is 3, Alignment Check (17) indicates there is an unaligned
memory reference.

Note: The operand-size attribute has no effect on the operation of the instruction.

Am486 Microprocessor Instruction Set 2-245

i"l AMD

2.216 SMSW Stores Machine Status Word
Opcode Instruction Clocks Description
OF01/4 SMSW r/m16 2/3 Stores machine status word to EA word.
Operation
r/m6 — NMSW
Description
The SMSW instruction stores the machine status word (part of the CRO register) in the
2-byte register or memory location indicated by the effective address operand.
Flags Affected
None
Protected Mode Exceptions
General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.
Virtual 8086 Mode Exceptions
General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.
Note: This instruction is provided for compatibility with the 80286 microprocessor; programs
for the Am486 microprocessor should use the MOV ..., CRO instruction.

2-246 Am486 Microprocessor Instruction Set

AMDH

2.217

STC Sets Carry Flag
Opcode Instruction Clocks Description
F9 STC 2 Sets Carry Flag.

Operation

CF -~ 1
Description

The STC instruction sets CF.
Flags Affected

CF is set.

Protected Mode Exceptions
None

Real Address Mode Exceptions
None

Virtual 8086 Mode Exceptions

None

Am486 Microprocessor Instruction Set

2-247

b‘l AMD

2.218 STD Sets Direction Flag
Opcode Instruction Clocks Description
FD STD 2 Sets Direction Flag to make the Stack Index (Sl or ESI)
and/or the Data Index (DI or EDI) Registers decrement.
Operation
DF ~ 1
Description

The STD instruction sets the Direction Flag, causing all subsequent string operations to
decrement the index registers on which they operate: Sl (8-bit or 16-bit address) or ESI
(32-bit address), and/or DI (8-bit or 16-bit address) or EDI (32-bit address).

Flags Affected

DF is set. No other flags or registers are affected.
Protected Mode Exceptions

None

Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

2-248 Am486 Microprocessor Instruction Set

AMDH

2.219

STI Sets Interrupt-Enable Flag
Opcode Instruction Clocks Description
FB STI 5 SetslInterrupt-enable Flag to enable interrupts at the end

of the next instruction.

Operation
IF « 1
Description

STl sets the Interrupt-enable Flag (IF). The processor responds to external interrupts after
executing the next instruction if that instruction does not clear IF. If external interrupts are
disabled and the program executes STI before a RET instruction (such as at the end of a
subroutine), RET executes before processing any external interrupts. If external interrupts
are disabled and the program executes STl before a CLI instruction, no external interrupts
are processed because CLI clears IF.

Flags Affected
IF is set.
Protected Mode Exceptions

General Protection Fault (13) indicates the current privilege level is greater (has less priv-
ilege) than the I/O privilege level.

Real Address Mode Exceptions
None
Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates the current privilege level is greater (has less priv-
ilege) than the I/O privilege level.

Note: If an NMI, trap, or fault occurs following STI, the interrupt will be processed before
executing the next sequential instruction in the code.

Am486 Microprocessor Instruction Set 2-249

b‘l AMD

2.220 STOS/STOSB/STOSD/STOSW Stores String Data
Opcode Instruction Clocks Description
AA STOS m8 5 Stores AL in byte ES:(E)DI, update (E)DI.
AB STOS m16 5 Stores AX in word ES:(E)DI, update (E)DI.
AB STOS m32 5 Stores EAX in doubleword ES:(E)DI, update (E)DI.
AA STOSB 5 Stores AL in byte ES:(E)DI, update (E)DI.
AB STOSD 5 Stores EAX in doubleword ES:(E)DI, update (E)DI.
AB STOSW 5 Stores AX in word ES:(E)DI, update (E)DI.
Operation
| F AddressSi ze = 16
THEN use ES: DI for DestReg
ELSE (* AddressSize = 32 *) use ES:EDI for DestReg;
Fl ;
| F byte type of instruction
THEN
(ES: DestReg) ~ AL,
IFDF=0
THEN Dest Reg — DestReg + 1;
ELSE Dest Reg ~ DestReg -1,
Fl;
ELSE IF OperandSize = 16
THEN (ES:DestReq) < AX;
IFDF=0
THEN DestReg ~ DestReg + 2;
ELSE DestReg ~ DestReg - 2;
FI;
ELSE (* OperandSize = 32 *)
(ES:DestReg) ~ EAX;
IFDF=0
THEN DestReg <~ DestReg + 4,
ELSE DestReg ~ DestReg - 4;
FI;
FI;
Fl
Description
STOS transfers the contents of the AL, AX, or EAX register to the memory byte, word, or
doubleword given by the destination register (DI for 16-bit addresses, EDI for 32-bit ad-
dresses) relative to the ES segment. The destination operand must be addressable from
the ES register. A segment override is not possible. The contents of the destination register
determine the destination address. STOS does not use an explicit operand. This operand
only validates ES segment addressability and determines the data type. You must load the
correct index value into the destination register before executing the STOS instruction.
After the transfer, STOS automatically updates the Data Index (DI or EDI) register. If the
Direction Flag (DF) is 0 (see CLD), the register increments; if DF is 1 (see STD), the register
decrements. The increment/decrement rate is 1 for a byte, 2 for a word, or 4 for a double-
word.
STOSB, STOSW, and STOSD are synonyms for the byte, word, and doubleword STOS
instructions. These forms do not require an operand and are simpler to use, but provide
no type or segment checking.
You can precede STOS with the REP prefix for a block fill of CX or ECX bytes, words, or
doublewords.
2-250 Am486 Microprocessor Instruction Set

AMDH

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
or there is anillegal memory-operand effective address in the ES segment. Page Fault (14)
indicates a page fault. If CPL is 3, Alignment Check (17) indicates there is an unaligned
memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-251

i"l AMD

2.221 STR Stores Task Register
Opcode Instruction Clocks Description
OF 00/1 STR r/m16 2/3 Stores task register to EA word.
Operation
rim — task register
Description
The contents of the task register are copied to the 2-byte register or memory location
indicated by the effective address operand.
Note: The STR instruction is used only in operating system software. It is not used in
application programs.
Flags Affected
None
Protected Mode Exceptions
General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.
Real Address Mode Exceptions
Invalid Opcode (6) occurs. STR is not recognized in Real Address Mode.
Virtual 8086 Mode Exceptions
Invalid Opcode (6) occurs. STR is not recognized in Virtual 8086 Mode.
Note: The operand-size attribute has no effect on this instruction.
2-252 Am486 Microprocessor Instruction Set

AMDH

2.222

sSuUB Integer Subtraction

Opcode Instruction Clocks Description

2Cib SUB AL,imm8 1 Subtracts immediate byte from AL.

2D iw SUB AX,imm16 1 Subtracts immediate word from AX.

2D id SUB EAX,imm32 1 Subtracts immediate doubleword from EAX.

80/5ib SUB r/m8,imm8 1/3 Subtracts immediate byte from r/m byte.

81/5iw SUB r/m16,imm16 1/3 Subtracts immediate word from r/m word.

81/5id SUB r/m32,imm32 1/3 Subtracts immediate doubleword from r/m doubleword.
83/5ib SUB r/m16,imm8 1/3 Subtracts sign-ext. immediate byte from r/m word.
83/5ib SUB r/m32,imm8 1/3 Subtracts sign-ext. immediate byte from r/m doubleword.
28 /Ir SUB r/m8,r8 1/3 Subtracts byte register from r/m byte.

29 /r SUB r/m16,r16 1/3 Subtracts word register from r/m word.

29 /r SUB r/m32,r32 1/3 Subtracts doubleword register from r/m doubleword.
2A Ir SUB r8,r/m8 1/2 Subtracts r/m byte from byte register.

2B Ir SUB r16,r/m16 1/2 Subtracts r/m word from word register.

2B Ir SUB r32,r/m32 1/2 Subtracts r/m doubleword from doubleword register.
Operation

IF SRCis a byte and DEST is a word or doubl eword
THEN DEST = DEST - SignExtend(SRC);

ELSE DEST ~ DEST - SRC;

Fl

Description

The SUB instruction subtracts the second operand (SRC) from the first operand (DEST).
The first operand is assigned the result of the subtraction and the flags are set accordingly.
If an immediate byte value is subtracted from a word operand, the immediate value is first
sign-extended to the size of the destination operand.

Flags Affected
OF, SF, ZF, AF, PF, and CF are set according to the result.
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-253

b‘l AMD

2.223 TEST Logical Compare
Opcode Instruction Clocks Description
A8 ib TEST AL,imm8 1 AND immediate byte with AL
A9 iw TEST AX,imm16 1 AND immediate word with AX
A9 id TEST EAX,imm32 1 AND immediate doubleword with EAX
F6/0ib TEST r/m8,imm8 1/2 AND immediate byte with r/m byte
F7 /0 iw TEST r/m16,imm16 1/2 AND immediate word with r/m word
F7/0id TEST r/m32,imm32 1/2 AND immediate doubleword with r/m doubleword
84 r TEST r/m8,r8 1/2 AND byte register with r/m byte
851/r TEST r/m16,r16 1/2 AND word register with r/m word
851/r TEST r/m32,r32 1/2 AND doubleword register with r/m doubleword
Operation
DEST : = Left SRC AND Ri ght SRC;
CF ~ 0O
O - 0
Description

The TEST instruction computes the bit-wise logical AND of its two operands. Each bit of
the result is 1 if both of the corresponding bits of the operands are 1; otherwise, each bit
is 0. The result of the operation is discarded and only the flags are modified.

Flags Affected
OF and CF are cleared; SF, ZF, and PF are set according to the result.
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

2-254 Am486 Microprocessor Instruction Set

AMDH

2.224

VERR/VERW Verifies Segment for Read/Write

Opcode Instruction Clocks Description

OF 00 /4 VERR r/m16 11/11 Sets ZF = 1 if segment readable, selector in r/m16.

OF 00 /5 VERW r/m16 11/11 Sets ZF = 1 if segment writable, selector in r/m16.
Operation

I F segnment with selector at (r/m is accessible
with current protection |evel
AND ((segnent is readable for VERR) OR
(segnent is witable for VERW)
THEN ZF ~ 1;
ELSE ZF ~ O0;
FI

Description

The VERR and VERW r/m word operand contains the selector value. The instructions
determine whether the segment pointed to by the selector is accessible from the current
privilege level, and, if itis readable (VERR) or writable (VERW). If the segment is accessible
and usable, the processor sets the Zero Flag (ZF); if the segment is not accessible or
usable, ZF is cleared. The following conditions must be met to set ZF:

m The selector must denote a descriptor within the bounds of the descriptor table (GDT
or LDT); the selector must be “defined.”

m The selector must denote a code or data segment descriptor (not a task state segment,
LDT, or gate).

m For VERR, the segment must be readable. For VERW, the segment must be a writable
data segment.

m [f the code segment is usable and conforming, the descriptor privilege level (DPL) can
be any value for the VERR instruction. Otherwise, the DPL must be greater than or equal
to (have less or the same privilege as) both the current privilege level and the selector’s
RPL.

Validation is the same as that used for reading/writing segments loaded into the DS, ES,
FS, or GS register. ZF stores the validation result. The selector’s value cannot cause a
protection exception that would cause the software to anticipate segment access problems.

Flags Affected
ZF is set if the segment is accessible, and cleared if it is not.
Protected Mode Exceptions

No faults attributable to the selector operand are generated. General Protection Fault (13)
indicates either that the result is in a non-writable segment or there is an illegal memory-
operand effective address in the code or data segments. Stack Fault (12) indicates anillegal
SS segment address. Page Fault (14) indicates a page fault. If CPL is 3, Alignment Check
(17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

Invalid Opcode (6) occurs. VERR and VERW are not recognized in Real Address Mode.
Virtual 8086 Mode Exceptions

Invalid Opcode (6) occurs. VERR and VERW are not recognized in Virtual 8086 Mode.

Am486 Microprocessor Instruction Set 2-255

i"l AMD

2.225 WAIT Wait
Opcode Instruction Clocks Description
9B WAIT 1-3 Causes processor to check for numeric exceptions.
Description
WAIT causes the microprocessor to check for pending unmasked numeric exceptions be-
fore proceeding.
Flags Affected
None
Protected Mode Exceptions
Coprocessor Not Available (7) occurs if both MP and TS in CRO are set.
Real Address Mode Exceptions
Coprocessor Not Available (7) occurs if both MP and TS in CRO are set.
Virtual 8086 Mode Exceptions
Coprocessor Not Available (7) occurs if both MP and TS in CRO are set.
Note: Coding WAIT after an ESC instruction ensures that any unmasked floating-point
exceptions the instruction may cause are handled before the microprocessor has a chance
to modify the instruction’s results. FWAIT is an alternate mnemonic for WAIT.
2-256 Am486 Microprocessor Instruction Set

AMDH

2.226

WBINVD Writes Back and Invalidates Cache
Opcode Instruction Clocks Description
OF 09 WBINVD 5 Invalidates entire cache thereby causing the external
cacheto write its contents back to memory and thenflush
itself.
Operation

FLUSH | NTERNAL CACHE
SI GNAL EXTERNAL CACHE TO WRI TE- BACK
SI GNAL EXTERNAL CACHE TO FWsH

Description

Theinternal cache is flushed and a special-function bus cycle is issued to cause the external
cache to write its contents to main memory. Another special-function bus cycle follows,
directing the external cache to flush itself.

Flags Affected
None
Protected Mode Exceptions

The WBINVD instruction is a privileged instruction; General Protection Fault (13) indicates
the current privilege level is not 0.

Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

General Protection Fault (13) occurs. WBINVD instruction is a privileged instruction.

Note: This instruction is implementation-dependent; its function may be implemented
differently on future AMD microprocessors. Hardware designers should ensure that their
systems respond to the external cache write-back and flush indications. This instruction is
not supported by 386 microprocessors.

Am486 Microprocessor Instruction Set 2-257

b‘l AMD

2.227 XADD Exchanges and Adds

Opcode Instruction Clocks Description

OF CO/r XADD r/m8,r8 4 Exchanges byte register and r/m byte; loads sum into
r/m byte.

OFC1/r XADD r/m16,r16 4 Exchanges word register and r/m word; loads sum into
r/m word.

OFC1nr XADD r/m32,r32 4 Exchanges doubleword register and r/m doubleword;
loads sum into r/m doubleword.

Operation

TEMP —~ SRC + DEST

SRC ~ DEST

DEST ~ TEWMP

Description

The XADD instruction loads DEST into SRC and then loads the sum of DEST and the

original value of SRC into DEST.

Flags Affected

CF, PF, AF, SF, ZF, and OF are affected as if an ADD instruction had been executed.

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment

orthere is anillegal memory-operand effective address in the code or data segments. Stack

Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.

If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective

address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective

address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment

Check (17) indicates there is an unaligned memory reference.

Note: You can use a LOCK prefix with this instruction. You cannot use this instruction with

386 microprocessors.

2-258 Am486 Microprocessor Instruction Set

AMDH

2.228

XCHG Exchange
Opcode Instruction Clocks Description
90 +r XCHG AX,r16 3 Exchanges word register with AX.
90 +r XCHG r16,AX 3 Exchanges AX with word register.
90 +r XCHG EAX,r32 3 Exchanges doubleword register with EAX.
90 +r XCHG r32,EAX 3 Exchanges EAX with doubleword register.
86 /r XCHG r/m8,r8 3/5 Exchanges byte register with r/m byte.
86 Ir XCHG r8,r/m8 3/5 Exchanges r/m byte with byte register.
87 Ir XCHG r/m16,r16 3/5 Exchanges word register with r/m word.
87 Ir XCHG r16,/m16 3/5 Exchanges r/m word with word register.
87 Ir XCHG r/m32,r32 3/5 Exchanges doubleword register with r/m doubleword.
87 Ir XCHG r32,/m32 3/5 Exchanges r/m doubleword with doubleword register.
Operation
tenp ~ DEST
DEST ~ SRC
SRC ~ tenp
Description

The XCHG instruction exchanges two operands. The operands can be in either order. If a
memory operand is involved, the LOCK signal is asserted for the duration of the exchange,
regardless of the presence or absence of the LOCK prefix or of the value of the IOPL.

Flags Affected
None
Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthereis anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Note: For 16-bit data, you can use XCHG instead of BSWAP.

Am486 Microprocessor Instruction Set 2-259

b‘l AMD

2.229 XLAT/XLATB Table Look-Up Translation

Opcode Instruction Clocks Description

D7 XLAT m8 4 Sets AL to memory byte DS:[(E)BX + unsigned AL].

D7 XLATB 4 Sets AL to memory byte DS:[(E)BX + unsigned AL].
Operation

| F AddressSi ze = 16
THEN

AL ~ (BX + ZeroExtend (AL))
ELSE (* AddressSize = 32 *)
AL ~ (EBX + ZeroExtend (AL));

Fl

Description

XLAT changes the AL register from the table index to the table entry. The AL register should
be an unsignedindex into a table addressed by the DS:BX register pair (for a 16-bit address)
or the DS:EBX register pair (for a 32-bit address).

The XLAT operand allows for the possibility of a segment override, but the instruction uses
the contents of the BX register even if they differ from the offset of the operand. Load the
operand offset into the (E)BX register and the table index into AL before executing XLAT.
Use the no-operand form, XLATB, if the table referenced by (E)BX resides in the DS
segment.

Flags Affected

None

Protected Mode Exceptions

General Protection Fault (13) indicates an illegal memory-operand effective address in the
code or data segments. Stack Fault (12) indicates an illegal SS segment address. Page
Fault (14) indicates a page fault. If CPL is 3, Alignment Check (17) indicates there is an
unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

2-260 Am486 Microprocessor Instruction Set

AMDH

2.230

XOR Logical Exclusive OR
Opcode Instruction Clocks Description
34ib XOR AL, imm8 1 XOR immediate byte to AL
35iw XOR AX, imm16 1 XOR immediate word to AX
35id XOR EAX, imm32 1 XOR immediate doubleword to EAX
80/6ib XOR r/m8, imm8 1/3 XOR immediate byte to r/m byte
81 /6 iw XOR r/m16, imm16 1/3 XOR immediate word to r/m word
81/6id XOR r/m32, imm32 1/3 XOR immediate doubleword to r/m doubleword
83/6ib XOR r/m16, imm8 1/3 XOR sign-extended immediate bye with r/m word
83/6ib XOR r/m32, imm8 1/3 XOR sign-extended immediate byte with r/m doubleword
30/r XOR r/m8, r8 1/3 XOR byte register to r/m byte
31/r XOR r/m16, r16 1/3 XOR word register to r/m word
31/r XOR r/m32, r32 1/3 XOR doubleword register to r/m doubleword
321/r XOR r8, r/m8 1/2 XOR r/m byte to byte register
33/r XOR r16, r/m16 1/2 XOR r/m word to word register
331/r XOR r32, r/m32 1/2 XOR r/m doubleword to doubleword register
Operation
DEST . Left SRC XOR Ri ght SRC
CF._O0
OoF .0
Description

XOR computes the exclusive OR of the two operands. If corresponding bits of the operands
are different, the resulting bit is 1. If the bits are the same, the result is 0. The answer
replaces the first operand.

Flags Affected

XOR clears CF and OF. The result sets or resets SF, ZF, and PF as required. XOR does
not affect AF.

Protected Mode Exceptions

General Protection Fault (13) indicates either that the result is in a non-writable segment
orthere is anillegal memory-operand effective address in the code or data segments. Stack
Fault (12) indicates an illegal SS segment address. Page Fault (14) indicates a page fault.
If CPL is 3, Alignment Check (17) indicates there is an unaligned memory reference.

Real Address Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh.

Virtual 8086 Mode Exceptions

General Protection Fault (13) indicates that part of the operand lies outside the effective
address space: 0 to OFFFFh. Page Fault (14) indicates a page fault. If CPL is 3, Alignment
Check (17) indicates there is an unaligned memory reference.

Am486 Microprocessor Instruction Set 2-261

i"l AMD

2-262 Am486 Microprocessor Instruction Set

C\

A GENERAL GUIDELINES FOR PROGRAMMING

Al1

A.1.1

GENERAL

An Am486 microprocessor communicates with the outside world through programming. If
you look at a description of its pinouts, you discover that the interface itself is not very
complex. The major lines of two-way communication are the 32 data lines (D31-D0), the
30 address lines (A31-A2), the four byte enable lines (BE3-BEDO), and the four parity lines
(DP3-DP0). The CLK input provides the basic data timing signal—the heartbeat of the
computer. The only lines that activate the processor are the RESET, INTR, and NMI lines.
The RESET signal initializes the processor to a known state. The INTR and NMI lines come
from system hardware to signal either that a peripheral device needs service or that an
error or failure has occurred. The remaining input signals are control signals that tell the
microprocessor when to access its bus (RDY, HOLD, BRDY, and BOFF), manipulate the
internal cache (KEN, FLUSH, AHOLD, and EADS), use less than the 32 available data bits
in a data transfer (BS16 or BS8), emulate Virtual 8086 Mode (A20M), or ignore numeric
errors (IGNNE). So where does programming come in?

Programming defines the values (1s and 0s) that are placed on the data lines. Circuits
inside the microprocessor define how these values are interpreted by the microprocessor.
These circuits define the microprocessor “instruction code.” Corresponding data signals
activate specific processing by the microprocessor.

There are three major types of programming that correspond to the basic requirements of
a personal computer:

m Basic input/output system (BIOS) software
m Operating system (OS) software
m Application software

All of these types of software use the same instruction set to perform operations within a
personal computer system. The major difference between them is the level at which they
operate and the operations they perform.

BIOS Software

BIOS software is stored in a stable memory storage device (some type of ROM or FLASH
RAM). This software usually performs at two levels: system initialization and peripheral
interface (input/output). Initialization begins when the microprocessor receives a RESET
signal. The signal starts an internal “hard-wired” program to test and initialize the internal
registers (data transfer and storage locations) in the processor and load a test program
into the system memory. This Power-On Self-Test program (POST) evaluates the opera-
tional status of the system components. When the tests are complete, the BIOS loads the
lower part of memory with a set of address maps that reference the input/output (I/O) part
of the BIOS software; and, if specified by stored system parameter values, loads the I/O
programs themselves into locations in the system memory (BIOS shadowing). Finally, the
BIOS turns over control to the operating system software by issuing an INT 19h instruction.

The actual location of the BIOS memory references in the lower part of memory is based
on the original IBM standards and subsequent industry developments. See Appendix H for

General Guidelines for Programming A-1

b‘l AMD

Al1 I2

A.1.3

A.1.4

A.2

a description of the memory map. The I/O software referred to in the memory map can be
read directly from in its source or from the system memory if the software is shadowed.
Shadowing the BIOS software provides faster system response. The I/O software assumes
further that the 1/0 devices themselves have a specific physical address through which
they are addressed. See Appendix J for a list of the standard I/O addresses.

OS Software

Operating system software provides a more user-friendly level of operation. It provides a
base set of programs that allow the user to access information retained on bulk storage
devices (defining manageable sets of data using files and directories), adjust system infor-
mation (such as system time and date), and invoke application programs. There is a variety
of operating systems available, but the two most common among IBM-compatible personal
computer users are the command-oriented DOS and the icon-oriented graphical interface
Microsoft® Windows™. In addition to providing a basic interface between the user and the
personal computer system, the OS software also integrates special programs called drivers
to allow you to expand and customize the number and types of peripheral devices used
with your system. These may include special video drivers to accommodate newer types
of video cards and monitors, as well as user input devices (scanners, digitizers, mouse
devices, trackballs, etc.), communication devices (fax/modems), network interfaces, and a
myriad of emerging multimedia devices.

Application Software

Application software includes a variety of specific-function packages. With these packages,
apersonal computer can be adocumentation production unit, an animation studio, a musical
instrument, a tutor, a drafting tool, a communication base, an accounting division, a game
arcade, or almost anything imaginable. More programs become available every day.

Software Overview

Regardless of the level of complexity, all of the types of programming share a common
base. They all use the same concepts of program development, use the same instruction
set, and have access to the same general registers. However, the microprocessor provides
internal divisions of memory access (segmentation) and coding (priority levels) that allow
segregation of the operation of the various types of programming.

BASIC PROGRAMMING MODEL

To create effective and efficient software, a programmer must have a good understanding
of the following environmental elements established by the microprocessor architecture:

m Operating modes

m Memory organization

m Internal system protection
m Data types

m Registers

m Instruction format

m Operand selection

m Interrupts and exceptions

m |/O operations

A-2

General Guidelines for Programming

AMDH

A.2.1

A.2.2

Operating Modes

For user convenience, industry-wide compatibility, and general acceptance in the personal
computer market, the Am486 microprocessor must support a variety of programs originally
written for 8086, 8088, 286, 386, and 486 microprocessors. The Am486 microprocessor
uses three operating modes to provide this level of compatibility:

m Protected Mode—the highest operating mode level. This mode supports the full 32-bit
instruction set with all of its architectural features.

m Real Mode—the basic 8086 emulation mode. This mode limits the processor to real
addresses (from 0 to 1 Mbyte) only with no translation. Some extensions of the 8086
mode are provided, such as the ability to break out of the mode.

Note: Resetinitialization always places the processor into Real Mode; the operating system
needs to change bit 0 in CRO to a 1 to go to Protected Mode.

m Virtual Mode—a modified 8086 emulation mode. This mode is compatible with available
protection and memory management. The processor can enter the Virtual Mode from
Protected Mode to run programs written for the 8086 processor, and then return to
Protected Mode to execute 32-bit instructions without having to undergo system reset
and initialization.

Note: Bit 17 of the EFLAGS register is the VM bit. Setting the bit to a 1 places the processor
in Virtual Mode. Resetting the bit to O returns to Protected Mode.

Whenever execution occurs, the current operating mode determines the extent to which a
program implements a specific instruction. Chapter 2 includes for each instruction the
exceptions that it may generate depending on the operating mode. In general, both Real
Mode and Virtual Mode are limited to 8-bit operations and 1-Mbyte maximum addressing
limits. Most memory management features, such as segmentation and paging, are not
available to Real Mode or Virtual Mode operation. In these two modes, addressing is linear
and direct. These two modes can access the instructions added by later processors with
the restrictions described above.

Memory Organization

A microprocessor requires external memory to store the values (both data and programming
code) that are loaded into and out of the microprocessor through the data lines. Although
a personal computer system uses physical memory chips organized as a series of 8-bit
bytes located at unique sequential physical addresses, the programmer has a variety of
methods available to access a specific memory location. These optional memory access
methods are controlled by the microprocessor memory management system.

The memory management system lets operating systems control the environments in which
programs run. If several programs run at the same time, they each need an independent
address space to avoid having to perform difficult and time-consuming checks to avoid
interfering with each other. To accomplish this, the memory management system in Am486
processors uses two memory control mechanisms: segmentation and paging. Segmenta-
tion gives each program several independent and protected address spaces. Paging sup-
ports an environment where large address spaces are simulated using a small amount of
RAM and some disk storage. System designers may choose to use either or both of these
mechanisms.

General Guidelines for Programming A-3

b‘l AMD

A.2.2.1

A.2.2.1.1

A.2.2.1.2

A.2.2.1.3

A.2.2.2

Segmentation

Segmentation can allow memory to be completely unstructured and simple, like the memory
model of an 8-bit microprocessor, or highly structured with address translation and protec-
tion. The microprocessor implements this concept by dividing memory into units called
segments. Each segmentis anindependent, protected address space. Access to segments
is controlled by a data set that describes its size, the privilege level required for access,
the kinds of memory references allowed to it (instruction fetch, stack push or pop, read
operation, write operation, etc.), and whether it is present in memory (this final feature
allows segment contents to be swapped between memory and disk space).

In addition to controlling memory access, segmentation can also simplify the linkage of
object code modules. There is no reason to write position dependent code when full use
is made of the segmentation mechanism, because all memory references can be made
relative to the base addresses of a module’s code and data segments. Segmentation can
be used to create ROM-based software modules in which fixed addresses (fixed, in the
sense that they cannot be changed) are offsets from a segment’s base address. Different
software systems can have the ROM modules at different physical addresses because the
segmentation mechanism will direct all memory references to the right place.

Simple Memory Architecture

In a simple memory architecture, all addresses refer to the same address space. This is

the memory model used by 8-bit microprocessors such as the 8086 microprocessor where
the logical address is the physical address. The Am486 microprocessor can be used in this
way by mapping all segments into the same address space and keeping paging disabled.
This might be done where an older design is being updated to 32-bit technology without

also adopting the new architectural features.

Partial Segmentation Use

An application can also make partial use of segmentation. A common cause of software
failures is the growth of the stack into the instruction code or data used by the program.
Proper use of segmentation can prevent this. The stack can be put in an address space
separate from the address space for both code and data. Stack addresses always refer to
memory in the stack segment, while data addresses always refer to memory in the data
segment. The stack segment has a hardware controlled maximum limit. Any attempt to
exceed this limit generates an exception.

Full Segmentation Implementation

A complex system of programs may make full use of segmentation and have precise control
of access to shared data. This creates an environment in which the programs can interact
by manipulating data used throughout the system without creating exceptions or overwriting
an operating code or data. Real Mode can implement full segmentation within the overall
memory limits.

Paging

Paging simulates a large, unsegmented address space using a small, fragmented address
space and some disk storage. Paging provides access to data structures larger than the
available memory space by keeping them partly in memory and partly on disk. The micro-
processor creates memory units of 4 Kbytes called pages. When a program attempts to
access a page stored on disk, a special exception occurs. Unlike other exceptions and
interrupts, an address translation exception restores the contents of the microprocessor
registers to values that allow the exception generating instruction to reexecute. This special
action is called instruction restart. It allows the operating system to read the page from disk,
update the mapping of linear addresses to physical addresses for that page, and restart
the program. This process is transparent to the program.

A-4

General Guidelines for Programming

AMDH

A.2.2.3

A.2.2.3.1

If an operating system or memory manager never sets bit 31 of the CRO register (the PG
bit), the paging mechanismis notenabled. Linear addresses are read as physical addresses
directly. This might be desirable if you are updating a 16-bit processor design for use with
a 32-bit microprocessor. The 16-bit processor operating system does not use paging be-
cause its address space is so small (64 Kbytes) and it is more efficient to swap entire
segments between RAM and disk, rather than individual pages. Paging is enabled for
operating systems that can support demand-paged virtual memory, such as UNIX. Paging
is transparent to application software, so an operating system intended to support applica-
tion programs written for 16-bit microprocessors may run those programs with paging
enabled. Unlike paging, segmentation is not transparent to application programs. Programs
that use relocatable codes (i.e., hard coded segments) must be run with the segments they
were designed to use. Segmentation hardware translates a segmented (logical) address
into an address for a continuous, unsegmented address space, called a linear address. If
paging is enabled, paging hardware translates a linear address into a physical address. If
paging is not enabled, the linear address is used as the physical address. The physical
address appears on the address bus coming out of the microprocessor.

Selecting a Segmentation Model

A model for the segmentation of memory is chosen on the basis of reliability and perfor-
mance. For example, a system that has several programs sharing data in real time would
get maximum performance from a model that checks memory references in hardware. This
would be a multisegment model. At the other extreme, a system that has just one program
may get higher performance from an unsegmented or “flat” model. The elimination of “far”
pointers and segment override prefixes reduces code size and increases execution speed.
Context switching is faster because the contents of the segment registers no longer have
to be saved or restored. Some of the benefits of segmentation also can be provided by
paging. For example, data can be shared by mapping the same pages onto the address
space of each program.

Flat Model

The simplest model is the flat model. In this model, all segments are mapped to the entire
physical address space. A segment offset can refer to either code or data areas. To the
greatest extent possible, this model removes the segmentation mechanism from the archi-
tecture seen by either the system designer or the application programmer. This might be
done for a programming environment like UNIX, which supports paging but does not support
segmentation. A segment is defined by a segment descriptor. At least two segment de-
scriptors must be created for a flat model, one for code references and one for data refer-
ences. Both descriptors have the same base address value. Whenever memory is access-
ed, the contents of one of the segment registers is used to select a segment descriptor.
The segment descriptor provides the base address of the segment and its limit, as well as
access control information (see Figure A-1).

Figure A-1

Flat Memory Model

Segment Segment Physical
Registers Descriptors Memory
EPROM
I Ccs \
l SS l\A Access | Limit
| DS |—>| Base Address
| ES L DRAM

General Guidelines for Programming A-5

b‘l AMD

A.2.2.3.2

ROM usually is put at the top of the physical address space because the microprocessor
begins execution at OFFFFFFFOh. RAM is placed at the bottom of the address space
because the initial base address for the DS data segment after reset initialization is 0. For
a flat model, each descriptor has a base address of 0 and a segment limit of 4 Gbytes. By
setting the segment limit to 4 Gbytes, the segmentation mechanism is kept from generating
exceptions for memory references that fall outside of a segment. Exceptions could still be
generated by the paging or segmentation protection mechanisms, but these also can be
removed from the memory model.

Protected Flat Model

The protected flat model is similar to the flat model, except the segment limits are set to
include only the range of addresses for which memory actually exists. A general protection
exception is generated by any attempt to access unimplemented memory. This provides a
minimum level of hardware protection against unexpected programming results when the
paging mechanism is disabled in a system.

In this model, the segmentation hardware prevents programs from addressing nonexistent
memory locations. The consequences of being allowed access to these memory locations
are hardware-dependent. For example, if the microprocessor does not receive a READY
signal (the signal used to acknowledge and terminate a bus cycle), the bus cycle does not
terminate and program execution stops. Although no program should make an attempt to
access these memory locations, an attempt may occur as a result of programming errors.
Without hardware checking of addresses, itis possible that an expected programming result
could suddenly stop program execution. With hardware checking, programs fail in a con-
trolled way. A diagnostic message can appear and recovery procedures can be attempted.

An example of a protected flat model is shown in Figure A-2. Here, segment descriptors
have been set up to cover only those ranges of memory that exist. A code and a data
segment cover the EPROM and DRAM of physical memory. The code segment limit can
be optionally set to allow access to DRAM area. The data segment limit must be set to the
sum of EPROM and DRAM sizes. If memory-mapped I/O is used, it can be addressed just
beyond the end of the DRAM area.

Figure A-2

Protected Flat Memory Model

Segment Segment Physical Logical
Registers Descriptors Memory Offsets

| CS |—> Access | Limit

Base Address EPROM
| Ss Memory 1/0

Memory 1/O

DRAM

| DS

Access Limit
DRAM
Base Address EPROM

| ES

r

A-6

General Guidelines for Programming

AMDn

A.2.2.3.3

Multisegment Model

The most sophisticated model is the multisegment model. Here the full capabilities of the
segmentation mechanism are used. Each program is given its own table of segment de-

scriptors, and its own segments. The segments can be completely private to the program,
or they can be shared with specific other programs. Access between programs and partic-
ular segments can be individually controlled. Up to six segments can be ready forimmediate
use. These are the segments that have segment selectors loaded in the segment registers.
Other segments are accessed by loading their segment selectors into the segmentregisters
(see Figure A-3).

Figure A-3

Multisegment Memory Model

Segment Segment Physical
Registers Descriptors Memory
Access| Limit

CS >
Base Address
Access | Limit

SS >
Base Address
DS > Access | Limit
Base Address
ES > Access | Limit
Base Address
FS > Access | Limit
Base Address
GS > Access | Limit
Base Address

Accessl Limit
Base Address

Accessl Limit
Base Address

Access| Limit
Base Address

Access | Limit
Base Address

Each segment is a separate address space. Even though they may be placed in adjacent
blocks of physical memory, the segmentation mechanism prevents access to the contents
of one segment by reading beyond the end of another. Every memory operation is checked
against the limit specified for the segment it uses. An attempt to address memory beyond
the end of the segment generates a general-protection exception.

The segmentation mechanism only enforces the address range specified in the segment
descriptor. It is the responsibility of the operating system to allocate separate address

ranges to each segment. There may be situations in which it is desirable to have segments
that share the same range of addresses. For example, a system may have both code and
data stored in a ROM. A code segment descriptor is used when the ROM is accessed for
instruction fetches. A data segment descriptor is used when the ROM is accessed as data.

General Guidelines for Programming A-7

b‘l AMD

A.2.2.4

Segment Translation

A logical address consists of the 16-bit segment selector for its segment and a 32-bit offset
into the segment. A logical address is translated into a linear address by adding the offset
to the base address of the segment. The base address comes from the segment descriptor,
a data structure in memory that provides the size and location of a segment, as well as
access control information. The segment descriptor comes from one of two tables, the
global descriptor table (GDT) or the local descriptor table (LDT). There is one GDT for all
programs in the system, and one LDT for each separate program being run. If the operating
system allows, different programs can share the same IDT. The system also may be set
up with no LDTs; all programs will then use the GDT.

Every logical address is associated with a segment (even if the system maps all segments
into the same linear address space). Although a program may have thousands of segments,
only six may be available for imnmediate use. These are the six segments whose segment
selectors are loaded in the microprocessor. The segment selector holds information used
to translate the logical address into the corresponding linear address.

Separate segment registers exist in the microprocessor for each kind of memory reference
(code space, stack space, and data spaces). They hold the segment selectors for the
segments currently in use. Access to other segments requires loading a segment register
using a form of the MOV instruction. Up to four data spaces may be available at the same
time, thus providing a total of six segment registers.

When a segment selector is loaded, the base address, segment limit, and access control
information also are loaded into the segment register. The microprocessor does not refer-
ence the descriptor tables again until another segment selector is loaded. The information
saved in the microprocessor allows it to translate addresses without making extra bus
cycles. In systems in which multiple microprocessors have access to the same descriptor
tables, itis the responsibility of software to reload the segment registers when the descriptor
tables are modified. If this is not done, an old segment descriptor cached in a segment
register might be used after its memory-resident version has been modified.

The segment selector contains a 13-bit index into one of the descriptor tables. The index
is scaled by 8 (the number of bytes in a segment descriptor) and added to the 32-bit base
address of the descriptor table. The base address comes from either the global descriptor
table register (GDTR) or the local descriptor table register (LDTR). These registers hold
the linear address of the beginning of the descriptor tables. A bit in the segment selector
specifies which table to use (see Figure A-4).

A-8

General Guidelines for Programming

AMDH

Figure A-4 TI Bit Selects Descriptor Table

Segment Gilobal Local
Selector Descriptor Descriptor
Table Table
-

: TI=0 TI=1

\ 4 \ 4

[[

[[

[[

[[

[[

[[

[[

[[

[[

[[

[[

[[

Selector
[Limit Limit
| Base Address GDTR | Base Address LDTR

General Guidelines for Programming

b‘l AMD

Figure A-5 Segment Translation
Lodical 15 0 31 0
ogica
Address Selector l | | Offset
Descriptor Table
[p] Segment
Descriptor | Base > + |e
Address
Linear 31 Y g
Address | Dir | Page | Offset |

The translated address is the linear address (see Figure A-5). If paging is not used, the

translated address is also the physical address. If paging is used, a second level of address

translation produces the physical address. This translation is described in Section A.2.2.5.
A.2.2.4.1 Segment Registers

Each kind of memory reference is associated with a segment register. Code, data, and

stack references each access the segment specified by their segment register contents.

More segments can be made available by loading their segment selectors into these reg-

isters during program execution. Every segment register has a “visible” part and an “invis-

ible” part (see Figure A-6). There are forms of the MOV instruction to load the visible part
of these segment registers. The invisible part is loaded by the microprocessor.

The operations that load these registers are instructions for application programs (described

in Chapter 2). There are two kinds of these instructions:

m Direct load instructions such as the MOV, POP, LDS, LES, LFS, LGS, and LSS instruc-
tions. These instructions explicitly reference the segment registers.

m Implied load instructions such as the far pointer versions of the CALL and JMP instruc-
tions. These instructions change the contents of the CS register as an incidental part of
their function.

Figure A-6 Segment Registers
Visible Part Invisible Part
Selector Base Address, Limit, etc. CS
SS
DS
ES
FS
GS
A-10 General Guidelines for Programming

AMDH

A.2.2.4.2

When these instructions are used, the visible part of the segment register is loaded with a
segment selector. The microprocessor automatically fetches the base address, limit, type,
and other information from the descriptor table and loads the invisible part of the segment
register.

Because most instructions refer to segments whose selectors already have been loaded
into segment registers, the microprocessor can add the logical-address offset to the seg-
ment base address with no performance penalty.

Segment Selectors

A segment selector points to the information that defines a segment, called a segment
descriptor. A program may have more segments than the six whose segment selectors
occupy segment registers. When thisis true, the program uses forms of the MOV instruction
to change the contents of these registers when it needs to access a new segment.

A segment selector identifies a segment descriptor by specifying a descriptor table and a
descriptor within that table. Segment selectors are visible to application programs as a part
of a pointer variable, but the values of selectors are usually assigned or modified by link
editors or linking loaders, not application programs. Figure A-7 shows the format of a
segment selector.

Figure A-7

Segment Selector

15 3 10

2

T RPL (Requested Privilege Level):
| |RPL 00 = Highest Privilege Level
to 11 = Lowest Privilege Level

Index

TI (Table Indicator):
0=GDT
1=LDT

m /ndex: Selects one of 8192 descriptors in a descriptor table. The microprocessor multi-
plies the index value by 8 (the number of bytes in a segment descriptor) and adds the
result to the base address of the descriptor table (from the GDTR or LDTR register).

m Table Indicator bit: Specifies the descriptor table to use. A clear bit selects the GDT; a
set bit selects the current LDT.

m Requester Privilege Level: When this field contains a privilege level having a greater
value (i.e., less privileged) than the program, it overrides the program’s privilege level.
When a program uses a less privileged segment selector, memory accesses take place
at the lesser privilege level. This is used to guard against a security violation in which a
less privileged program uses a more privileged program to access protected data.

For example, system utilities or device drivers must run with a high level of privilege in order
to access protected facilities such as the control registers of peripheral interfaces. But they
must not interfere with other protected facilities, even if a request to do so is received from
a less privileged program. If a program requested reading a sector of disk into memory
occupied by a more privileged program, such as the operating system, the RPL can be
used to generate a general-protection exception when the less privileged segment selector
is used. This exception occurs even though the program using the segment selector would
have a sufficient privilege level to perform the operation on its own.

Because the first entry of the GDT is not used by the microprocessor, a selector that has
an index of 0 and a table indicator of O (i.e., a selector that points to the first entry of the
GDT)isused as a “null selector.” The microprocessor does not generate an exception when

General Guidelines for Programming A-11

b‘l AMD

A.2.2.4.3

a segment register (other than the CS or SS registers) is loaded with a null selector. It does,
however, generate an exception when a segment register holding a null selector is used
to access memory. This feature can be used to initialize unused segment registers.

Segment Descriptors

A segment descriptor is a data structure in memory that provides the microprocessor with
the size and location of a segment, as well as control and status information. Descriptors
are typically created by compilers, linkers, loaders, or the operating system, but not appli-
cation programs. Figure A-8 illustrates the general descriptor format.

Figure A-8

Segment Descriptor

31 24 21 19 16 11 87 0

Seg D
Limit |P| P [S| Type Base 23-16
19-16 L

Base 31-24 |G|D|0

<X

Segment

Base Address 15-0 Segment Limit 15-0

Base Segment Base Address

G Granularity (0 = range is 1 byte—1 Mbyte; 1 = range is 4 Kbyte—4 Gbyte)
D Default Operation Size (Code Segment only: 0 = 16-bit; 1 = 32-bit)

0 Reserved—always 0

AVL Available for use by system software

Seg Limit Segment Limit

P Segment Present

DPL Descriptor Privilege Level (00 = Highest — 11 = Lowest)

Type Segment Type

All types of segment descriptors take one of these formats:

m Base: Defines the location of the segment within the 4-Ghyte physical address space.
The microprocessor puts together the three base address fields to form a single 32-bit
value. Segment base values should be aligned to 16-byte boundaries to allow programs
to maximize performance by aligning code/data on 16-byte boundaries.

m Granularity bit: Turns on scaling of the limit field by a factor of 4096 (2*2). When the bit
is clear, the segment limit is interpreted in units of 1 byte; when set, the segment limit
is interpreted in units of 4 Kbytes (one page). Note that the twelve least-significant bits
of the address are not tested when scaling is used. For example, a limit of O with the
Granularity bit set results in valid offsets from 0 to 4095. Also note that only the Limit
field is affected. The base address remains byte-granular.

m Limit: Defines the size of the segment. The microprocessor puts together the two limit
fields to form a 20-bit value. The microprocessor interprets the limit in one of two ways,
depending on the setting of the Granularity bit:

— Ifthe Granularity bitis clear, the limit has a value from 1 byte to 1 Mbyte, in increments
of 1 byte.

— If the Granularity bit is set, the Limit has a value from 4 Kbytes to 4 Gbytes, in
increments of 4 Kbytes.

A-12

General Guidelines for Programming

AMDH

m Offset: For most segments, a logical address may have an offset ranging from 0 to the

limit. Other offsets generate exceptions. Expand-down segments reverse the sense of
the Limit field; they may be addressed with any offset except those from 0 to the limit
(see the Type field, below). This is done to allow segments to be created in which
increasing the value held in the Limit field allocates new memory at the bottom of the
segment’s address space, rather than at the top. Expand-down segments are intended
to hold stacks, but it is not necessary to use them. If a stack is going to be putin a
segment that does not need to change size, it can be a normal data segment.

S bit: Determines whether a given segment is a system segment or a code or data
segment. If the S bit is set, then the segment is either a code or a data segment. If it is
clear, then the segment is a system segment.

D bit: The code segment D bit indicates the default length for operands and effective
addresses. Ifthe D bitis set, then 32-bit operands and 32-bit effective addressing modes
are assumed. If it is clear, then 16-bit operands and addressing modes are assumed.

Type: The interpretation of this field depends on whether the segment descriptor is for
an application segment or a system segment. System segments have a slightly different
descriptor format. The Type field of a memory descriptor specifies the kind of access
that may be made to a segment, and its direction of growth (see Table A-1).

Table A-1

Application Segment Types

Number E W A Descriptor Description
Type

0 0 0 0 Data Read-Only

1 0 0 1 Data Read-Only, accessed

2 0 1 0 Data Read/Write

3 0 1 1 Data Read/Write, accessed

4 1 0 0 Data Read-Only, expand-down

5 1 0 1 Data Read-Only, expand-down, accessed

6 1 1 0 Data Read/Write, expand-down

7 1 1 1 Data Read/Write, expand-down, accessed
Number C R A Descriptor Description

Type

8 0 0 0 Code Execute-Only

9 0 0 1 Code Execute-Only, accessed

10 0 1 0 Code Execute/Read

11 0 1 1 Code Execute/Read, accessed

12 1 0 0 Code Execute-Only, conforming

13 1 0 1 Code Execute-Only, conforming, accessed

14 1 1 0 Code Execute/Read, conforming

15 1 1 1 Code Execute/Read, conforming, accessed

General Guidelines for Programming A-13

b‘l AMD

For data segments, the three lowest bits of the type field can be interpreted as expand-
down (E), write-enable (W), and accessed (A). For code segments, the three lowest bits
of the type field can be interpreted as conforming (C), read-enable (R), and accessed (A).

Data segments can be read-only or read/write. Stack segments are data segments that
must be read/write. Loading the SS register with a segment selector for any other type of
segment generates a general-protection exception. If the stack segment needs to be able
to change size, it can be an expand-down data segment. The meaning of the segment limit
is reversed for an expand-down segment. While an offset in the range from 0 to the segment
limit is valid for other kinds of segments (outside this range a general protection exception
is generated), in an expand-down segment these offsets are the ones that generate ex-
ceptions. The valid offsets in an expand-down segment are those that generate exceptions
in the other kinds of segments. Expand-up segments must be addressed by offsets that
are equal to or less than the segment limit. Offsets into expand down segments always
must be greater than the segment limit. This interpretation of the segment limit causes
memory space to be allocated at the bottom of the segment when the segment limit is
decreased, which is correct for stack segments because they grow toward lower addresses.
If the stack is given a segment that does not change size, it does not need to be an expand-
down segment.

Code segments can be execute-only or execute/read. An execute/read segment might be
used, for example, when constants have been placed with instruction code in a ROM. In
this case, the constants can be read either by using an instruction with a CS override prefix
or by placing a segment selector for the code segment in a segment register for a data
segment.

Code segments can be either conforming or non-conforming. A transfer of execution into
a more privileged conforming segment keeps the current privilege level. A transfer into a
non-conforming segment at a different privilege level results in a general protection excep-
tion, unless a task gate is used. System utilities that do not access protected facilities, such
as data-conversion functions (e.g., EBCDIC/ASCII translation, Huffman encoding/decod-
ing, math library) and some types of exceptions (e.g., Divide Error, INTO-detected overflow,
and BOUND range exceeded) may be loaded in conforming code segments.

The Type field also reports whether the segment has been accessed. Segment descriptors
initially report a segment as having been accessed. If the Type field then is set to a value
for a segment that has not been accessed, the microprocessor restores the value if the
segment is accessed. By clearing and testing the Low bit of the Type field, software can
monitor segment usage (the Low bit of the Type field also is called the Accessed bit).

For example, a program development system might clear all of the Accessed bits for the
segments of an application. If the application crashes, the states of these bits can be used
to generate a map of all the segments accessed by the application. Unlike the breakpoints
provided by the debugging mechanism, the usage information applies to segments rather
than physical addresses.

The microprocessor may update the Type field when a segment is accessed, even if the
access is aread cycle. If the descriptor tables have been put in ROM, it may be necessary
for hardware to prevent the ROM from being enabled onto the data bus during a write cycle.
It also may be necessary to return the READY signal to the microprocessor when a write
cycle to ROM occurs, otherwise the cycle does not terminate. These features of the hard-
ware design are necessary for using ROM-based descriptor tables with the Am386DX
microprocessor, which always sets the Accessed bit when a segment descriptor is loaded.
The Am486 microprocessor, however, only sets the Accessed bit if it is not already set.

A-14

General Guidelines for Programming

AMDH

Writes to descriptor tables in ROM can be avoided by setting the Accessed bits in every
descriptor.

m DPL (Descriptor Privilege level): Defines the privilege level of the segment. This is used
to control access to the segment, using the protection mechanism described in
Section A.2.3.

m Segment-Present bit: If this bit is clear, the microprocessor generates a segment-not-
present exception when a selector for the descriptor is loaded into a segment register.
This is used to detect access to segments that have become unavailable. A segment
can become unavailable when the system needs to create free memory. Items in mem-
ory, such as character fonts or device drivers, which currently are not being used are
deallocated. An item is deallocated by marking the segment “not present” (this is done
by clearing the Segment-Present bit). The memory occupied by the segment then can
be put to another use. The next time the deallocated item is needed, the segment-not-
present exception will indicate the segment needs to be loaded into memory. When this
kind of memory management is provided in a manner invisible to application programs,
it is called virtual memory. A system may maintain a total amount of virtual memory far
larger than physical memory by keeping only a few segments presentin physical memory
at any one time.

Figure A-9 shows the format of a descriptor when the Segment-Present bit is clear. When
this bit is clear, the operating system is free to use the locations marked Available to store
its own data, such as information regarding the whereabouts of the missing segment.

Figure A-9 Segment Descriptor (Segment Not Present)
31 15141312 11 7 0
D Ip
Available 0 FL’ 7| Type Available
Available
The P bit (bit 15 of the high doubleword) is 0, indicating that the segment is not present in memory.
A.2.2.4.4 Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors. There are two kinds of
descriptor tables:

m The global descriptor table (GDT)
m The local descriptor tables (LDT)

There is one GDT for all tasks, and an LDT for each task being run. A descriptor table is
an array of segment descriptors (see Figure A-10).

A descriptor table is variable in length and may contain up to 8192 (2'®) descriptors. The

first descriptor in the GDT is not used by the microprocessor. A segment selector to this

“null descriptor” does not generate an exception when loaded into a segment register, but
it always generates an exception when an attempt is made to access memory using the

descriptor. By initializing the segment registers with this segment selector, accidental ref-
erence to unused segment registers can be guaranteed to generate an exception.

General Guidelines for Programming A-15

i"l AMD

Figure A-10 Descriptor Tables

Global Descriptor Table Local Descriptor Table
[[
+ 60h + 60h
[[
+ 58h + 58h
[[
+ 50h + 50h
[[
+48h +48h
[[
+40h +40h
[[
+ 38h + 38h
[[
+ 30h + 30h
[[
+28h +28h
[[
+ 20h + 20h
[[
+18h +18h
[[
+10h +10h
I [
+8h +8h
GDT does not use |
first Descriptor _+0h _+0h
GDT Register LDT Register
Selector
Limit Limit
[Base Address [Base Address
Figure A-11 Pseudo-Descriptor Format
47 39 31 23 15 7 0
Base Address Limit
Byte5 | Byte4 [Byte3 Byte 2 Byte 1 Byte 0

A.2.2.4.5

Descriptor Table Base Registers

The microprocessor finds the global descriptor table (GDT) and interrupt descriptor table
(IDT) using the GDTR and IDTR registers. These registers hold 32-bit base addresses for
tables in the linear address space. They also hold 16-bit limit values for the size of these
tables. When the registers are loaded or stored, a 48-bit “pseudo-descriptor” is accessed
in memory (see Figure A-11). The GDT and IDT should be aligned on a 16-byte boundary
to maximize performance due to cache line fills. The limit value is expressed in bytes. As
with segments, the limit value is added to the base address to get the address of the last
valid byte. A limit value of 0 results in exactly one valid byte. Because segment descriptors
are always 8 bytes, the limit should always be one less than an integral multiple of eight
(that is, 8N — 1). The LGDT and SGDT instructions read and write the GDTR register; the
LIDT and SIDT instructions read and write the IDTR register.

A-16

General Guidelines for Programming

AMDH

A.2.2.5

A third descriptor table is the local descriptor table (LDT). Itis identified by a 16-bit segment
selector held in the LDTR register. The LLDT and SLDT instructions read and write the
segment selector inthe LDTR register. The LDTR register also holds the base address and
limitforthe LDT, butthese are loaded automatically by the microprocessor from the segment
descriptor for the LDT. The LDT should be aligned on a 16-byte boundary to maximize
performance due to cache line fills.

Alignment check faults may be generated by storing a pseudo-descriptor in user mode
(privilege level 3). User-mode programs normally do not store pseudo-descriptors, but the
possibility of generating an alignment check fault in this way can be avoided by placing the
pseudo-descriptor at an odd word address (i.e., an address which is 2 MOD 4). This causes
the microprocessor to store an aligned word, followed by an aligned doubleword.

Page Translation

A linear address is a 32-bit address into a uniform, unsegmented address space. This
address space may be a large physical address space (i.e., an address space composed
of 4 Ghytes of RAM), or paging can be used to simulate this address space using a small
amount of RAM and some disk storage. When paging is used, a linear address is translated
into its corresponding physical address or an exception is generated. The exception gives
the operating system a chance to read the page from disk (perhaps sending a different
page out to disk in the process), then restart the instruction that generated the exception.

Paging differs from segmentation by its use of small, fixed-size pages. Unlike segments,
which vary in size depending on the data structures they hold, Am486 microprocessor
pages are always 4 Kbytes. If segmentation is the only form of address translation that is
used, a data structure present in physical memory has all of its parts in memory. If paging
is used, a data structure may be partly in memory and partly in disk storage.

Information that maps linear addresses into physical addresses and exceptions is held in
data structures in memory called page tables. As with segmentation, this information is
cached in microprocessor registers to minimize the number of bus cycles required for
address translation. Unlike segmentation, these microprocessor registers are completely
invisible to application programs. For testing purposes, however, these registers are visible
to programs running with maximum privileges.

The paging mechanism treats the 32-bit linear address as having three parts, two 10-bit
indexes into the page tables and a 12-bit offset into the page addressed by the page tables.
Because both the virtual pages in the linear address space and the physical pages of
memory are aligned to 4-Kbyte page boundaries, there is no need to modify the Low 12
bits of the address. These 12 bits pass straight through the paging hardware, whether
paging is enabled or not. Note that this is different from segmentation, because segments
can start at any byte address.

The upper 20 bits of the address are used to index into the page tables. If every page in
the linear address space were mapped by a single page table in RAM, 4 Mbytes would be
needed. This is not done. Instead, two levels of page tables are used. The top level page
table is called the page directory. It maps the upper 10 bits of the linear address to the
second level of page tables. The second level of page tables maps the middle 10 bits of
the linear address to the base address of a page in physical memory (called a page frame
address).

General Guidelines for Programming A-17

b‘l AMD

A.2.2.5.1

A.2.2.5.2

An exception may be generated based on the contents of the page table or the page
directory. An exception gives the operating system a chance to bring in a page table from
disk storage. By allowing the second-level page tables to be sent to disk, the paging mech-
anism can support mapping of the entire linear address space using only a few pages in
memory.

The CR3 register holds the page frame address of the page directory. For this reason, it
also is called the Page Directory Base Register or PDBR. The upper 10 bits of the linear
address are scaled by four (the number of bytes in a page table entry) and added to the
value in the PDBR register to get the physical address of an entry in the page directory.
Because the page frame address is always clear in its lowest 12 bits, this addition is
performed by concatenation (replacement of the Low 12 bits with the scaled index).

When the entry in the page directory is accessed, several checks are performed. Exceptions
may be generated if the page is protected or is not present in memory. If no exception is

generated, the upper 20 bits of the page table entry are used as the page frame address
of a second-level page table. The middle 10 bits of the linear address are scaled by four

(again, the size of a page table entry) and concatenated with the page frame address to

get the physical address of an entry in the second-level page table.

Again, access checks are performed and exceptions may be generated. If no exception
occurs, the upper 20 bits of the second-level page table entry are concatenated with the
lowest 12 bits of the linear address to form the physical address of the operand (data) in
memory.

Although this process may seem complex, it requires very little overhead. The micropro-
cessor has a cache for page table entries called the Translation Lookaside Buffer (TLB).
The TLB satisfies most requests for reading the page tables. Extra bus cycles occur only
when a new page is accessed. The page size (4 Kbytes) is large enough so that very few
bus cycles are made to the page tables, compared to the number of bus cycles made to
instructions and data. At the same time, the page size is small enough to make efficient

use of memory. (No matter how small a data structure is, it occupies at least one page of
memory.)

PG Bit Enables Paging

If paging is enabled, a second stage of address translation is used to generate the physical
address from the linear address. If paging is not enabled, the linear address is used as the
physical address. Paging is enabled when bit 31 (the PG bit) of the CRO register is set.
This bit usually is set by the operating system during software initialization. The PG bit must
be set if the operating system is running more than one program in Virtual 8086 Mode or
if demand-paged virtual memory is used.

Linear Address
Figure A-12 shows the format of a linear address.

Figure A-12 Linear Address Format

31 21 11 0

Directory Table Offset

A-18

General Guidelines for Programming

AMDH

Figure A-13 shows how the microprocessor translates the DIRECTORY, TABLE, and OFF-
SET fields of a linear address into the physical address using two levels of page tables.
The paging mechanism uses the DIRECTORY field as an index into a page directory, the
TABLE field as an index into the page table determined by the page directory, and the
OFFSET field to address an operand within the page specified by the page table.

Figure A-13 Page Translation

Directory Table Offset Page Frame
»| Operand
Page Directory Page Table _
»[Pg Tol Entry »|_Pg Dir Entry
A ?
CR3

A.2.2.5.3

Page Tables

A page table is an array of 32-bit entries. A page table is itself a page, and contains 4096
bytes of memory or, at most, 1K 32-bit entries. All pages, including page directories and
page tables, are aligned to 4-Kbyte boundaries.

A page of memory uses a two-tier reference system. The top tier is the page directory. The
page directory addresses up to 1K or 2'° page tables, the second tier. A page table ad-
dresses up to 1K or 2 pages in physical memory. Therefore, one page directory can
address 1M or 2% pages. Because each page contains 4K or 2'?bytes, one page directory
can span the entire linear address space of the Am486 microprocessor (4G or 2% bytes).

The physical address of the current page directory is stored in the CR3 register, also called
the Page Directory Base Register (PDBR). Memory management software has the option
of using one page directory for all tasks, one page directory for each task, or some combi-
nation of the two.

General Guidelines for Programming A-19

b‘l AMD

Figure A-14 Page Table Entry Format

31 11 8 6 54 3210

PIP|U|R
Page Frame Address 31-12 Avail 00 |D(A|C|W|/]|/|P

DIT|IS|W

Avail Available for system user programs

00 Reserved, always 00

D Dirty

A Accessed

PCD Page Cache Disable

PWT Page Write Transparent

u/s User/Supervisor

R/W Read/Write

P Present

A.2.2.5.4

A.2.2.5.5

A.2.2.5.6

Page Table Entries

Entries in either level of page tables have the same format, except that the page directory
has no Dirty bit. Figure A-14 illustrates this format. The bit position of the D bit is reserved
for future AMD use.

Page Frame Address

The page frame address is the base address of a page. In a page table entry, the upper
20 bits are used to specify a page frame address, and the lowest 12 bits specify control
and status bits for the page. In a page directory, the page frame address is the address of
a page table. In a second-level page table, the page frame address is the address of a
page containing instructions or data.

Present Bit

The Present bit indicates whether the page frame address in a page table entry maps to a
page in physical memory. When set, the page is in memory.

When the Present bit is clear, the page is not in memory, and the rest of the page table
entry is available for the operating system, for example, to store information regarding the
whereabouts of the missing page. Figure A-15 illustrates the format of a page table entry
when the Present bit is clear.

Figure A-15

Page Table Entry Format for a Not-Present Page

31 0

Available 0

If the Present bit is clear in either level of page tables when an attempt is made to use a
page table entry for address translation, a page-fault exception is generated. In systems
that support demand-paged virtual memory, the following sequence of events then occurs:

1. The operating system copies the page from disk storage into physical memory.

2. The operating system loads the page frame address into the page table entry and sets
its Present bit. Other bits, such as the R/W bit, may be set as well.

A-20

General Guidelines for Programming

AMDH

A.2.2.5.7

A.2.2.5.8

A.2.2.5.9

A.2.2.5.10

3. Because a copy of the old page table entry may still exist in the translation lookaside
buffer (TLB), the operating system empties it.

4. The program that caused the exception is then restarted.

Since there is no Present bit in CR3 to indicate when the page directory is not resident in
memory, the page directory pointed to by CR3 should always be presentin physical memory.

Accessed and Dirty Bits

These bits provide data about page usage in both levels of page tables. The Accessed bit
is used to report read or write access to a page or second-level page table. The Dirty bit is
used to report write access to a page.

With the exception of the Dirty bitin a page directory entry, these bits are set by the hardware;
however, the microprocessor does not clear either of these bits. The microprocessor sets
the Accessed bits in both levels of page tables before a read or write operation to a page.
The microprocessor sets the Dirty bit in the second-level page table before a write operation
to an address mapped by that page table entry. The Dirty bit in directory entries is undefined.

The operating system may use the Accessed bit when it needs to create some free memory
by sending a page or second-level page table to disk storage. By periodically clearing the
Accessed bits in the page tables, it can see which pages have been used recently. Pages
that have not been used are candidates for sending out to disk.

The operating system may use the Dirty bit when a page is sent back to disk. By clearing
the Dirty bit when the page is brought into memory, the operating system can see if it has
received any write access. If there is a copy of the page on disk and the copy in memory
has not received any writes, there is no need to update disk from memory.

Read/Write and User/Supervisor Bits

The Read/Write and User/Supervisor bits are used for protection checks applied to pages,
which the microprocessor performs at the same time as address translation. See Section
A.2.3.1 for more information on protection.

Page-Level Cache Control Bits

The PCD and PWT bits are used for page-level cache management. Software can control
the caching of individual pages or second-level page tables using these bits.

Translation Lookaside Buffer (TLB)

The microprocessor stores the most recently used page table entries in an on-chip cache
called the translation lookaside buffer or TLB. Most paging is performed using the contents
of the TLB. Bus cycles to the page tables are performed only when a new page is used.

The TLB s invisible to application programs, but notto operating systems. Operating system
programmers must flush the TLB (dispose of its page table entries) when entries in the
page tables are changed. If this is not done, old data that has not received the changes
might get used for address translation. A change to an entry for a page that is not present
in memory does not require flushing the TLB, because entries for not-present pages are
not cached.

The TLB is flushed when the CR3 register is loaded. The CR3 register can be loaded in
either of two ways:

m Explicit loading using MOV instructions, such as: MOV CR3, EAX
m Implicit loading by a task switch that changes the contents of the CR3 register

An individual entry in the TLB can be flushed using an INVLPG instruction. This is useful
when the mapping of an individual page is changed.

General Guidelines for Programming A-21

b‘l AMD

A.2.2.6

Combining Segment and Page Translation

Figure A-16 summarizes both stages of translation from a logical address to a physical
address when paging is enabled. Options available in both stages of address translation
can be used to support several different styles of memory management.

Figure A-16

Combining Segment and Page Address Translation

15 0 31 0
Selector Offset

Descriptor Table

Logical
Address

N Segment
Descriptor

Base
Address

\ 4
+
A

31 v 0

Linear Page Frame

Table Offset

Address Directory

| Operand

Page
Directory

Page Table

\ 4

Pg Dir Entry

Y

Pg Tbl Entry

CR3

A.2.2.6.1

A.2.2.6.2

Flat Model

When the Am486 microprocessor is used to run software written without segments, it may
be desirable to remove the segmentation features of the Am486 microprocessor. The
Am486 microprocessor does not have a mode bit for disabling segmentation, but the same
effect can be achieved by mapping the stack, code, and data spaces to the same range of
linear addresses. The 32-bit offsets used by Am486 microprocessor instructions can cover
the entire linear address space.

When paging is used, the segments can be mapped to the entire linear address space. If
more than one program is being run at the same time, the paging mechanism can be used
to give each program a separate address space.

Segments Spanning Several Pages

The architecture allows segments that are larger than the size of a page (4 Kbytes). For
example, a large data structure may span thousands of pages. If paging were not used,

A-22

General Guidelines for Programming

AMDH

A.2.2.6.3

A.2.2.6.4

A.2.2.6.5

A.2.2.6.6

access to any part of the data structure would require the entire data structure to be present
in physical memory. With paging, only the page containing the part being accessed needs
to be in memory.

Pages Spanning Several Segments

Segments also may be smaller than the size of a page. If one of these segments is placed
in a page thatis not shared with another segment, the extra memory is wasted. For example,
a small data structure, such as a 1-byte semaphore, occupies 4 Kbytes if it is placed in a
page by itself. If many semaphores are used, it is more efficient to pack them into a single
page.

Non-Aligned Page and Segment Boundaries

The architecture does not enforce any correspondence between the boundaries of pages

and segments. A page may contain the end of one segment and the beginning of another.
Likewise, a segment may contain the end of one page and the beginning of another.

Aligned Page and Segment Boundaries

Memory-management software may be simpler and more efficient if it enforces some align-
ment between page and segment boundaries. For example, if a segment that may fit in
one page is placed in two pages, there may be twice as much paging overhead to support
access to that segment.

Page-Table Per Segment

An approach to combining paging and segmentation that simplifies memory management
software is to give each segment its own page table (see Figure A-17). This gives the
segment a single entry in the page directory that provides the access control information
for paging the segment.

Figure A-17 Separate Page Tables for Each Segment

Page Frames

LDT Page Directory Page Tables

PTE —J

PTE
PTE

\ 4

Descriptor [PDE H
Descriptor [PDE B

Page Tables

PTE
PTE

—

Page Frames

General Guidelines for Programming A-23

b‘l AMD

A.2.3

A.2.3.1

A.2.3.2

Internal System Protection

The internal system protection mechanism allows the programmer to prevent interference
between tasks. Protection can keep one task from overwriting the instructions or data of
another task. During program development, the protection mechanism can also give a
clearer picture of program bugs. When a program makes an unexpected reference to the
wrong memory space, the protection mechanism can block the event and report its
occurrence.

In end-user systems, the protection mechanism can guard against the possibility of software
failures caused by undetected program bugs. If a program fails, its effects can be confined
to a limited domain, protecting the operating system against damage. With the proper
exception routines, the system can record diagnostic information and attempt automatic
recovery.

Programmers can also apply protection to segments and pages. Two bits in a micropro-

cessor register define the privilege level of the program currently running (called the current
privilege level or CPL). The CPL is checked during address translation for segmentation

and paging.

Although there is no control register or mode bit for turning off the protection mechanism,
the same effect can be achieved by assigning privilege level O (the highest level of privilege)
to all segment selectors, segment descriptors, and page table entries.

Segment-Level Protection

Protection provides the ability to limit the amount of interference that a malfunctioning
program can inflict on other programs and their data. Protection is a valuable aid in software
development because it allows software tools (operating system, debugger, etc.) to survive
in memory, undamaged. When an application program fails, the software is available to
report diagnostic messages and the debugger is available for post-mortem analysis of
memory and registers. In production, protection can make software more reliable by giving
the system an opportunity to initiate recovery procedures.

Each memory reference is checked to verify that it satisfies the protection checks. Allchecks
are made before the memory cycle is started; any violation prevents the cycle from starting
and results in an exception. Because checks are performed in parallel with address trans-
lation, there is no performance penalty. There are five protection checks:

m Type check

m Limit check

m Restriction of addressable domain

m Restriction of procedure entry points
m Restriction of instruction set

A protection violation results in an exception. This chapter describes the protection viola-
tions that lead to exceptions.

Segment Descriptors and Protection

Figure A-18 shows the fields of a segment descriptor which are used by the protection
mechanism. Individual bits in the Type field also are referred to by the names of their
functions.

A-24

General Guidelines for Programming

AMDH

Figure A-18 Description Fields Used for Protection

Data Segment Descriptor

31 24 19 16 1 12 7 0

Base 31-24 G Limit 10|E|W|A Base 23-16

19-16

—roo|®

Segment Base Address 15-0 Segment Limit 15-0

Base Segment Base Address

G Granularity

Limit Segment Limit

DPL Descriptor Privilege Level (00 = Highest — 11 = Lowest)

10 Reserved — always 10

E Expand down

w Writable

A Accessed

Code Segment Descriptor

31 24 19 16 14 12 7 0

o D
Base 31-24 G Limit P | 11]|C[R|A Base 23-16

19-16 L

Segment Base Address 15-0 Segment Limit 15-0

Base Segment Base Address

G Granularity

Limit Segment Limit

DPL Descriptor Privilege Level (00 = Highest — 11 = Lowest)
11 Reserved — always 11

C Conforming

R Readable

A Accessed

System Segment Descriptor

31 24 19 16 14 12 7 0
o D
Base 31-24 G Limit P o] Type Base 23-16
19-16 L
Segment Base Address 15-0 Segment Limit 15-0

Base Segment Base Address

G Granularity

Limit Segment Limit

DPL Descriptor Privilege Level (00 = Highest — 11 = Lowest)

0 Reserved, always 0

Type Segment Type

Protection parameters are placed in the descriptor when itis created. In general, application
programmers do not need to be concerned about protection parameters.When a program
loads a segment selector into a segment register, the microprocessor loads both the base
address of the segment and the protection information. The invisible part of each segment
register stores the base, limit, type, and privilege level. While this information is resident in
the segment register, subsequent protection checks on the same segment can be per-
formed with no performance penalty.

General Guidelines for Programming A-25

b‘l AMD

A.2.3.2.1

Type Checking

In addition to the descriptors for application code and data segments, the Am486 micro-
processor has descriptors for system segments and gates. These are data structures used
for managing tasks and exceptions/interrupts. Table A-2 lists all the types defined for system
segments and gates.

Note: Not all descriptors define segments; gate descriptors hold pointers to procedure entry
points.

Table A-2

System Segment and Gate Types

Type Description

0 Reserved

Available 80286 TSS
LDT

Busy 80286 TSS
Call Gate

Task Gate

80286 Interrupt Gate
80286 Trap Gate

Reserved

© 00 N O O b~ W N P

Available Am486 processor TSS

Reserved

P
[)

Busy Am486 processor TSS

[EnY
N

Am486 processor Call Gate

Reserved

B
M~ W

Am486 processor Interrupt Gate

[EnY
(&)]

Am486 processor Task Gate

The Type fields of code and data segment descriptors include bits that further define the
purpose of the segment (see Figure A-18):

m The Writable bit in a data-segment descriptor controls whether programs can write to
the segment.

m The Readable bit in an executable-segment descriptor specifies whether programs can
read from the segment (e.g., to access constants stored in the code space). A readable,
executable segment may be read in two ways:

— With the CS register, by using a CS override prefix

— By loading a selector for the descriptor into a data-segment register (the DS, ES, FS,
or GS registers)
Type checking can detect programming errors due to attempts to use segments in ways
not intended by the programmer. The microprocessor examines type information under two
circumstances:

m When a selector for a descriptor is loaded into a segment register. Certain segment
registers can contain only certain descriptor types; for example:

— The CS register only can be loaded with a selector for an executable segment.

A-26

General Guidelines for Programming

AMDH

A.2.3.2.2

— Selectors of executable segments that are not readable cannot be loaded into data-
segment registers.

— Only selectors of writable data segments can be loaded into the SS register.

m Certain segments can be used by instructions only in certain predefined ways; for
example:

— No instruction may write into an executable segment.
— No instruction may write into a data segment if the writable bit is not set.
— No instruction may read an executable segment unless the readable bit is set.

Limit Checking

The Limit field of a segment descriptor prevents programs from addressing outside the
segment. The effective value of the limit depends on the setting of the G bit (Granularity
bit). For data segments, the limit also depends on the E bit (Expansion Direction bit). The
E bitis a designation for one bit of the Type field, when referring to data segment descriptors.

When the G bit is clear, the limit is the value of the 20-bit Limit field in the descriptor. In this
case, the limit ranges from 0 to OFFFFFh (22° —1 or 1 Mbyte). When the G bit is set, the
microprocessor scales the value in the Limit field by a factor of 2. In this case, the limit
ranges from OFFFh (2'2 -1 or 4 Kbytes) to OFFFFFFFFh (2%2 — 1 or 4 Ghytes).

Note: When scaling is used, the lower twelve bits of the address are not checked against
the limit; when the G bit is set and the segment limit is 0, valid offsets within the segment
are 0 through 4095.

For all types of segments except expand-down data segments (stack segments), the value
of the limit is one less than the size of the segment in bytes. The microprocessor causes
a general-protection exception in any of these cases:

m Attempt to access a memory byte at an address > limit
m Attempt to access a memory word at an address > (limit — 1)
m Attempt to access a memory doubleword at an address > (limit — 3)

For expand-down data segments, the limit has the same function but is interpreted differ-
ently. In these cases, the range of valid offsets is from (limit + 1) to 2% — 1. An expand-down
segment has maximum size when the segment limit is 0.

Limit checking catches programming errors such as runaway subscripts and invalid pointer
calculations. These errors are detected when they occur, so identification of the cause is
easier. Without limit checking, these errors could overwrite critical memory in another mod-
ule, and the existence of these errors would not be discovered until the damaged module
crashed, an event that may occur long after the actual error. Protection can block these
errors and report their source.

In addition to limit checking on segments, there is limit checking on the descriptor tables.
The GDTR and IDTR registers contain a 16-bit limit value. It is used by the microprocessor
to prevent programs from selecting a segment descriptor outside the descriptor table. The
limit of a descriptor table identifies the last valid byte of the table. Because each descriptor
is 8 bytes long, a table that contains up to N descriptors should have a limit of 8N — 1.

A descriptor may be given a zero value. This refers to the first descriptor in the GDT, which
is not used. Although this descriptor may be loaded into a segment register, any attempt
to reference memory using this descriptor generates a general-protection exception.

General Guidelines for Programming A-27

b‘l AMD

A.2.3.2.3

Privilege Levels

The protection mechanism recognizes four privilege levels: from 0 to 3. The greater num-
bers have lower privilege. If all other protection checks are satisfied, a general-protection
exception occurs if a program with a higher privilege number attempts to access a segment
with a lower privilege number. Although no control register or mode bit exists to disable the
protection mechanism, you can achieve the same effect by assigning 0 to all operations.
(The PE bit in the CRO register does not enable the protection mechanism alone; it enables
Protected Mode, the full 32-bit architecture execution mode. When Protected Mode is
disabled, the microprocessor operates in Real Address Mode.)

You can use privilege levels to improve operating system reliability. By giving the operating
system the highest privilege level, it is protected from damage by bugs in other programs.
If a program crashes, the operating system can generate a diagnostic message and attempt
recovery procedures. Another level of privilege can be established for other parts of the
system software, such as the programs that handle peripheral devices, both in BIOS and
specific device drivers. Device drivers should be given an intermediate privilege level be-
tween the operating system and the application programs. This protects both the operating
system from errors in the drivers or BIOS, and it protects the drivers from bugs in application
programs. Application programs are given the lowest privilege level.

Figure A-19 shows how these levels of privilege can be interpreted as rings of protection.
The center is for the segments containing the most critical software, usually the kernel of
an operating system. Outer rings are for less critical software.

Figure A-19 Protection Rings

Protection Rings

Operating System Kernel

Operating System
Services (device
drivers, etc.)

Applications

A-28

General Guidelines for Programming

AMDH

A.2.3.3

The following data structures contain privilege levels:

m The lowest two bits of the CS segment register hold the current privilege level (CPL).
This is the privilege level of the program being run. The lowest two bits of the SS register
also hold a copy of the CPL. Normally, the CPL is equal to the privilege level of the code
segment from which instructions are being fetched. The CPL changes when control is
transferred to a code segment with a different privilege level.

m Segment descriptors contain a field called the descriptor privilege level (DPL). The DPL
is the privilege level applied to a segment.

m Segment selectors contain a field called the requester privilege level (RPL). The RPL
is intended to represent the privilege level of the procedure that created the selector. If
the RPL is a less privileged level than the CPL, it overrides the CPL. When a more
privileged program receives a segment selector from a less privileged program, the RPL
causes the memory access to take place at the less privileged level.

Privilege levels are checked when the selector of a descriptor is loaded into a segment
register. The checks used for data access differ from those used for transfers of execution
among executable segments; therefore, the two types of access are considered separately
in the following sections.

Restricting Access to Data

To address operands in memory, a segment selector for a data segment must be loaded
into a data-segment register (the DS, ES, FS, GS, or SS registers). The microprocessor
checks the segment’s privilege levels. The check is performed when the segment selector
is loaded. As Figure A-20 shows, three different privilege levels enter into this type of
privilege check.

Figure A-20 Privilege Check for Data Access

Operand Segment Descriptor
31 14 12 7 0

Operand Segment Descriptor

CPL
LR
Operand Segment Descriptor Privilege
heck

RPL P> Chec
DPL Descriptor Privilege Level
CPL Current Privilege Level
RPL Requested Privilege Level

General Guidelines for Programming A-29

b‘l AMD

A.2.3.4

The three privilege levels that are checked are:

1. The CPL (current privilege level) of the program—this is held in the two least-significant
bit positions of the CS register.

2. The DPL (descriptor privilege level) of the segment descriptor of the segment containing
the operand

3. The RPL (requester's privilege level) of the selector used to specify the segment con-
taining the operand—this is held in the two lowest bit positions of the segment register
used to access the operand (the SS, DS, ES, FS, or GS registers). If the operand is in
the stack segment, the RPL is the same as the CPL.

Instructions may load a segment register only if the DPL of the segment is the same or a
less privileged level (greater privilege number) than the less privileged of the CPL and the
selector's RPL.

The addressable domain of a task varies as its CPL changes. When the CPL is 0, data
segments at all privilege levels are accessible; when the CPL is 1, only data segments at
privilege levels 1 through 3 are accessible; when the CPL is 3, only data segments at
privilege level 3 are accessible.

It may be desirable to store data in a code segment, for example, when both code and data
are provided in ROM. Code segments may legitimately hold constants; it is not possible to
write to a segment defined as a code segment, unless a data segment is mapped to the
same address space. The following methods of accessing data in code segments are
possible:

m Load a data-segment register with a segment selector for a non-conforming, readable,
executable segment.

m Load a data-segment register with a segment selector for a conforming, readable, ex-
ecutable segment.

m Use a code-segment override prefix to read a readable, executable segment whose
selector already is loaded in the CS register.

The same rules for access to data segments apply to case 1. Case 2 is always valid because
the privilege level of a code segment with a set Conforming bit is effectively the same as
the CPL, regardless of its DPL. Case 3 is always valid because the DPL of the code segment
selected by the CS register is the CPL.

Restricting Control Transfers

Control transfers are provided by the IMP, CALL, RET, INT, and IRET instructions, as well
as by the exception and interrupt mechanisms. This section discusses only the IMP, CALL,
and RET instructions.

The “near” forms of the JIMP, CALL, and RET instructions transfer program control within
the current code segment, and therefore are subject only to limit checking. The micropro-
cessor checks that the destination of the IMP, CALL, or RET instruction does not exceed
the limit of the current code segment. This limit is cached in the CS register, so protection
checks for near transfers require no performance penalty.

The operands of the “far” forms of the JMP and CALL instruction refer to other segments,
so the microprocessor performs privilege checking. There are two ways a JMP or CALL
instruction can refer to another segment:

m The operand selects the descriptor of another executable segment.

m The operand selects a call gate descriptor.

A-30

General Guidelines for Programming

AMDH

Figure A-21 Privilege Check for Control Transfer Without Gate

Operand Segment Descriptor
31 14 12 7 0

rTwo

Operand Segment Descriptor

A 4 A 4

CPL
v

DPL Descriptor Privilege Level Privilege
C Conforming Bit Check
CPL Current Privilege Level

As Figure A-21 shows, two different privilege levels enter into a privilege check for a control
transfer that does not use a call gate:

m The CPL (current privilege level)
m The DPL of the descriptor of the destination code segment

Normally the CPL is equal to the DPL of the segment that the microprocessor is currently
executing. The CPL may, however, be greater (less privileged) than the DPL if the current
code segment is a conforming segment (as indicated by the Type field of its segment
descriptor). A conforming segment runs at the privilege level of the calling procedure. The
microprocessor keeps a record of the CPL cached in the CS register; this value can be
different from the DPL in the segment descriptor of the current code segment.

The microprocessor only permits a JMP or CALL instruction directly into another segment
if one of the following privilege rules is satisfied:

m The DPL of the segment is equal to the current CPL.

m The segment is a conforming code segment, and its DPL is less (higher privilege) than
the current CPL.

Conforming segments are used for programs, such as math libraries and some kinds of
exception handlers, that support applications but do not require access to protected system
facilities. When control is transferred to a conforming segment, the CPL does not change,
even if the selector used to address the segment has a different RPL. This is the only
condition in which the CPL may be different from the DPL of the current code segment.

Most code segments are non-conforming. For these segments, control can be transferred
without a gate only to other code segments at the same level of privilege. It is sometimes
necessary, however, to transfer control to higher privilege levels. This is accomplished with
the CALL instruction using call-gate descriptors. The JMP instruction may never transfer
control to a non-conforming segment whose DPL does not equal the CPL.

General Guidelines for Programming A-31

b‘l AMD

A.2.3.5

Gate Descriptors

To provide protection for control transfers among executable segments at different privilege
levels, the Am486 microprocessor uses gate descriptors. There are four kinds of gate
descriptors:

m Task gates
m Trap gates
m Interrupt gates
m Call gates

Task gates are used for task switching. Trap gates and interrupt gates are used by excep-
tions and interrupts. Call gates are a form of protected control transfer. They are used for
control transfers between different privilege levels. They only need to be used in systems
in which more than one privilege level is used.

Figure A-22 illustrates the format of a call gate.

Figure A-22

Call Gate Format

32-bit Call Gate

31 16 3210
D Dword
Offset in Segment 31-16 [P P |o|1[1]o]o]o|o[o]o] 2Wer
L Count
Segment Selector Offset in Segment 15-0

P Segment Present
DPL Descriptor Privilege Level

A call gate has two main functions:

m To define an entry point of a procedure
m To specify the privilege level required to enter a procedure

Call gate descriptors are used by CALL and JUMP instructions in the same manner as
code segment descriptors. When the hardware recognizes that the destination segment
selector refers to a gate descriptor, the call gate contents determine the operation of the
instruction. A call gate descriptor may reside in the GDT or in an LDT, but not in the IDT.
The selector and offset fields of a gate form a pointer to the entry point of a procedure. A
call gate guarantees that all control transfers to other segments go to a valid entry point,
rather than to the middle of a procedure (or worse, to the middle of an instruction). The
operand of the control transfer instruction is not the segment selector and is not offset within
the segment to the procedure’s entry point. Instead, the segment selector points to a gate
descriptor, and the offset is not used. Figure A-23 shows this form of addressing. As shown
in Figure A-24, four different privilege levels are used to check the validity of a control
transfer through a call gate.

A-32

General Guidelines for Programming

AMDH

Figure A-23 Call Gate Mechanism

Destination Address

15 0 31 0
Selector | | Offset |-> Not Used
Descriptor Table
— Offset DPL [Count |[Gate
Selector Offset Descriptor
= [Base | DPL | Base |Code Segment
+ le Base Descriptor
Procedure Entry Point
Figure A-24 Privilege Check for Control Transfer with Call Gate
Call Gate
31 14 12 3210
D
P
L
Operand Segment Descriptor
31 14 12 3210
D
P
L
Operand Segment Descriptor
CPL
v v
Operand Segment Descriptor Privilege
RPL > Check

DPL Descriptor Privilege Level
CPL Current Privilege Level
RPL Requested Privilege Level

General Guidelines for Programming

A-33

b‘l AMD

The privilege levels checked during a transfer of execution through a call gate are:

The CPL (current privilege level)

The RPL (requester’s privilege level) of the segment selector used to specify the call gate

The DPL (descriptor privilege level) of the gate descriptor
m The DPL of the segment descriptor of the destination code segment

The DPL field of the gate descriptor determines the privilege levels that can access the
gate. One code segment can have procedures used by different privilege levels. For ex-
ample, an operating system may have some services used by both the operating system
and application software, such as routines to handle character 1/0O, while other services
may be for use only by the operating system itself, such as routines to initialize device
drivers.

Gates can be used for control transfers to higher privilege levels or to the same privilege
level (though they are not necessary for same-level transfers). Only CALL instructions can
use gates to transfer to higher privilege levels. A JMP instruction may use a gate only to
transfer control to a code segment with the same privilege level, or to a conforming code
segment with the same or a higher privilege level.

To use a JMP instruction to transfer to a non-conforming segment, both of the following
privilege rules must be satisfied; otherwise, a general-protection exception occurs:

m MAX (CPL,RPL) < gate DPL
m Destination code segment DPL = CPL

For a CALL instruction (or for a JMP instruction to a conforming segment), both of the
following privilege rules must be satisfied; otherwise, a general-protection exception occurs.

m MAX (CPL,RPL) < gate DPL

m Destination code segment DPL < CPL

A.2.3.5.1 Stack Switching
A procedure call to a more privileged level does the following:
m Changes the CPL
m Transfers control (execution)
m Switches stacks
All inner protection rings (privilege levels 0, 1, and 2) have their own stacks for receiving
calls from less privileged levels. If the caller were to provide the stack and the stack were
too small, the called procedure might fail due to insufficient stack space. The system design
avoids this problem by creating a new stack when a call is made to a more privileged level.
The mechanism creates a new stack, copies the parameters from the old stack, and saves
the register contents; then execution proceeds normally. When the procedure returns, the
contents of the saved registers restore the original stack.

A-34 General Guidelines for Programming

AMDH

Figure A-25 Initial Stack Pointers in a TSS

32-bit Task State Segment
31 0

+ 64h

ESP2 + 14h
SS1 + 10h

ESP1 +0Ch
SS0

+ 08h

ESPO +04h

+ 00h

The microprocessor finds the space to create new stacks using the task state segment
(TSS) (see Figure A-25). Eachtask has its own TSS. The TSS contains initial stack pointers
for the inner protection rings. The operating system is responsible for creating each TSS
and initializing its stack pointers. An initial stack pointer consists of a segment selector and
an initial value for the ESP register (an initial offset into the segment). The initial stack
pointers are strictly read-only values. The microprocessor does not change them while the
task runs. These stack pointers are used only to create new stacks when calls are made
to more privileged levels. These stacks disappear when the called procedure returns. The
next time the procedure is called, a new stack is created using the initial stack pointer.

When a call gate is used to change privilege levels, a new stack is created by loading an
address from the TSS. The microprocessor uses the DPL of the destination code segment
(the new CPL) to select the initial stack pointer for privilege level 0, 1, or 2.

The DPL of the new stack segment must equal the new CPL,; if not, a stack-fault exception
is generated. It is the responsibility of the operating system to create stacks and stack-
segment descriptors for all privilege levels that are used. The stacks must be read/write as
specified in the Type field of their segment descriptors. They must contain enough space,
as specified in the Limit field, to hold the contents of the SS and ESP registers, the return
address, and the parameters and temporary variables required by the called procedure.

As with calls within a privilege level, parameters for the procedure are placed on the stack.
The parameters are copied to the new stack. The parameters can be accessed within the
called procedure using the same relative addresses that would have been used if no stack
switching had occurred. The count field of a call gate tells the microprocessor how many
doublewords (up to 31) to copy from the caller’s stack to the stack of the called procedure.
If the count is 0, no parameters are copied.

General Guidelines for Programming A-35

b‘l AMD

If more than 31 doublewords of data need to be passed to the called procedure, one of the
parameters can be a pointer to a data structure, or the saved contents of the SS and ESP
registers may be used to access parameters in the old stack space.

The microprocessor performs the following stack-related steps in executing a procedure
call between privilege levels:

m The stack of the called procedure is checked to make certain it is large enough to hold
the parameters and the saved contents of registers; if not, a stack exception is generated.

m The old contents of the SS and ESP registers are pushed onto the stack of the called
procedure as two doublewords (the 16-bit SS register is zero-extended to 32 bits; the
zero-extended upper word is AMD reserved; do not use).

m The parameters are copied from the stack of the caller to the stack of the called
procedure.

m A pointer to the instruction after the CALL instruction (the old contents of the CS and
EIP registers) is pushed onto the new stack. The contents of the SS and ESP registers
after the call point to this return pointer on the stack.

Figure A-26 illustrates the stack frame before, during, and after a successful interlevel
procedure call and return.

Figure A-26 Stack Frame During Interlevel CALL

Old Stack New Stack, Old Stack,
before Call after Call, after Return
before Return with Far RET N (N=3)

Old SS

Old ESP <« ESP
PARAM 1 PARAM 1
PARAM 2 PARAM 2
PARAM 3 <+ ESP PARAM 3

Old CSs

OdEIP [¢ ESP

The TSS does not have a stack pointer for a privilege level 3 stack, because a procedure
at privilege level 3 cannot be called by a less privileged procedure. The stack for privilege
level 3 is preserved by the contents of the SS and EIP registers that have been saved on
the stack of the privilege level called from level 3.

A call using a call gate does not check the values of the words copied onto the new stack.
The called procedure should check each parameter for validity. A later section discusses
how the ARPL, VERR, VERW, LSL, and LAR instructions can be used to check pointer
values.

A-36

General Guidelines for Programming

AMDH

A.2.3.5.2

Returning from a Procedure

The “near” forms of the RET instruction only transfer control within the current code segment
and therefore, are subject only to limit checking. The microprocessor checks the offset to
ensure that it does not exceed the current code segment limit.

The “far” form of the RET instruction pops the return address that was pushed onto the
stack by an earlier far CALL instruction. Under normal conditions, the return pointer is valid.
Nevertheless, the microprocessor performs privilege checking because the current proce-
dure can alter the pointer or fail to maintain the stack properly. The RPL of the code-segment
selector popped off the stack should have the privilege level of the calling procedure.

A return to another segment can change privilege levels, but only to a lower privilege level.
When RET encounters a saved CS value whose RPL is numerically greater than the CPL
(less privileged level), a return across privilege levels occurs. A return of this kind performs
these steps:

m The checks shown in Table A-3 are made, and the CS, EIP, SS, and ESP registers are
loaded with their former values, which were saved on the stack.

m The old contents of the SS and ESP registers (from the top of the current stack) are
adjusted by the number of bytes indicated in the RET instruction. The resulting ESP
value is not checked against the limit of the stack segment. An ESP value beyond the
limit is not recognized until the next stack operation. (The returning procedure SS and
ESP register contents are not preserved; normally, their values equal those inthe TSS.)

m TheDS, ES, FS, and GS segment register contents are checked. If any of these registers
refer to segments whose DPL is less than the new CPL (excluding conforming code
segments), the segment register is loaded with the null selector (Index =0, TI =0). The
RET instruction itself does not signal exceptions in these cases, but any subsequent
memory reference using a segment register with the null selector causes a general-
protection exception. This prevents less privileged code from accessing more privileged
segments using selectors left in the segment registers by a more privileged procedure.

Table A-3

Interlevel Return Checks

Type of Check Exception Type Error Code

Top-of-stack must be within stack segment limit stack 0

Top-of-stack + 7 must be within stack segment limit stack 0

RPL of return code segment must be greater than the CPL protection return CS
Return code segment must be non-null protection return CS
Return code segment descriptor must be within descriptor table limit | protection return CS
Return segment descriptor must be a code segment protection return CS
Return code segment is present protection return CS
Return non-conforming code segment DPL must equal return code | protection return CS

segment selector RPL; or return conforming code segment DPL
must be less than or equal the return code segment selector RPL

ESP + RET operand + 15 must be within the stack segment limit | protection return CS
Segment descriptor at ESP+ RET operand +12 must be non-null | protection return CS
Segment descriptor at ESP+ RET operand +12 must be within protection return CS
descriptor table limit
Stack segment must be read/write protection return CS
Stack segment must be present protection return CS
Old stack segment DPL must equal old code segment RPL protection return CS
Old stack selector RPL must equal old stack segment CPL protection return CS

General Guidelines for Programming A-37

b‘l AMD

A.2.3.6

A.2.3.6.1

A.2.3.6.2

A.2.3.7

Instructions Reserved for the Operating System

Instructions that can affect the protection mechanism or influence general system perfor-
mance can only be executed by trusted procedures. The Am486 microprocessor has two
classes of such instructions:

m Privileged instructions—those used for system control
m Sensitive instructions—those used for I/O and I/O-related activities

Privileged Instructions

The instructions that affect protected facilities can be executed only when the CPL is 0
(most privileged). If one of these instructions is executed when the CPL is not 0, a general-
protection exception is generated. These instructions include:

m CLTS — Clear Task-Switched Flag

m HLT — Halt Microprocessor

m INVD — Invalidate Cache

m INVLPG - Invalidate TLB Entry

m LGDT — Load GDT Register

m LIDT — Load IDT Register

m LIDT — Load LDT Register

m LMSW — Load Machine Status Word

m LTR — Load Task Register

m MOV CRO - Move to/from Control Register 0
m MOV DRn - Move to/from Debug Register n
m MOV TRn - Move to/from Test Register n

m WBINVD - Write Back and Invalidate Cache

Sensitive Instructions
Instructions that deal with 1/0 need to be protected, but they also need to be used by

procedures executing at privilege levels other than 0 (the most privileged level). The mech-
anisms for protection of I/O operations are covered in detail in Section A.2.9.

Instructions for Pointer Validation
Pointer validation is necessary for maintaining isolation between privilege levels. It consists
of the following steps:

1. Checks if the supplier of the pointer is allowed to access the segment.
2. Checks if the segment type is compatible with its use.
3. Checks if the pointer offset exceeds the segment limit.

Although the Am486 microprocessor automatically performs checks 2 and 3 during instruc-
tion execution, software must assist in performing the first check. The ARPL instruction is
provided for this purpose. Software also can use steps 2 and 3 to check for potential
violations, rather than waiting for an exception to be generated. The LAR, LSL, VERR, and
VERW instructions are provided for this purpose.

An additional check, the alignment check, can be applied in user mode. When both the AM
bit in CRO and the AC flag are set, unaligned memory references generate exceptions.
This is useful for programs that use the Low two bits of pointers to identify the type of data

A-38

General Guidelines for Programming

AMDH

structure they address. For example, a subroutine in a math library may accept pointers to
numeric data structures. If the type of this structure is assigned a code of 10 (binary) in the
lowest two bits of pointers to this type, math subroutines can correct for the type code by
adding a displacement of —10 (binary). If the subroutine should ever receive the wrong
pointer type, an unaligned reference would be produced, which would generate an excep-
tion. Alignment checking accelerates the processing of programs written in symbolic-pro-
cessing (i.e., Artificial Intelligence) languages such as Lisp, Prolog, Smalltalk, and C++. It
can be used to speed up pointer tag type checking.

LAR (Load Access Rights) is used to verify that a pointer refers to a segment of a compatible
privilege level and type. The LAR instruction has one operand, a segment selector for the
descriptor whose access rights are to be checked. The segment descriptor must be read-
able at a privilege level that is numerically greater (less privileged) than the CPL and the

selector's RPL. Ifthe descriptoris readable, the LAR instruction gets the second doubleword
of the descriptor, masks this value with 00FxFFOOh, stores the result into the specified 32-
bit destination register, and sets the Zero Flag (ZF). (The x indicates that the corresponding
four bits of the stored value are undefined.) Once loaded, the access rights can be tested.
All valid descriptor types can be tested by the LAR instruction. If the RPL or CPL is greater
than the DPL, or if the segment selector would exceed the limit for the descriptor table, no
accessrights are returned and ZF is cleared. Conforming code segments may be accessed
from any privilege level.

LSL (Load Segment Limit) allows software to test the limit of a segment descriptor. If the
descriptor referenced by the segment selector (in memory or a register) is readable at the
CPL, the LSL instruction loads the specified 32-bit register with a 32-bit, byte granular limit
calculated from the concatenated limit fields and the G bit of the descriptor. This only can
be done for descriptors that describe segments (data, code, task state, and local descriptor
tables); gate descriptors are inaccessible. (Table A-4 lists in detail which types are valid
and which are not.) Interpreting the limit is a function of the segment type. For example,
downward-expandable data segments (stack segments) treat the limit differently than other
kinds of segments. For both the LAR and LSL instructions, ZF is set if the load was suc-
cessful; otherwise, ZF is cleared.

Table A-4

Valid Descriptor Types for LSL Instruction

Type Code Descriptor Type Valid?
0 Reserved no
1 Reserved no
2 LDT yes
3 Reserved no
4 Reserved no
5 Task Gate no
6 Reserved no
7 Reserved no
8 Reserved no
9 Available Am486 processor TSS yes
A Reserved no
B Busy Am486 processor TSS yes
C Am486 processor Call Gate no
D Reserved no
E Am486 processor Interrupt Gate no
F Am486 processor Task Gate no

Note: Conforming segments are not checked for privilege level.

General Guidelines for Programming A-39

b‘l AMD

A.2.3.7.1

A.2.3.7.2

Descriptor Validation

The Am486 microprocessor has two instructions, VERR and VERW, which determine
whether a segment selector points to a segment that can be read or written using the CPL.
Neither instruction causes a protection fault if the segment cannot be accessed.

VERR (Verify for Reading) verifies a segment for reading and sets ZF if that segment is
readable using the CPL. The VERR instruction checks the following:

m The segment selector points to a segment descriptor within the bounds of the GDT or
an LDT.

m The segment selector indexes to a code or data segment descriptor.
m The segment is readable and has a compatible privilege level.

m The privilege check for data segments and non-conforming code segments verifies that
the DPL must be a less privileged level than either the CPL or the selector's RPL.

VERW (Verify for Writing) provides the same capability as the VERR instruction for verifying
writability. Like the VERR instruction, the VERW instruction sets ZF if the segment can be
written. The instruction verifies the descriptor is within bounds, is a segment descriptor, is
writable, and has a DPL that is a less privileged level than either the CPL or the selector’s
RPL. Code segments are never writable, whether conforming or not.

Pointer Integrity and RPL

The requester’s privilege level (RPL) can prevent accidental use of pointers that can cause
system lockup when moving to a higher privilege code from a lower privilege level.

A common example is a file system procedure, FREAD (file_id, n_bytes, buffer_ptr). This
hypothetical procedure reads data from a disk file into a buffer, overwriting whatever is
already there. It services requests from programs operating at the application level, but it
must run in a privileged mode (not level 3) in order to read from the system I/O buffer. If
the application program passes a bad buffer pointer to the procedure that points to critical
code or data in a privileged address space, the procedure can lockup the system.

Use of the RPL can avoid this problem. The RPL allows a privilege override to be assigned
to a selector. This privilege override is the privilege level of the code segment that generates
the segment selector. In the above example, the RPL is the CPL of the application program
that called the system level procedure. The Am486 microprocessor automatically checks
any segment selector loaded into a segment register to determine whether its RPL allows
access.

To take advantage of the microprocessor’s checking of the RPL, the called procedure need
only check that all segment selectors passed to it have an RPL for the same or a less
privileged level as the original caller's CPL. This guarantees that the segment selectors are
not more privileged than their source. If a selector is used to access a segment that the
source would not be able to access directly (i.e., the RPL is less privileged than the seg-
ment’s DPL), a general-protection exception is generated when the selector is loaded into
a segment register.

ARPL (Adjust Requested Privilege Level) adjusts the RPL field of a segment selector to
be the larger (less privileged) of its original value and the value of the RPL field for a segment
selector stored in a general register. The RPL fields are the two least-significant bits of the
segment selector and the register. The latter normally is a copy of the caller's CS register
on the stack. If the adjustment changes the selector's RPL, ZF is set; otherwise, ZF is
cleared.

A-40

General Guidelines for Programming

AMDH

A.2.3.8

A.2.3.8.1

Page-Level Protection

Protection applies to both segments and pages. When the flat model for memory segmen-
tation has been used, page-level protection prevents programs from interfering with each
other.

Each memory reference is checked to verify that it satisfies the protection checks. Allchecks
are made before the memory cycle is started; any violation prevents the cycle from starting
and results in an exception. Because checks are performed in parallel with address trans-
lation, there is no performance penalty. There are two page-level protection checks:

m Restriction of addressable domain
m Type checking

A protection violation results in an exception. See Section A.2.8 for an explanation of the
exception mechanism. This section describes the protection violations that lead to
exceptions.

Page-Table Entries Hold Protection Parameters

Figure A-27 highlights the fields of a page table entry that control access to pages. The
protection checks are applied for both first and second-level page tables.

Figure A-27

Protection Holds

31 12 210
U|R
A
S|W

u/s User/Supervisor

R/W Read/Write

Privilege is interpreted differently for pages and segments. With segments, there are four
privilege levels, ranging from 0 (most privileged) to 3 (least privileged). With pages, there
are two levels of privilege:

m Supervisor level (U/S = 0): for the operating system, other system software (such as
device drivers), and protected system data (such as page tables).

m User level (U/S = 1): for application code and data. The privilege levels used for seg-
mentation are mapped into the privilege levels used for paging. If the CPLis 0, 1, or 2,
the microprocessor is running at supervisor level. If the CPL is 3, the microprocessor is
running at user level. When the microprocessor is running at supervisor level, all pages
are accessible. When the microprocessor is running at user level, only pages from the
user level are accessible.

Only two types of pages are recognized by the protection mechanism:

m Read-only access (R/W = 0)
m Read/write access (R/W = 1)

When the microprocessor is running at supervisor level with the WP bit in the CRO register
clear (its state following reset initialization), all pages are both readable and writable (write-
protection is ignored). When the microprocessor is running at user level, only pages that
belong to user level and are marked for read/write access are writable. User-level pages
that are read/write or read-only are readable. Pages from the supervisor level are neither

General Guidelines for Programming A-41

b‘l AMD

readable nor writable from user level. A general-protection exception is generated on any
attempt to violate the protection rules.

Unlike the Am386DX microprocessor, the Am486 microprocessor allows user-mode pages
to be write-protected against supervisor mode access. Setting the WP bitinthe CRO register
enables supervisor-mode sensitivity to user-mode, write-protected pages. This feature is
useful for implementing the copy-on-write strategy used by some operating systems, such
as UNIX, for task creation (also called forking or spawning).

When a new task is created, it is possible to copy the entire address space of the parent
task. This gives the child task a complete, duplicate set of the parent’s segments and pages.
The copy-on-write strategy saves memory space and time by mapping the child’s segments
and pages to the same segments and pages used by the parent task. A private copy of a
page gets created only when one of the tasks writes to the page.

A.2.3.8.2 Combining Protection of Both Levels of Page Tables
For any one page, the protection attributes of its page directory entry (first-level page table)
may differ from those of its second-level page table entry. The Am486 microprocessor
checks the protection for a page by examining the protection specified in both the page
directory (first-level page table) and the second-level page table. Table A-5 shows the
protection provided by the possible combinations of protection attributes when the WP bit
is clear.
Table A-5 Combined Page Directory and Page Table Protection
Page Directory Entry Page Table Entry Combined Effect
Privilege Access Type Privilege Access Type Privilege Access Type
User Read-Only User Read-Only User Read-Only
User Read-Only User Read/Write User Read-Only
User Read/Write User Read-Only User Read-Only
User Read/Write User Read/Write User Read/Write
User Read-Only Supervisor Read-Only User Read-Only
User Read-Only Supervisor Read/Write User Read-Only
User Read/Write Supervisor Read-Only User Read-Only
User Read/Write Supervisor Read/Write User Read/Write
Supervisor Read-Only User Read-Only User Read-Only
Supervisor Read-Only User Read/Write User Read-Only
Supervisor Read/Write User Read-Only User Read-Only
Supervisor Read/Write User Read/Write User Read/Write
Supervisor Read-Only Supervisor Read-Only Supervisor Read-Only
Supervisor Read-Only Supervisor Read/Write Supervisor Read/Write
Supervisor Read/Write Supervisor Read-Only Supervisor Read/Write
Supervisor Read/Write Supervisor Read/Write Supervisor Read/Write
A-42 General Guidelines for Programming

AMDH

A.2.3.8.3

A.2.3.9

Al 2.4

Overrides to Page Protection
Certain accesses are checked as if they are privilege level 0 accesses, for any value of CPL.:

m Access to segment descriptors (LDT, GDT, TSS and IDT)

m Access to inner stack during a CALL instruction, or exceptions and interrupts, when a
change of privilege level occurs

Combining Page and Segment Protection

When paging is enabled, the Am486 microprocessor first evaluates segment protection,

then evaluates page protection. If the microprocessor detects a protection violation at either
the segment level or the page level, the operation does not go through; an exception occurs
instead. If an exception is generated by segmentation, no paging exception is generated
for the operation.

For example, it is possible to define a large data segment which has some parts that are
read-only and other parts that are read/write. In this case, the page directory (or page table)
entries for the read-only parts would have the U/S and R/W bits specifying no write access
for all the pages described by that directory entry (or for individual pages specified in the
second-level page tables). This technique might be used, for example, to define a large
data segment, part of which is read-only (for shared data or constants in ROM). This
approach defines a single “flat” data space in one large segment that uses “flat” pointers,
but protects shared data that is mapped into the same virtual space using page-defined
supervisor areas.

Data Types

There are two ways in which data is stored and used by the Am486 processor family. When
stored in memory, the microprocessor accesses data using bytes, words, and doublewords
(see Figure A-28). Instructions use the accessed data in multiple ways, both by accessing
multiple sets of bytes, word, or doublewords and by reinterpreting the data stored in them
(such as strings, signed and unsigned integers, BCD values, and real/floating-point
numbers).

Figure A-28

Data Types in Memory

7 0
Byte
15 0
Word
31 0
Doubleword

A.2.4.1

Data Types in Memory
Byte—8 bits. The bits are numbered 0 through 7, bit O being the least-significant bit (LSB).

Word—two bytes occupying any two consecutive addresses. A word contains 16 bits. The
bits of a word are numbered from 0 through 15, bit 0 again being the least-significant bit.
The byte containing bit O of the word is called the Low byte; the byte containing bit 15 is

called the High byte. On the Am486 microprocessor, the Low byte is stored in the byte with
the lower address. The address of the Low byte also is the address of the word. The address

General Guidelines for Programming A-43

b‘l AMD

of the High byte is used only when the upper half of the word is being accessed separately
from the lower half.

Doubleword—four bytes occupying any four consecutive addresses. A doubleword con-
tains 32 bits. The bits of a doubleword are numbered from 0 through 31, bit 0 again being
the least-significant bit. The word containing bit O of the doubleword is called the Low word;
the word containing bit 31 is called the High word. The Low word is stored in the two bytes
with the lower addresses. The address of the lowest byte is the address of the doubleword.
The higher addresses are used only when the upper word is being accessed separately
from the lower word, or when individual bytes are being accessed. Figure A-29 illustrates
the arrangement of bytes within words and doublewords.

Figure A-29

Bytes, Words, and Doublewords in Memory

Memory Contents

Byte Examples: A1h +7h

Address + 1h = 8Bh

Address + 4h = 06h 1Fh + 6h
FEh + 5h

Word Examples: 4h

Address + 1Th = 6C8Bh 06h "

Address + 4h = FEQ6h 98h +3h
6Ch +2h

Doubleword Examples: 8Bh +1h

Address + 1h = 06986C8Bh

Address + 4h = A11FFEO6h 23h +0h

Note: Words do not need to be aligned at even-numbered addresses and doublewords do not need to be
aligned at addresses evenly divisible by four. This allows maximum flexibility in data structures (e.g., records
containing mixed byte, word, and doubleword items) and efficiency in memory utilization. Because the Am486
microprocessor has a 32-bit data bus, communication between microprocessor and memory takes place as
doubleword transfers aligned to addresses evenly divisible by four; the microprocessor converts doubleword
transfers aligned to other addresses into multiple transfers. These unaligned operations reduce speed by
requiring extra bus cycles. For maximum speed, data structures (especially stacks) should be designed so that,
whenever possible, word operands are aligned to even addresses and doubleword operands are aligned to
addresses evenly divisible by four.

A-44

General Guidelines for Programming

AMDH

Figure A-30 Data Types

Integer Formats Byte I“tege(;
7-bit Value
Word Integ%r
|’_f| 15-bit Value |
Short Integer (Doubleword)
0
H 31-bit Value |
Long Integer (Quadword: FPU
63 g Integer (8
H 63-bit Value |
Ordinal Formats Byte Ordinal
7 0
8-bit Value
Word Ordinal
15 0
16-bit Value |
Doubleword Ordinal
31 0
| 32-bit Value |
BCD Integer Formats N 15 ?CD Integer
| BCO[o o o | BCD BCD
Digit Digit Digit
Packed BCD Integer
n 15
|BCD BCD| o e o |BCD BCDIBCD BCD
Digit | Digit Digit | Digit | Digit | Digit
Packed BCD Integer (FPU)
79 71 67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 3 0
+ BCD |BCD | BCD [BCD | BCD |BCD [BCD |BCD |BCD |BCD |BCD |BCD |BCD |BCD |[BCD | BCD |BCD |BCD
- Digit | Digit | Digit | Digit | Digit | Digit | Digit | Digit | Digit | Digit | Digit |Digit | Digit | Digit | Digit | Digit | Digit | Digit
Pointer Formats 31 Near Pointe6
| 32-bit Offset |
Far Pointer
47 31 0
| 16-bit Selector | 32-bit Offset |
String Formats X -1) n Bit Field
I IHNECSESREI
Bit Strln
(n+X-1) 9
Xbits (X=1102%) | ||||||||||I° T
(n+8X-1) n Byte String
X bytes (X =1 to 232) | | byte | byte |o ° ol byte | |
Real Formats 3 03 Single Precision Real (FPL(J))
[*[Bias. Exp| 1] Significand |
D
Double Precision Real (FPU)
63 52
|T| Biased Exp || Significand |
Extended Precision Real (FPU)
79 63
|J_f| Biased Exponent ||| Significand |
Iy
Note: For all real numbers, | (Bit 23, 52, or 63) indicates the integer bit of the significand; the value is stored in
temporary Real Numbers and implicit in Single and Double Precision Real Numbers.
A indicates the location of the implicit binary point.

General Guidelines for Programming A-45

b‘l AMD

A.2.4.2

Operand Formats

Although bytes, words, and doublewords represent the way the microprocessor accesses
datain memory, specialized instructions caninterpret and manipulate this digital information
in different forms. These operand forms include the following types (shown in Figure A-30):

Integer—a signed binary number held in a 32-bit doubleword, 16-bit word, or 8-bit byte.
All operations assume a two's complement representation. The sign bit is located in bit
7 in a byte, bit 15 in a word, and bit 31 in a doubleword. The sign bit is set for negative
integers, clear for positive integers and zero. The value of an 8-bit integer is from —128
to + 127; a 16-bit integer from 32,768 to + 32,767; a 32-bit integer from —23! to + 23'-1.
When used by the FPU, they are automatically converted to the 80-bit extended real
format, shown as a signed 79-bit integer in Figure A-30. All binary integers are exactly
representable in the extended real format.

Ordinal—an unsigned binary number contained in a 32-bit doubleword, 16-bit word, or
8-bit byte. The value of an 8-bit ordinal is from 0 to 255; a 16-bit ordinal from 0 to 65,535;
a 32-bit ordinal from 0 to 2% —1.

Pointer—an offset address, or segment plus offset, used by a JUMP, conditional JUMP,
LOOP, or conditional LOOP instruction.

— Near Pointer: A 32-bit logical address. A near pointer is an offset within a segment.
Near pointers are used for all pointers in a flat memory model, or for references within
a segment in a segmented model.

— Far Pointer: A 48-bit logical address consisting of a 16-bit segment selector and a
32-bit offset. Far pointers are used in a segmented memory model to access other
segments.

String—a contiguous sequence of bits, bytes, words, or doublewords. A string may
contain from zero to 2°2— 1 bytes (4 Ghytes). The bit sequences can be one of two types:

— Bit field: A contiguous sequence of bits. A bit field may begin at any bit position of
any byte and may contain up to 32 bits.

— Bit string: A contiguous sequence of bits. A bit string may begin at any bit position of
any byte and may contain up to 2°? — 1 bits.

BCD—a representation of a binary-coded decimal (BCD) digit in the range 0-9. Un-
packed decimal numbers are stored as unsigned byte quantities. One digit is stored in
each byte. The magnitude of the number is the binary value of the Low-order half-byte;
values 0-9 are valid and are interpreted as the value of a digit. The High-order half-byte
must be zero during multiplication and division; it may contain any value during addition
and subtraction. Packed BCD formats use a representation of binary-coded decimal
digits, each in the range 0-9. One digit is stored in each half-byte, two digits in each
byte. The digit in bits 4-7 is more significant than the digit in bits 0-3. Values 0-9 are
valid for a digit.

Real—the Am486 microprocessor represents real numbers of the form:
(-1)* O2E(byyb,b,b,. . . b,)

wher e:

¢ =0wor1

E = any integer between E,, and E_, inclusive
b =0or 1

Ao = inplicit binary point

p = nunber of bits of precision

A-46

General Guidelines for Programming

AMDH

The Am486 microprocessor stores real numbers in a three-field binary format that re-
sembles scientific, or exponential, notation. The format consists of the following fields:

m The number’s significant digits are held in the significand field, b,b,b,b,...b_, (the term
“significand” is analogous to the term “mantissa” used to describe floating-point numbers
on some computers; , indicates the implicit binary point in the bit field).

m The exponentfield, e = E + bias, locates the binary point within the significant digits (and
therefore determines the number's magnitude). The term “exponent” is analogous to
the term “characteristic” used to describe floating-point numbers on some computers.

m The 1-bit sign field indicates whether the number is positive or negative. Negative num-
bers differ from positive numbers only in the sign bits of their significands.

Table A-6 shows how the real number 178.125 (decimal) is stored in the single real format.
The table lists a progression of equivalent notations that express the same value to show
how a number can be converted from one form to another. (The ASM386/486 and PL/M386/
486 language translators perform a similar process when they encounter programmer-
defined real number constants.)

Table A-6 Real Number Notation
Notation Value
Ordinary Decimal 178.125
Scientific Decimal 1,78125E2
Scientific Binary 1,0110010001E111
Scientific Binary 1,0110010001E10000110
(Biased Exponent)
Single Format Sign | Biased Exponent Significand
(Normalized) 0 10000110 01100100010000000000000
1, (implicit)
Note: Not every decimal fraction has an exact binary equivalent. The decimal number
1/10, for example, cannot be expressed exactly in binary (just as the number 1/3 cannot
be expressed exactly in decimal). When a translator encounters such a value, it produces
a rounded binary approximation of the decimal value.
A.2.5 Application Registers

The Am486 microprocessor contains sixteen registers that may be used by an application
programmer. As Figure A-31 shows, these registers may be grouped as:

m General Registers: These eight 32-bit registers are free for use by the programmer.

m Segment Registers: These registers hold segment selectors associated with different
forms of memory access. For example, there are separate segment registers for access
to code and stack space. These six registers determine, at any given time, which seg-
ments of memory are currently available.

m Status and Control Registers: These registers report and allow modification of the state
of the Am486 microprocessor.

General Guidelines for Programming A-47

i"l AMD

Figure A-31 Application Register Set

General Registers

31 15 7 0
EAX
AX
AH [AL
EAX BY
BH | BL
ECX
CX
CH [cr
EDX
DX
DH | DL
EBP
[BP
EDI
[DI
ESI
[sI
ESP
[sp

Segment Registers
15 0
CSs

DS

ES

FS

GS

SS

Status and Control Registers

31 15 7 0
EFLAGS
| FLAGS
EIP
[1P

In Am486DX and DX2 processors, there are also the following registers that are part of the
floating-point unit (FPU) in the microprocessor:

m FPU Register Stack—eight 80-bit numeric registers that are organized as a register
stack.

m Status and Control Registers—16-bit registers that contain the FPU status, control, and
tag words.

A-48 General Guidelines for Programming

AMDH

m Error Pointers—five registers including two 16-bit registers that hold selectors for the
last 16-bit operation, two 32-bit registers that hold selectors for the last 32-bit operation,
and one 11-bit register that contains the opcode of the last non-control FPU instruction.

A.2.5.1 General Registers
The general registers are the 32-bit registers EAX, EBX, ECX, EDX, EBP, ESP, ESI, and
EDI. These registers are used to hold operands for logical and arithmetic operations. They
also may be used to hold operands for address calculations (except the ESP register cannot
be used as an index operand). The names of these registers are derived from the names
of the general registers on the 8086 microprocessor, the AX, BX, CX, DX, BP, SP, Sl, and
Dl registers. As Table A-7 shows, the Low 16 bits of the general registers can be referenced
using these names.
Table A-7 Register Names
8 Bit 16 Bit 32 Bit
AL
AX EAX
AH
BL
BX EBX
BH
CL
CX ECX
CH
DL
DX EDX
DH
Sl ESI
DI EDI
BP EBP
SP ESP
Note: The 8-bit registers are the upper and lower bytes of the first four 16-bit registers.
The first four 16-bit registers are the lower words in the first four 32-bit registers. The position
in this table is designed to suggest the register interrelationships.
Each byte of the 16-bit registers AX, BX, CX, and DX also have other names. The byte
registers are named AH, BH, CH, and DH (High bytes) and AL, BL, CL, and DL (Low bytes).
All of the general-purpose registers are available for address calculations and for the results
of most arithmetic and logical operations; however, a few instructions assign specific reg-
isters to hold operands. For example, string instructions use the contents of the ECX, ESI,
and EDI registers as operands. By assigning specific registers for these functions, the
instruction set can be encoded more compactly. The instructions using specific registers
include: double-precision multiply and divide, I/O, strings, translate, loop, variable shift and
rotate, and stack operations.
A.2.5.2 Segment Registers

Segmentation gives system designers the flexibility to choose among various models of
memory organization. Implementation of memory models is the subject of Section A.2.2.
The segment registers contain 16-bit segment selectors, which index into tables in memory.
The tables hold the base address for each segment, as well as other information regarding
memory access. An unsegmented model is created by mapping each segment to the same
place in physical memory (see Figure A-32).

General Guidelines for Programming A-49

i"l AMD

Figure A-32 Unsegmented Memory

Different Logical Segments One Physical
Address Space

|CS >
|SS >
[DS D>
|ES >
[FS >
GS >

At any instant, up to six segments of memory are immediately available. The segment
registers CS, DS, SS, ES, FS, and GS hold the segment selectors for these six segments.
Each register is associated with a particular kind of memory access (code, data, or stack).
Each register specifies a segment (from among the six possible segments available to each
program) used for its particular type of access (see Figure A-33). Other segments can be
used by loading their segment selectors into the segment registers.

The segment containing the instructions being executed is called the code segment. Its
segment selector is held in the CS register. The Am486 microprocessor fetches instructions
from the code segment, using the contents of the EIP register as an offset into the segment.
The CS register is loaded by interrupts, exceptions, and instructions that transfer control
between segments (e.g., the CALL, IRET, and JMP instructions).

Figure A-33 Segmented Memory

Separate
Address Space

Different Logical Segments in Physical Memory

ICS

Code
Segment

Stack
Segment

Data
Segment

Data
Segment

Data
Segment

Data
Segment

A-50 General Guidelines for Programming

AMDH

All stack operations use the SS register to find the stack segment. Unlike the CS register,
the SSregister can be loaded explicitly, which permits application programs to set up stacks.
Before aprocedureis called, the SS allocates a stack to hold the return address, parameters
passed by the calling routine, and temporary variables allocated by the procedure.

The DS, ES, FS, and GS registers allow as many as four data segments to be available
simultaneously. Four data segments give efficient and secure access to different types of
data structures. Forexample, separate data segments can be created for the data structures
of the current module, data exported from a higher-level module, a dynamically created
data structure, and data shared with another program. If a bug causes a program to run
wild, the segmentation mechanism can limit the damage to only those segments allocated
to the program. An operand within a data segment is addressed by specifying its offset
either in an instruction or a general register.

Depending on the structure of data (i.e., the way data is partitioned into segments), a
program may require access to more than four data segments. To access additional seg-
ments, the DS, ES, FS, and GS registers can be loaded by an application program during
execution. The only requirement is to load the appropriate segment register before access-
ing data in its segment.

A base address is kept for each segment. To address data within a segment, a 32-bit offset
is added to the segment’s base address. Once a segment is selected (by loading the
segment selector into a segment register), an instruction only needs to specify the offset.
Simple rules define which segment register is used to form an address when only an offset
is specified.

Stack operations are supported by three registers:

m Stack Segment (SS) Register: Stacks reside in memory. The number of stacks in a
system is limited only by the maximum number of segments. A stack may be up to
4 Gbytes long, the maximum size of a segment on the Am486 microprocessor. One
stack is available at a time—the stack whose segment selector is held in the SS register.
This is the current stack, often referred to simply as “the stack.” The SS register is used
automatically by the microprocessor for all stack operations.

m Stack Pointer (ESP) Register: The ESP register holds an offset to the top-of-stack (TOS)
in the current stack segment. Itis used by PUSH and POP operations, subroutine calls
and returns, exceptions, and interrupts. When an item is pushed onto the stack (see
Figure A-34), the microprocessor decrements the ESP register, then writes the item at
the new TOS. When an item is popped off the stack, the microprocessor copies it from
the TOS, then increments the ESP register. In other words, the stack grows down in
memory toward lesser addresses.

m Stack-Frame Base Pointer (EBP) Register: The EBP register typically is used to access
data structures passed on the stack. For example, on entering a subroutine, the stack
contains the return address and some number of data structures passed to the subrou-
tine. The subroutine adds to the stack whenever it needs to create space for temporary
local variables. As a result, the stack pointer moves around as temporary variables are
pushed and popped. If the stack pointer is copied into the base pointer before anything
is pushed on the stack, the base pointer can be used to reference data structures with
fixed offsets. If this is not done, the offset to access a particular data structure would
change whenever a temporary variable is allocated or deallocated.

General Guidelines for Programming A-51

b‘l AMD

Figure A-34 Stacks

Stack Segment

31 0

Bottom of Stack

(Initial ESP Value)
A POP instruction moves the
Top of Stack to a higher address

Top of Stack < ESP

A PUSH instruction moves the
Top of Stack to a lower address

When the EBP register is used to address memory, the current stack segment is selected
(i.e.,the SS segment). Because the stack segment does not have to be specified, instruction
encoding is more compact. The EBP register also can be used to address other segments.

Instructions, such as the ENTER and LEAVE instructions, are provided. These automati-
cally set up the EBP register for convenient access to variables.

Instructions that use the stack implicitly (for example: POP EAX) also have a stack address-
size attribute of either 16 or 32 bits. Instructions with a stack address-size attribute of 16
use the 16-bit SP stack pointer register; instructions with a stack address-size attribute of
32 bits use the 32-bit ESP register to form the address of the top of the stack. The stack
address-size attribute is controlled by the B bit of the data-segment descriptor in the SS
register. A value of zero in the B bit selects a stack address-size attribute of 16; a value of
one selects a stack address-size attribute of 32.

A.2.5.3 Status and Control Registers

The status and control registers include the 16-bit FLAGS and the 32-bit EFLAGS registers
and the 16-bit IP and the 32-bit EIP registers. The 16-bit registers provide compatibility with
systems using 16-bit memory access.

A-52 General Guidelines for Programming

AMDn

A.2.5.3.1

Flags Register

Condition codes (e.g., carry, sign, overflow) and mode bits are kept in a 32-bit register

named EFLAGS. Figure A-35 defines the bits within this register. The flags control certain
operations and indicate the status of the Am486 microprocessor. The flags may be con-
sidered in three groups: status flags, control flags, and system flags.

Figure A-35 EFLAGS Register

FLAGS Register
Bits 15-0
31 23 15 7 0
0lofo oooooo'YYAVRoNCI)OD'TS‘ZOA0P1C
Dlp|g[C[M|F T| P |F|F|F|F|F|F F F F
L
0 or 1 Reserved, always indicated value
ID ID Flag System Flag
VIP Virtual Interrupt Pending System Flag
VIF Virtual Interrupt Flag System Flag
AC Alignment Check System Flag
VM Virtual Mode System Flag
RF Resume Flag System Flag
NT Nested Task System Flag
IOPL I/O Privilege Level System Flag
OF Overflow Flag Status Flag
DF Direction Flag Control Flag
IF Interrupt-Enable Flag System Flag
TF Trap Flag System Flag
SF Sign Flag Status Flag
ZF Zero Flag Status Flag
AF Auxiliary-Carry Flag Status Flag
PF Parity Flag Status Flag
CF Carry Flag Status Flag

The status flags ofthe EFLAGS register report the kind of result produced from the execution
of arithmetic instructions. The MOV instruction does not affect these flags. Conditional
jumps and subroutine calls allow a program to sense the state of the status flags and
respond to them. For example, when the counter controlling a loop is decremented to zero,
the state of ZF changes, and this change can be used to suppress the conditional jump to
the start of the loop. The status flags are shown in Table A-8.

Table A-8

Status Flags

Name Purpose Condition Reported
OF overflow Result exceeds positive or negative limit of number range
SF sign Result is negative (less than zero)
ZF zero Result is zero
AF auxiliary carry Carry out of bit position 3 (used for BCD)
PF parity Low byte of result has even parity (even number of set bits)
CF carry Carry out of most-significant bit of result

General Guidelines for Programming

A-53

b‘l AMD

A.2.5.3.2

The control flag DF of the EFLAGS register causes string instructions to auto-decrement
(i.e., to process strings from High addresses to Low addresses). Clearing DF causes string
instructions to auto-increment (i.e., to process strings from Low addresses to High
addresses).

Instruction Pointer

The instruction pointer (EIP) register contains the offset in the current code segment for
the next instruction to execute. The instruction pointer is not directly available to the pro-
grammer; it is controlled implicitly by control transfer instructions (jumps, returns, etc.),
interrupts, and exceptions. The EIP register advances from one instruction boundary to the
next.

Because of instruction prefetching, the instruction boundary is only an approximate indica-
tion of the bus activity that loads instructions into the microprocessor. The Am486 micro-
processor does not fetch single instructions. The microprocessor prefetches aligned 128-
bit blocks of instruction code in advance of instruction execution (an aligned 128-bit block
begins at an address that is clear in its Low four bits). These blocks are fetched without
regard to the boundaries between instructions. By the time an instruction starts to execute,
it already has been loaded into the microprocessor and decoded. This is a performance
feature, because it allows instruction execution to be overlapped with instruction prefetch
and decode.

When a jump or call executes, the microprocessor prefetches the entire aligned block
containing the destination address and discards instructions that are already prefetched or
decoded. This can be abenefit because the microprocessor does not generate an exception
until the causative code actually executes. So, if the original prefetched range sequence
includes some action that could generate an exception, such as code that is beyond the
end of the code segment, a jump or call that replaces that range actually prevents the
exception occurrence.

In Real Address Mode, prefetching may cause the microprocessor to access addresses
not anticipated by programmers. In Protected Mode, exceptions are correctly reported when
these addresses are executed. There may not be hardware mechanisms that account for
Real Address Mode behavior of the microprocessor. For example, if a system does not
return the READY signal (the signal that terminates a bus cycle) for bus cycles to unimple-
mented addresses, prefetching must not reference these addresses. If a system imple-
ments parity checking, prefetching must not access addresses beyond the end of parity-
protected memory. (Alternatively, the hardware design can cause READY to be returned
even for unimplemented address bus cycles, and parity errors can be ignored for prefetches
beyond the end of parity-protected memory.)

Prefetching can be kept from referencing a particular address by placing enough distance
between the address and the last executable byte. For example, to keep prefetching away
from addresses in the block from 10000h to 1000Fh, the last executable byte should be no
closer than OFFEENh. This places one free byte followed by one free, aligned, 128-bit block
between the last byte of the last instruction and the address that must not be referenced.
The prefetching behavior of the Am486 microprocessor is implementation-dependent; fu-
ture AMD products may have different prefetching behavior.

A-54

General Guidelines for Programming

AMDH

A.2.5.4

FPU Registers
The FPU uses the following Registers shown in Figure A-36:

m Eight individually-addressable 80-bit numeric registers, organized as a register stack
m Three 16-bit registers:

— FPU Status Word

— FPU Control Word

— Tag Word
m Error pointers:

— Two 16-bit registers containing selectors for the last instruction and operand

— Two 32-bit registers containing offsets for the last instructions and operand

— One 11-bit register containing the opcode of the last non-control FPU instruction
The FPU instructions use the contents of these registers for their operations.

Figure A-36 Am486 Microprocessor FPU Register Set

Tag
FPU Data Registers Field
7978 64 63 0 10
RO |+ | Biased Exponent Significand
R1
R2
R3
R4
R5
R6
R7
15 0 47 0
Control Register Instruction Pointer
Status Register Data Pointer
Tag Word
A.2.5.4.1 FPU Register Stack

The FPU register stack is shown in Figure A-36. Each of the eight numeric registers in the
stack is 80-bits wide and is divided into fields corresponding to the Am486 microprocessor's
extended real data type.

Numeric instructions address the data registers relative to the register on the top of the
stack. At any point in time, this top-of-stack register is indicated by the TOP (stack TOP)
field in the FPU status word. Load or push operations decrement TOP by one and load a
value into the new top register. A store-and-pop operation stores the value from the current
TOP register and then increments TOP by one. Like stacks in memory, the FPU register
stack grows down toward lower-addressed registers.

General Guidelines for Programming A-55

b‘l AMD

A.2.5.4.2

Many numeric instructions have several addressing modes that permit the programmer to
implicitly operate on the top of the stack, or to explicitly operate on specific registers relative
to the TOP. The ASM386/486 assembler supports these register addressing modes, using
the expression ST(0), or simply ST, to represent the current Stack Top and ST(J) to specify
the ith register from TOP in the stack (0 <i< 7). For example, if TOP contains 011B (register
3 is the top of the stack), the following statement would add the contents of two registers
in the stack (registers 3 and 5):

FADDST, ST(2)
The stack organization and top-relative addressing of the numeric registers simplify sub-
routine programming by allowing routines to pass parameters on the register stack. By
using the stack to pass parameters rather than using “dedicated” registers, calling routines
gain more flexibility in how they use the stack. As long as the stack is not full, each routine
simply loads the parameters onto the stack before calling a particular subroutine to perform
a numeric calculation. The subroutine then addresses its parameters as ST, ST(1), etc.,
even though TOP may, for example, refer to physical register 3 in one invocation and
physical register 5 in another.

FPU Status and Control Registers

The three 16-bit status and control registers perform control and monitoring functions for
the FPU. They include:

FPU Status Word—this 16-bit status word reflects the overall state of the FPU (see Figure
A-37). This status word may be stored into memory using the FSTSW/FNSTSW, FSTENV/
FNSTENYV, and FSAVE/FNSAVE instructions, and can be transferred into the AX register
with the FSTSW AX/FNSTSW AX instructions, allowing the FPU status to be inspected by
the Integer Unit.

Figure A-37 FPU Status Word

15 7 0

8 (S| Tor [[°I2[EIEIR1YI9| 4.

B FPU Busy

C3 Condition Code 3

TOP Top of Stack: 000 = R0; 001 = R1;
010 = R2; 011 = R3; 100 = R4;
101 =R5;110=R6; 111 =R7

C2 Condition Code 2

C1 Condition Code 1

CO Condition Code 0

ES Error Summary Status

SF Stack Fault

PE Precision Exception

UE Underflow Exception

OE Overflow Exception

ZE Zero Divide Exception

DE Denormalized Operand Exception

IE Invalid Operation Exception

Note: The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the ES bit (bit 7 of the
status word).

A-56

General Guidelines for Programming

AMDH

The four FPU condition code bits (C3—COQO) are similar to the other status flags. The Am486
microprocessor updates these bits to reflect the outcome of arithmetic operations. Table
A-9 summarizes the effect of these instructions on the condition code bits. The condition
code bits are used principally for conditional branching. The FSTSW AX instruction stores
the FPU status word directly into the AX register, allowing easy access for other code
inspection. The SAHF instruction can copy C3—CO0 directly to Am486 microprocessor flag
bits to simplify conditional branching. Table A-10 shows the mapping of these bits to the
flag bits.

Table A-9 Condition Code Interpretation

Instruction Cco C3 Cc2 C1
FCOM, FCOMP, FCOMPP, | Result of Comparison Operand is not Zero or O/U
FTST, FUCOM, FUCOMP, comparable
FUCOMPP, FICOM, FICOMP
FXAM Operand class Sign or O/U
FPREM, FPREM1 Q2 Q0 0 = reduction complete QlorO/U

1 = reduction incomplete

FIST, FBSTP, FRNDINT, FST,
FSTP, FADD, FMUL, FDIV,
FDIVR, FSUB, FSUBR, Undefined Roundup or O/U
FSCALE, FSQRT, FPATAN,
F2XM1, FYL2X, FYL2XP1

FPTAN, FSIN, FCOS, Undefined 0 = reduction complete Roundup or O/U
FSINCOS 1 = reduction incomplete (Undefined if C2=1)

FCHS, FABS, FXCH,
FINCSTP, FLD, FILD,
Constant Loads (FLDxx), Undefined Zero or O/U
FXTRACT, FBLD,
FSTP (ext. real)

FLDENV, FRSTOR Each bit loaded from memory

FLDCW, FSTENV, FSTCW, Undefined

FSTSW, FCLEX

FINIT, FSAVE Zero Zero Zero Zero
Notes:

O/U: When both IE and SF bits of the status word are set, indicating a stack exception, this bit distinguishes
between a stack overflow (C1 = 1) and underflow (C1 = 0).

Reduction: If FPREM or FPREM1 produces a remainder less than the modulus, reduction is complete.
Incomplete reduction leaves a partial remainder value at the top of the stack. This remainder can be used
for further reduction. For FPTAN, FSIN, FCOS, and FSINCOS, the bit is set if the operand at the top of stack
is too large; for this case, the original operand remains at the top of the stack.

Undefined: No specific value is defined for these bits.

Table A-10 Correspondence between FPU Flags and Processor Flag Bits

FPU Flag Processor Flag
Cco CF
C1 (none)
c2 PF
C3 ZF

General Guidelines for Programming A-57

b‘l AMD

A.2.5.4.3

Bits 11-13 of the status word point to the FPU register that is the current Top of Stack
(TOP). The significance of the stack top has been described in the prior section on the
register stack.

Figure A-37 shows the six exception flags in bits 0-5 of the status word. Bit 7 is the exception
summary status (ES) bit. ES is set if any unmasked exception bits are set, and is cleared
otherwise. Bits 0-5 indicate whether the FPU has detected one of six possible exception
conditions since these status bits were last cleared or reset. They are “sticky” bits, and can
only be cleared by the instructions FINIT, FCLEX, FLDENV, FSAVE, and FRSTOR.

Bit 6 is the stack fault (SF) bit. This bit distinguishes invalid operations due to stack overflow
or underflow from other kinds of invalid operations. When SF is set, bit 9 (C1) distinguishes
between stack overflow (C1 = 1) and underflow (C1 = 0).

Control Word

The FPU provides the programmer with several processing options, which are selected by
loading a word from memory into the control word. Figure A-38 shows the format and
encoding of the fields in the control word.

Figure A-38 FPU Control Word Format

15 121110 9 8

2cC |»
Z£0 |w
Z N o
S0
= —

5
'l re | PC P
c M

IC Infinity Control for
10287 Compatibility
RC Rounding Control:
00 = Round to Nearest or Even
01 = Round Down (to —)
10 = Round Up (to +)
11 = Chop (Truncate Towards 0)
PC Precision Control:
00 = 24 bits (Single)
01 = Reserved (Not Used)
10 = 53 bits (Double)
11 = 64 bits (Extended)
Exception Masks:
PM Precision Mask
UM Underflow Mask
OM Overflow Mask
ZM Zero Divide Mask
DM Denormalized Operand Mask
IM Invalid Operation Mask

The Low-order byte of this control word configures the numerical exception masking. Bits
0-5 of the control word contain individual masks for each of the six floating-point exception
conditions recognized by the Am486 microprocessor. The High-order byte of the control
word configures the FPU processing options, including:

m Precision control
® Rounding control

The precision-control bits (bits 8-9) can be used to set the FPU internal operating precision
at less than the default precision (64-bit significand). These control bits can be used to

provide compatibility with the earlier-generation arithmetic processors having less precision
than the 486 microprocessor or 387 math coprocessor. The precision control bits affect the

A-58

General Guidelines for Programming

AMDH

A.2.5.4.4

results of only the following five arithmetic instructions: ADD, SUB(R), MUL, DIV(R), and
SQRT. No other operations are affected by precision control.

The rounding-control bits (bits 10-11) provide for the common round-to-nearest mode, as
well as directed rounding and true chop. Rounding control affects the arithmetic instructions
(refer to Chapter 2 for lists of arithmetic and non-arithmetic instructions) and certain non-
arithmetic instructions, namely FLD constant and FST(P)mem instructions.

FPU Tag Word

The tag word indicates the contents of each register in the stack (see Figure A-39). The
tag word is used by the FPU itself to distinguish between empty and nonempty register
locations. Programmers of exception handlers may use this tag information to check the
contents of a numeric register without performing complex decoding of the actual data in
the register. The tag values from the tag word correspond to physical registers 0—7. Pro-
grammers must use the current top-of-stack (TOP) pointer stored in the FPU status word
to associate these tag values with the relative stack registers ST(0)-ST(7).

Figure A-39

Tag Word Format

15 7 0

Tag|Tag|Tag|Tag|Tag|Tag| Tag|Tag
(7)|(©)[(5) [(4)](3)[(2)|(1)](0)

Tag Values:
00 = Valid
01 =Zero
10 = Special/Invalid
(NaN, Unsupported),
Infinity, or Denormal
11 = Empty

A.2.5.4.5

The exact values of the tags are generated during execution of the FSTENV and FSAVE
instructions according to the actual contents of the non-empty stack locations. During ex-
ecution of other instructions, the Am486 microprocessor updates the tag values only to
indicate whether a stack location is empty or non-empty.

Numeric Instruction and Data Pointers

The instruction and data pointers provide support for programmed exception-handlers.
These registers are accessed by the ESC instructions FLDENV, FSTENV, FSAVE, and
FRSTOR. Whenever the Am486 microprocessor decodes an ESC instruction, it saves the
instruction address, the operand address (if present), and the instruction opcode.

When stored in memory, the instruction and data pointers appear in one of four formats,
depending on the operating mode of the microprocessor (Protected Mode or Real Address
Mode) and depending on the operand-size attribute in effect (32-bit operand or 16-bit
operand). In Virtual 8086 Mode, the Real Address Mode formats are used. Figures A-40
through A-43 show these pointers as they are stored following an FSTENV instruction.

General Guidelines for Programming A-59

b‘l AMD

Figure A-40 Protected Mode Numeric Instruction and Data Pointer Image in Memory, 32-Bit
Format

32-bit Protected Mode Format

31 23 15 7 0

Control Word Oh

Status Word 4h

Tag Word 8h

Instruction Pointer Offset Ch
Code Segment 10h

Selector
Data Operand Offset 14h
Operand Selector 18h
= Reserved, not used

Figure A-41 Real Mode Numeric Instruction and Data Pointer Image in Memory, 32-Bit Format

32-bit Real Address Mode Format

31 23 15 7 0
Control Word Oh
Status Word 4h
Tag Word 8h
Instruction
Pointer 15—-0 Ch
Instruction . 10h
0000 Pointer 31-16 0| Opcode 10-0
Operand 14h
Pointer 15—0
Operand 18h
0000 Pointer 31—16 000000000000

= Reserved, Not Used

A-60 General Guidelines for Programming

AMDH

Figure A-42 Protected Mode Numeric Instruction and Data Pointer Image in Memory, 16-Bit

Format

15

16-bit Protected
Mode Format

7 0

Control Word

Oh

Status Word

Tag Word

Instruction
Pointer Offset

CS Selector

Operand Offset

Operand Selector

2h

4h

6h

8h

Ah

Ch

Figure A-43 Real Mode Numeric Instruction and Data Pointer Image in Memory, 16-Bit Format

16-bit Real and

Virtual Mode Format

15

7 0

Control Word

Status Word

Tag Word

Instruction
Pointer 15-0

IP
19-16

0 Opcode 10-0

Operand
Pointer 15-0

OP
19-16

000000000000

Oh

2h

4h

6h

8h

Ah

Ch

The FSTENV and FSAVE instructions store this data into memory, allowing exception

handlers to determine the precise nature of any numeric exceptions that may be

encountered.

The saved instruction address points to any prefixes that preceded the instruction, as in
the 387 and 287 math coprocessors. This is different from the 8087 coprocessor, for which

the instruction address points only to the ESC instruction opcode.

Note: The microprocessor control instructions FINIT, FLDCW, FSTCW FSTSW, FCLEX,
FSTENV, FLDENV, FSAE, and FRSTOR do not affect the data pointer. Also, except for the
instructions just mentioned, the value of the data pointer is undefined if the prior ESC

instruction did not have a memory operand.

General Guidelines for Programming

A-61

b‘l AMD

A.2.5.4.6

Opcode Field of Last Instruction

The opcode field in Figure A-44 describes the 11-bit format of the last non-control FPU
instruction executed. The first and second instruction bytes (after all prefixes) are combined
to form the opcode field. Since all floating-point instructions share the same 5 upper bits
in the first instruction byte (following prefixes), they are not stored in the opcode field. Note
thatthe second instruction byte is actually located in the Low-order byte of the stored opcode
field.

Figure A-44

Opcode Field

7 6 54 3 210

10 9 8 7 6 5 4v3 2 1 0O

Second Instruction Byte \Q

76543210 A Opcode Field

N\

First Instruction Byte

Al 2.6

Instruction Format

The instruction format uses a combination of explicit and implicit conditions to set the
environment for executing a specific command. For example, when executing an instruc-
tion, the Am486 microprocessor can address memory using either 16- or 32-bit addresses.
Accordingly, each instruction that uses memory addresses has an associated address-size
attribute of either 16 or 32 bits. Using a 16-bit address implies both the use of 16-bit
displacements in instructions and the generation of 16-bit address offsets (segment relative
addresses) as the result of the effective address calculations. Using 32-bit addresses im-
plies the use of 32-bit displacements and the generation of 32-bit address offsets. Similarly,
an instruction that accesses words (16 bits) or doublewords (32 bits) has an operand-size
attribute of either 16 or 32 bits.

The attributes are determined by a combination of defaults, instruction prefixes, and (for
programs executing in Protected Mode) size-specification bits in segment descriptors.The
information encoded in an instruction includes a specification of the operation to be per-
formed, the type of the operands to be manipulated, and the location of these operands. If
an operand is located in memory, the instruction also must select, explicitly or implicitly, the
segment that contains the operand.

Chapter 2 provides a complete listing and description of Am486 microprocessor instruc-
tions. All non-floating-point instruction encodings are subsets of the general instruction
format shown in Figure A-45.

A-62

General Guidelines for Programming

AMDn

Figure A-45 General Instruction Format

Instruction AddressSize OperandSize Segment
Prefix Prefix Prefix Override
Oor1 Oor1 Oori Oor1

Number of Bytes

Opcode E?I\ﬁ s-i-b Displacement Immediate
1or2 Oor1 Oori 0,1,20r4 0,1,2,0r4

Number of Bytes

Instructions consist of;:

m [nstruction prefixes (optional)

m Primary opcode bytes (one or two)

m Address specifier with mod r/m byte and Scale Index Base (s-i-b) byte, if required
m Displacement, if required

m Immediate data field, if required

Floating-point instructions all begin with the letter “F” and have a basic 2-byte format that
may have a 1- or 2-byte optional address specifier field. The basic FPU instruction layout
is included in Figure A-46.

General Guidelines for Programming A-63

b‘l AMD

Figure A-46 Floating-Point Instruction Formats

2
3
4
5
Bits

OP = Instruction Opcode OPA/OPB = Opcode split with A and B parts
MF = Memory Format (00 = 32-bit real; 01 = 32-bit int.; 10 = 64-bit real; 11 = 64-bit int.)
d = Destination (0 = Destination is ST(0); 1 = Destination is ST(i))

R XOR d = 0: Destination OP Source; R XOR d = 1: Source OP Destination

P = Pop (0 = Do not pop stack after operation; 1 = Pop stack after operation)
mod, r/m, s-i-b, and displacement fields are address mode encoding parameters

115t011 10} 9! 8! 7/6]5/4/3/2100]

(see Tables A-11 through A-14)

FPU Instruction
High Byte Low Byte Optional Fields
11011|OPA | 1 mod |1 |OPB| r/m | ssindexbase d32 | 16 | 8 | none
11011|MF |OPA|lmod | OPB | r/m | ssindexbase d32 | 16 | 8 | none
- Y N g —

11011]|d |P|OPA 1 |OPB [R| ST(i)

"s-i-b" address displacement
11011[0 |0 1 111 OoP byte (4,2, 1, or no bytes)
110110 |1 1 111 OoP

ST(i) = Register
Stack Element

000 = Stack Top

001 =Top + 1
010=Top + 2
011 =Top + 3
100=Top + 4
101 =Top+5
110=Top + 6
111 =Top+7

Table A-11 Address Mode Field (mod/rm) Definitions (no s-i-b present)
Effective Address
Value 16-Bit Address Mode 32-Bit Address Mode
(mod r/m =)
00 000 DS:[BX + SI| DS:[EAX]
00 001 DS:[BX + DI DS:[ECX]
00 010 SS:[BP + Sl DS:[EDX]
00 011 SS:[BP + DI] DS:[EBX]
00 100 DS:[SI] s-i-b present (see Tables A-12 through A-14)
00 101 DS:[DI] DS:immediate doubleword
00 110 DS:immediate word DS:[ESI]
00 111 DS:[BX] DS:[EDI]
01 000 DS:[BX + S| + immediate byte] DS:[EAX + immediate byte]
01001 DS:[BX + DI + immediate byte] DS:[ECX + immediate byte]
01010 SS:[BP + S| + immediate byte] DS:[EDX + immediate byte]
01011 SS:[BP + DI + immediate byte] DS:[EBX + immediate byte]
01100 DS:[SI + immediate byte] s-i-b present (see Tables A-12 through A-14)
01101 DsS:[DI + immediate byte] SS:[EBP + immediate byte]
01110 SS:[BP + immediate byte] DS:[ESI + immediate byte]
01111 DS:[BX + immediate byte] DS:[EDI + immediate byte]
10 000 DS:[BX + S| + immediate word] DS:[EAX + immediate doubleword]
10 001 DS:[BX + DI + immediate word] DS:[ECX + immediate doubleword]
A-64 General Guidelines for Programming

AMDH

Table A-11 Address Mode Field (mod/rm) Definitions (no s-i-b present) (continued)

Effective Address
Value 16-Bit Address Mode 32-Bit Address Mode
(mod r/m =)
10 010 SS:[BP + S| + immediate word] DS:[EDX + immediate doubleword]
0011 SS:[BP + DI + immediate word] DS:[EBX + immediate doubleword]
10 100 DS:[SI + immediate word] s-i-b present (see Tables A-12 through A-14)
10101 DS:[DI + immediate word] SS:[EBP + immediate doubleword]
10 110 SS:[BP + immediate word] DS:[ESI + immediate doubleword]
10 111 DS:[BX + immediate word] DS:[EDI + immediate doubleword]
The following values 16-Bit Data Operations 32-Bit Data Operations
specify General
Registers w=0 w =1 w =0 w =1
11 000 AL AX AL EAX
11 001 CL CX CL ECX
11 010 DL DX DL EDX
11 011 BL BX BL EBX
11 100 AH SP AH ESP
11 101 CH BP CH EBP
11 110 DH Sl DH ESI
11111 BH DI BH EDI

Table A-12 Scale Field (ss) Definitions

Value (ss=) Scale Factor
00 x1
01 x2
10 x4
1 x8

Table A-13 Index Field (index) Definitions

Value (index=) Indexed Register
000 EAX
001 ECX
010 EDX
011 EBX
100 no index register
101 EBP
110 ESI
11 EDI

Note: When index = 100, the ss field must equal 00. If not, the effective address is undefined.

General Guidelines for Programming A-65

b‘l AMD

Table A-14 Base Field (base) Definitions

mod r/m = Value (base=) Effective Address

00 100 000 DS:[EAX + (scaled index)]

00 100 001 DS:[ECX + (scaled index)]

00 100 010 DS:[EDX + (scaled index)]

00 100 011 DS:[EBX + (scaled index)]

00 100 100 SS:[ESP + (scaled index)]

00 100 101 DS:[immediate doubleword + (scaled index)]

00 100 110 DS:[ESI + (scaled index)]

00 100 111 DS:[EDI + (scaled index)]

01100 000 DS:[EAX + (scaled index) + immediate byte]
01100 001 DS:[ECX + (scaled index) + immediate byte]
01100 010 DS:[EDX + (scaled index) + immediate byte]
01100 011 DS:[EBX + (scaled index) + immediate byte]

01 100 100 SS:[ESP + (scaled index) + immediate byte]
01100 101 SS:[EBP + (scaled index) + immediate byte]

01 100 110 DS:[ESI + (scaled index) + immediate byte]

01 100 111 DS:[EDI + (scaled index) + immediate byte]

10 100 000 DS:[EAX + (scaled index) + immediate doubleword]
10 100 001 DS:[ECX + (scaled index) + immediate doubleword]
10 100 010 DS:[EDX + (scaled index) + immediate doubleword]
10 100 011 DS:[EBX + (scaled index) + immediate doubleword]
10 100 100 SS:[ESP + (scaled index) + immediate doubleword]
10 100 101 SS:[EBP + (scaled index) + immediate doubleword]
10 100 110 DS:[ESI + (scaled index) + immediate doubleword]
10 100 111 DS:[EDI + (scaled index) + immediate doubleword]

A.2.6.1

Instruction Prefixes
Allowable instruction prefix codes include:

REP/REPE/REPNE/REPNZ/REPZ: Repeat instruction codes used with string
instructions

LOCK: Forces the system to invoke the LOCK signal

Segment Override: Requires the instruction to use the specified segment register (CS,
DS, ES, FS, GS, or SS)

Operand size override: Requires the instruction to use the specified operand size instead
of the default value

Address size override: Requires the instruction to use the specified address size instead
of the default value

Note: For programs running in Protected Mode, the D bit in executable-segment descriptors
specifies the default attribute for both address size and operand size. These default
attributes apply to the execution of all instructions in the segment. A clear D bit sets the
default address size and operand size to 16 bits; a set D bit, to 32 bits. Programs that
execute in Real Mode or Virtual 8086 Mode have 16-bit addresses and operands by default.

A-66

General Guidelines for Programming

AMDH

A.2.6.2 Opcode Fields

The opcode fields define the operation, but all can have smaller encoding fields within them
that define the operation direction, displacement sizes, the register encoding, or sign ex-
tension; encoding fields vary depending on the class of operation.

A.2.6.3 Address Specifier

Most instructions that can refer to an operand in memory have an addressing form byte
after the primary opcode byte(s). This byte, called the mod r/m byte, specifies the address
form to be used. Certain encodings of the mod r/m byte indicate a second addressing byte,
the s-i-b byte, which follows the mod r/m byte and is required to fully specify the addressing
form. Addressing forms can include a displacement immediately following either the mod
r/m or s-i-b byte. If a displacement is present, it can be 8, 16, or 32 bits. The 8-bit form is
used in the common case when the displacement is sufficiently small. The microprocessor
extends an 8-bit displacement to 16 or 32 bits, taking into account the sign.

The mod r/m and s-i-b bytes contain the following information:

m The indexing type or register number to be used in the instruction
m The register to be used, or more information to select the instruction
m The base, index, and scale information

The mod r/m byte contains three fields of information:

m The mod field, which occupies the two most-significant bits of the byte, combines with
the r/m field to form 32 possible values: eight registers and 24 indexing modes.

m The reg field, which occupies the next three bits following the mod field, specifies either
a register number or three more bits of opcode information. The meaning of the reg field
is determined by the first (opcode) byte of the instruction.

m The r/m field, which occupies the three least-significant bits of the byte, can specify a
register as the location of an operand, or can form part of the addressing-mode encoding
in combination with the mod field as described above.

The based indexed and scaled indexed forms of 32-bit addressing require the s-i-b byte.
The presence of the s-i-b byte is indicated by certain encodings of the mod r/m byte. The
s-i-b byte then includes the following fields:

m The ss field (the two most-significant bits of the byte) specifies the scale factor
m The index field (the next three bits after the ss field) specifies the index register number

m The base field (the three least-significant bits of the byte) specifies the base register
number

Figure A-47 shows the formats of the mod r/m and s-i-b bytes. (See also Tables A-11-A-14.)

Figure A-47 mod R/M and s-i-b Byte Formats

mod R/M Byte
7 6 5 4 3 2 1 0

Mod Reg/Opcode R/M

s-i-b (scale-index-base) Byte
7 6 5 4 3 2 1 0
SS Index Base

General Guidelines for Programming A-67

b‘l AMD

A.2.6.4

A.2.7

Immediate Operand

If the instruction specifies an immediate operand, the immediate operand always follows
any displacement bytes. The immediate operand, if specified, is always the last field of the
instruction. Immediate operands may be bytes, words, or doublewords. In cases where an
8-bit immediate operand is used with a 16- or 32-bit operand, the microprocessor extends
the 8-bit operand to an integer of the same sign and magnitude in the larger size. In the
same way, a 16-bit operand is extended to 32-bits.

Operand Selection

An instruction acts on zero or more operands. An example of a zero-operand instruction is
the NOP instruction (no operation). An operand can be held in any of these places:

m In the instruction itself (an immediate operand)

m |n aregister (in the case of 32-bit operands, EAX, EBX, ECX, EDX, ESI, EDI, ESP, or
EBP; in the case of 16-bit operands AX, BX, CX, DX, Sl, DI, SP, or BP; in the case of
8-bit operands AH, AL, BH, BL, CH, CL, DH, or DL; the segment registers; or the
EFLAGS register for flag operations). Use of 16-bit register operands requires use of
the 16-bit operand size prefix (a byte with the value 67h preceding the instruction).

® In memory
m Atan |/O port

Access to operands is very fast. Register and immediate operands are available on-chip
(the latter because they are prefetched as part of interpreting the instruction). Memory
operands residing in the on-chip cache can be accessed just as fast.

Of the instructions that have operands, some specify operands implicitly; others specify
operands explicitly; still others use a combination of both. For example:

m Implicit operand: AAM

— By definition, AAM (ASCII adjust for multiplication) operates on the contents of the
AX register

m Explicit operand: XCHG EAX, EBX
— The operands to be exchanged are encoded in the instruction with the opcode
m Implicit and explicit operands: PUSH COUNTER

— The memory variable COUNTER (the explicit operand) is copied to the top of the
stack (the implicit operand)

Note: Most instructions have implicit operands. All arithmetic instructions, for example,
update the EFLAGS register.

Aninstruction can explicitly reference one or two operands. Two-operand instructions, such
as MOV, ADD, and XOR, generally overwrite one of the two participating operands with
the result. This is the difference between the source operand (the one unaffected by the
operation) and the destination operand (the one overwritten by the result).

For most instructions, one of the two explicitly specified operands—either the source or the
destination—can be either in a register or in memory. The other operand must be in a
register or it must be an immediate source operand. This puts the explicit two-operand
instructions into the following groups:

A-68

General Guidelines for Programming

AMDH

A.2.7.1

A.2.7.2

m Register to register
m Register to memory
m Memory to register
m Immediate to register
® Immediate to memory

Certain string instructions and stack manipulation instructions, however, transfer data from
memory to memory. Both operands of some string instructions are in memory and are
specified implicitly. Push and pop stack operations allow transfer between memory oper-
ands and the memory-based stack. Several three-operand instructions are provided, such
as the IMUL, SHRD, and SHLD instructions. Two of the three operands are specified
explicitly, as for the two-operand instructions, while a third is taken from the ECX register
or supplied as an immediate value. Other three-operand instructions, such as the string
instructions when used with a repeat prefix, take all their operands from registers.

For programs running in Protected Mode, the D bit in executable-segment descriptors
specifies the default attribute for both address size and operand size. These default at-
tributes apply to the execution of all instructions in the segment. A clear D bit sets the default
address size and operand size to 16 bits; a set D bit, to 32 bits. Programs that execute in
Real Mode or Virtual 8086 Mode have 16-bit addresses and operands by default.

Immediate Operands

Certain instructions use data from the instruction itself as one (and sometimes two) of the
operands. Such an operand is called an immediate operand. It may be a byte, word, or
doubleword. For example:

SHR PATTERN, 2

One byte of the instruction holds the value 2, the number of bits by which to shift the variable
PATTERN.

TEST PATTERN, OFFFFOOFFh

A doubleword of the instruction holds the mask that is used to test the variable PATTERN.
I MJL CX, MEMAORD, 3

A word in memory is multiplied by an immediate 3 and stored into the CX register.

All arithmetic instructions (except divide) allow the source operand to be an immediate
value. When the destination is the EAX or AL register, the instruction encoding is one byte
shorter than with the other general registers.

Register Operands

Operands may be located in one of the 32-bit general registers (EAX, EBX, ECX, EDX,
ESI, EDI, ESP, or EBP), in one of the 16-bit general registers (AX, BX, CX, DX, Sl, DI, SP,
or BP), or in one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL, or DL). The
Am486 microprocessor has instructions for referencing the segment registers (CS, DS, ES,
SS, FS, and GS). These instructions are used by application programs only if system
designers have chosen a segmented memory model. The Am486 microprocessor also has
instructions for changing the state of individual flags in the EFLAGS register. Instructions
have been provided for setting and clearing flags that often need to be accessed. The other
flags, which are not accessed so often, can be changed by pushing the contents of the
EFLAGS register on the stack, making changes to it while it's on the stack, and popping it
back into the register.

General Guidelines for Programming A-69

b‘l AMD

A.2.7.3

A.2.7.3.1

Memory Operands

Instructions with explicit operands in memory must reference the segment containing the
operand and the offset from the beginning of the segment to the operand. Segments are
specified using a segment-override prefix, which is a byte placed at the beginning of an
instruction. If no segment is specified, simple rules assign the segment by default. The
offset is specified in one of the following ways:

m Mostinstructions that access memory contain a byte for specifying the addressing meth-
od of the operand. The byte, called the mod r/m byte, comes after the opcode and
specifies whether the operand is in a register or in memory. If the operand is in memory,
the address is calculated from a segment register and any of the following values: a
base register, an index register, a scaling factor, and a displacement. When an index
register is used, the mod r/m byte also is followed by another byte to specify the index
register and scaling factor. This form of addressing is the most flexible.

m A few instructions use implied address modes: A MOV instruction with the AL or EAX
register as either source or destination can address memory with a doubleword encoded
in the instruction. This special form of the MOV instruction allows no base register, index
register, or scaling factor to be used. This form is one byte shorter than the general-
purpose form.

String operations address memory in the DS segment using the ESI register, (the MOVS,
CMPS, OUTS, and LODS instructions) or using the ES segment and EDI register (the
MOVS, CMPS, INS, SCAS, and STOS instructions).

Stack operations address memory in the SS segment using the ESP register (the PUSH,
POP, PUSHA, PUSHAD, POPA, POPAD, PUSHF, PUSHFD, POPF, POPFD, CALL,
LEAVE, RET, IRET, and IRETD instructions, exceptions, and interrupts).

Segment Selection

Explicit specification of a segment is optional. If a segment is not specified by a segment-
override prefix, the microprocessor automatically chooses a segment according to the rules
of Table A-15. (If a flat model of memory organization is used, the rules for selecting
segments are not apparent to application programs.) Different kinds of memory access
have different default segments. Data operands usually use the main data segment (the
DS segment). However, the ESP and EBP registers are used for addressing the stack, so
when either register is used, the stack segment (the SS segment) is selected.

Table A-15

Default Segment Selection Rules

Segment Used

. Default Selection Rule
Register Used

Type of Reference

Instructions Code Segment Automatic with instruction fetch
CS Register

Stack Stack Segment All stack PUSHes and POPs. Any memory reference
SS Register that uses ESP or EBP as a base register.

Local Data Data Segment All data references except when relative to stack or
DS Register string destination

Destination Strings E-Space Segment Destination of string instructions
ES Register

A-70

General Guidelines for Programming

AMDH

A.2.7.3.2

Segment-override prefixes are provided for each of the segment registers. Only the follow-
ing special cases have a default segment selection that is not affected by a segment-
override prefix:

m Destination strings in string instructions use the ES segment
m Destination of a push or source of a pop uses the SS segment
m Instruction fetches use the CS segment

Effective-Address Computation

The mod r/m byte provides the most flexible form of addressing. Instructions that have a
mod r/m byte after the opcode are the most common in the instruction set. For memory

operands specified by a mod r/m byte, the offset within the selected segment is the sum
of three components:

m Displacement
m Base register
m Index register (the index register may be multiplied by a factor of 2, 4, or 8)

The offset that results from adding these components is called an effective address. Each
of these components may have either a positive or negative value. Figure A-48 illustrates
the full set of possibilities for mod r/m addressing.

Figure A-48

Segment

CS

DS
ES
FS
GS

Effective Address Computation

+ Base + (Index X Scale) + Displacement
EAX [EAX | _1] B]
ECX
Eg§ EDX No Displacement
EBX 2 8-bit Displacement
+ EBX + X + 32-bit Displacement
ESP 4
EBP EBP
ESI ESI 8
| EDI_| _EDI] | |]

The displacement component, because it is encoded in the instruction, is useful for relative
addressing by fixed amounts, such as:

m Location of simple scalar operands
m Beginning of a statically allocated array
m Offset to a field within a record

The base and index components have similar functions. Both use the same set of general
registers. Both can be used for addressing that changes during program execution, such as:

m Location of procedure parameters and local variables on the stack.

m The beginning of one record among several occurrences of the same record type or in
an array of records

m The beginning of one dimension of multiple dimension array

m The beginning of a dynamically allocated array

General Guidelines for Programming A-71

b‘l AMD

Al 2.8

The uses of general registers as base or index components differ in the following respects:

m The ESP register cannot be used as an index register.

m When the ESP or EBP register is used as the base, the SS segment is the default
selection. In all other cases, the DS segment is the default selection.

m The scaling factor permits efficient indexing into an array when the array elements are
2, 4, or 8 bytes. The scaling of the index register is done in hardware at the time the
address is evaluated. This eliminates an extra shift or multiply instruction.

The base, index, and displacement components may be used in any combination; any of
these components may be null. A scale factor can be used only when anindex also is used.
Each possible combination is useful for data structures commonly used by programmers
in high-level languages and assembly language. Suggested uses for some combinations
of address components are described below:

m Displacement—indicates the offset of the operand. This form of addressing is used to
access a statically allocated scalar operand. A byte, word, or doubleword displacement
can be used.

m Base—the offset to the operand is specified indirectly in one of the general registers, as
for “based” variables.

m Base + Displacement—a register and a displacement can be used together for two
distinct purposes:

— Index into static array when the element size is hot 2, 4, or 8 bytes. The displacement
component encodes the offset of the beginning of the array. The register holds the
results of a calculation to determine the offset to a specific element within the array.

— Access a field of a record. The base register holds the address of the beginning of
the record, while the displacement is an offset to the field.

Note: An important special case of this combination is access to parameters in a procedure
activation record. A procedure activation record is the stack frame created when a
subroutine is entered. In this case, the EBP register is the best choice for the base register,
because it automatically selects the stack segment. This is a compact encoding for this
common function.

m (Index Ecale) + Displacement—this combination is an efficient way to index into a static
array when the element size is 2, 4, or 8 bytes. The displacement addresses the begin-
ning of the array, the index register holds the subscript of the desired array element,
and the microprocessor automatically converts the subscript into an index by applying
the scaling factor.

m Base + Index + Displacement—two registers used together that support either a two-
dimensional array (the displacement holds the address of the beginning of the array) or
one of several instances of an array of records (the displacement is an offset to a field
within the record).

m Base +(Index Ecale) + Displacement—provides efficient indexing of a two-dimensional
array when the elements of the array are 2, 4, or 8 bytes in size.

Interrupts and Exceptions

Interrupts and exceptions are forced transfers of execution to a task or a procedure. The
task or procedure is called a handler. Interrupts occur at random times during the execution
of a program in response to signhals from hardware. Exceptions occur when instructions

that provoke exceptions are executed. Usually, the servicing of interrupts and exceptions
is performed in a manner transparent to application programs. Interrupts are used to handle

A-72

General Guidelines for Programming

AMDH

events external to the microprocessor, such as requests to service peripheral devices.
Exceptions handle conditions detected by the microprocessor in the course of executing
instructions, such as division by 0.

There are two sources for interrupts and two sources for exceptions:

m Interrupts
— Maskable interrupts: invoked by a signal to the INTR input if not masked by IF
— Non-maskable interrupts: invoked by a signal to the NMI input
m Exceptions
— Microprocessor-detected exceptions:. faults, traps, and aborts
— Programmed exceptions: triggered by INTO, INT 3h, INT nh, and BOUND instructions

Application programmers normally are not concerned with handling exceptions or inter-
rupts. The operating system, monitor, or device driver handles them. Certain kinds of ex-
ceptions, however, are relevant to application programming, and many operating systems
give application programs the opportunity to service these exceptions. However, the oper-
ating system defines the interface between the application program and the exception
mechanism of the Am486 microprocessor.

Table A-16 lists the exceptions and interrupts.

Table A-16

Exceptions and Interrupts

Vector Number Description

0 Divide Error
1 Debugger Call
2 NMI
3 Breakpoint
4 INTO-detected Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Device Not Available
8 Double Fault
9 Reserved
10 Invalid Task State Segment
11 Segment Not Present
12 Stack Exception
13 General Protection
14 Page Fault
15 Reserved
16 Floating-Point Error
17 Alignment Check

18-31 Reserved

32-255 Maskable Interrupts

General Guidelines for Programming A-73

b‘l AMD

Al 2.9

m Adivide-error exception results when the DIV or IDIV instruction is executed with a zero
denominator or when the quotient is too large for the destination operand.

m A debug exception may be sent back to an application program if it results from the Trap
Flag (TF).

m A breakpoint exception results when an INT3 instruction is executed. This instruction is
used by some debuggers to stop program execution at specific points.

m An overflow exception results when the INTO instruction is executed and the Overflow
Flag (OF) is set.

m A bounds-check exception results when the BOUND instruction is executed with an
array index that falls outside the bounds of the array.

m The device-not-available exception occurs whenever the microprocessor encounters an
escape instruction and either the TS (task switched) or the EM (emulate coprocessor)
bit of the CRO control register is set.

m An alignment-check exception is generated for unaligned memory operations in user
mode (privilege level 3), provided both AM and AC are set. Memory operations at su-
pervisor mode (privilege levels 0, 1, and 2), or memory operations that default to super-
visor mode, do not generate this exception.

The INT instruction generates an interrupt whenever it is executed; the microprocessor
treats this interrupt as an exception. Its effects (and the effects of all other exceptions) are
determined by exception handler routines in the application program or the operating
system.

Exceptions caused by segmentation and paging are handled differently than interrupts.
Normally, the contents of the program counter (EIP register) are saved on the stack when
an exception or interrupt is generated. But exceptions resulting from segmentation and
paging restore the contents of some microprocessor registers to the state they held prior
to instruction interpretation. The saved contents of the program counter address the in-
struction that caused the exception, rather than the instruction after it. This lets the operating
system fix the exception-generating condition and restart the program at the instruction
that generated the exception. This mechanism is completely transparent to the program.

Input/Output

This chapter explains the input/output architecture of the Am486 microprocessor. Input/
output is accomplished through I/O ports, which are registers connected to peripheral
devices. An I/O port can be an input port, an output port, or a bidirectional port. Some I/O
ports are used for carrying data, such as the transmit and receive registers of a serial
interface. Other I/O ports are used to control peripheral devices, such as the control registers
of a disk controller.

The Am486 microprocessor always synchronizes I/O instruction execution with external
bus activity. All previous instructions are completed before an 1/0 operation begins. In
particular, all writes held pending in the Am486 CPU write buffers are completed before an
I/O read or write is performed.

The input/output architecture is the programmer’s model of how these ports are accessed.
The discussion of this model includes:

m Methods of addressing I/O ports
m [nstructions that perform 1/O operations

m The I/O protection mechanism

A-74

General Guidelines for Programming

AMDH

A.2.9.1

A.2.9.1.1

1/0 Addressing
The Am486 microprocessor allows I/O ports to be addressed in either of two ways:

m Through a separate I/O address space accessed using I/O instructions

m Through memory-mapped I/O, where I/O ports appear in the address space of physical
memory

The use of aseparate I/O address space is supported by special instructions and a hardware
protection mechanism. When memory-mapped I/O is used, the general purpose instruction
set can be used to access I/O ports, and protection is provided using segmentation or
paging. Some system designers may prefer to use the I/O facilities built into the micropro-
cessor, while others may prefer the simplicity of a single physical address space.

If segmentation or paging is used for protection of the I/O address space, the AVL fields in
segment descriptors or page-table entries may be used to mark pages containing 1/O as
unrelocatable and unswappable. The AVL fields are provided for this kind of use, where a
system programmer needs to make an extension to the address translation and protection
mechanisms.

Hardware designers use these ways of mapping 1/O ports into the address space when
they design the address decoding circuits of a system. 1/O ports can be mapped so that
they appear in the 1/O address space or the address space of physical memory (or both).
System programmers may need to discuss with hardware designers the kind of 1/0O ad-
dressing they would like to have.

I/0 Address Space

The Am486 microprocessor provides a separate 1/0O address space, distinct from the ad-
dress space for physical memory, where 1/O ports can be placed. The I/O address space
consists of 2'¢(64K) individually addressable 8-bit ports; any two consecutive 8-bit ports
can be treated as a 16-bit port, and any four consecutive ports can be a 32-bit port. Extra
bus cycles are required if a port crosses the boundary between two doublewords in physical
memory.

The M/10 pin on the Am486 microprocessor indicates when a bus cycle to the I/O address
space occurs. When a separate 1/0 address space is used, it is the responsibility of the
hardware designer to make use of this signal to select I/O ports rather than memory. In
fact, the use of the separate I/0O address space simplifies the hardware design because
these ports can be selected by a single signal; unlike other microprocessors, it is not
necessary to decode a number of upper address lines in order to set up a separate 1/O
address space.

A program can specify the address of a port in two ways. With an immediate byte constant,
the program can specify:

m 256 8-bit ports numbered 0-255

m 128 16-bit ports numbered 0, 2, 4, ..., 252, 254

m 64 32-bit ports numbered 0, 4, 8, . . ., 248, 252

Using a value in the DX register, the program can specify:
m 8-bit ports numbered 0-65535

m 16-bit ports numbered 0, 2, 4, ..., 65532, 65534

m 32-bit ports numbered 0, 4, 8, . . ., 65528, 65532

General Guidelines for Programming A-75

b‘l AMD

A.2.9.1.2

The Am486 microprocessor can transfer 8, 16, or 32 bits to a device in the I/O space. Like
words in memory, 16-bit ports should be aligned to even addresses so that all 16 bits can
be transferred in a single bus cycle. Like doublewords in memory, 32-bit ports should be
aligned to addresses that are multiples of 4. The microprocessor supports data transfers
to unaligned ports, but there is a performance penalty because an extra bus cycle must be
used.

m The IN and OUT instructions move data between a register and a port in the I/O address
space. The instructions INS and OUTS move strings of data between the memory
address space and ports in the I/O address space.

m |/O port addresses 0F8h through OFFh are reserved for use by AMD. Do nhot assign
I/O ports to these addresses.

m The exact order of bus cycles used to access ports that require more than one bus cycle
is undefined. For example, an OUT instruction that loads an unaligned doubleword port
at location 2h accesses the word at 4h before accessing the word at 2h. This behavior
is neither defined, nor guaranteed to remain the same in future AMD products.

m [f software needs to produce a particular order of bus cycles, this order must be specified
explicitly. For example, to load a word-length port at 4h followed by loading a word port
at 2h, two word-length instructions must be used, rather than a single doubleword
instruction.

Note: Although the Am486 microprocessor automatically masks parity errors for certain
types of bus cycles, such as interrupt acknowledge cycles, it does not mask parity for bus
cycles to the I/O address space. Programmers may need to be aware of this behavior as
a possible source of spurious parity efforts.

Memory-Mapped I/O0

I/0 devices may be placed in the address space for physical memory. This is called memory-
mapped I/0. As long as the devices respond like memory components, they can be used
with memory-mapped /0.

Memory-mapped I/O provides additional programming flexibility. Any instruction that refer-
ences memory may be used to access an I/O port located in the memory space. For
example, the MOV instruction can transfer data between any register and a port. The AND,
OR, and TEST instructions may be used to manipulate bits in the control and status registers
of peripheral devices (see Figure A-49). Memory-mapped I/O can use the full instruction
set and the full complement of addressing modes to address I/O ports.

Figure A-49 Memory Mapped 1/0

Physical Memory

Nh
ROM
Input/Output Port
Input/Output Port
Input/Output Port
RAM
0

A-76

General Guidelines for Programming

AMDH

A.2.9.2

A.2.9.3

A.2.9.4

To optimize performance, the Am486 CPU allows reads to be re-ordered ahead of buffered
writes in certain precisely-defined circumstances. Using memory-mapped I/O onthe Am486
CPU therefore creates the possibility that an I/O read will be performed before the memory
write of a previous instruction. To eliminate this possibility, use an I/O instruction for the
read. Using an I/O instruction for an I/O write can also be advantageous because it guar-
antees that the write will be completed before the next instruction begins execution. If I/O
writes are used to control system hardware, then this sequence of events is desirable, since
it guarantees that the next instruction will be executed in the new state.

m [f caching is enabled, either external hardware or the paging mechanism (the PCD bit
in the page table entry) must be used to prevent caching of I/O data.

m Memory-mapped I/O, like any other memory reference, is subject to access protection
and control. See Section A.2.3 for a discussion of memory protection.

1/0 Instructions

The I/O instructions of the Am486 microprocessor provide access to the microprocessor’s
I/O ports for the transfer of data. These instructions have the address of a port in the I/O
address space as an operand. There are two kinds of I/O instructions:

m Those that transfer a single item (byte, word, or doubleword) to or from a register.

m Those that transfer strings of items (strings of bytes, words, or doublewords) located in
memory. These are known as “string /O instruction” or “block 1/O instructions.” These
instructions cause the M/IO signal to be driven Low (logic 0) during a bus cycle, which
indicates to external hardware that access to the 1/0 address space is taking place.

If memory-mapped /O is used, there is no reason to use /O instructions.

Register 1/0 Instructions

The I/O instructions IN and OUT move data between I/O ports and the EAX register (32-
bit1/0), the AX register (16-bit I/O), orthe AL (8-bit I/O) register. The IN and OUT instructions
address I/O ports either directly, with the address of one of 256 port addresses coded in

the instruction, or indirectly using an address in the DX register to select one of 64K port
addresses. These instructions synchronize program execution to external hardware. The
Am486 microprocessor write buffers are cleared and program execution delayed until the
last ready of the last bus cycle has been returned.

m [N (Input from Port)—transfers a byte, word, or doubleword from an input port to the AL,
AX, or EAX registers. A byte IN instruction transfers 8 bits from the selected port to the
AL register. A word IN instruction transfers 16 bits from the port to the AX register. A
doubleword IN instruction transfers 32 bits from the port to the EAX register.

m OUT (Output from Port)—transfers a byte, word, or doubleword from the AL, AX, or EAX
registers to an output port. A byte OUT instruction transfers 8 bits from the AL register
to the selected port. A word OUT instruction transfers 16 bits from the AX register to the
port. A doubleword OUT instruction transfers 32 bits from the EAX register to the port.

Block 1/O Instructions

The INS and OUTS instructions move blocks of data between I/O ports and memory. Block
I/O instructions use an address in the DX register to address a port in the I/O address
space. These instructions use the DX register to specify:

m 8-bit ports numbered 0-65535
m 16-bit ports numbered 0, 2, 4, .. ., 65532, 65534
m 32-bit ports numbered 0, 4, 8, . . ., 65528, 65532

General Guidelines for Programming A-77

b‘l AMD

Block I/O instructions use either the Sl or DI register to address memory. For each transfer,
the Sl or DI register is incremented or decremented, as specified by DF.

The INS and OUTS instructions, when used with repeat prefixes, perform block input or
output operations. The repeat prefix REP modifies the INS and OUTS instructions to transfer
blocks of data between an 1/0O port and memory. These block I/O instructions are string
instructions. They simplify programming and increase the speed of data transfer by elimi-
nating the need to use a separate LOOP instruction or an intermediate register to hold the
data. The string I/O instructions operate on byte strings, word strings, or doubleword strings.
After each transfer, the memory address in the ESI or EDI registers is incremented or
decremented by 1 for byte operands, by 2 for word operands, or by 4 for doubleword
operands. DF controls whether the register is incremented (DF is clear) or decremented
(DF is set).

m [INS (Input String from Port)—transfers a byte, word, or doubleword string element from
an input port to memory. The INSB instruction transfers a byte from the selected port to
the memory location addressed by the ES and EDI registers. The INSW instruction
transfers a word. The INSD instruction transfers a doubleword. A segment override
prefix cannot be used to specify an alternate destination segment. Combined with a
REP prefix, an INS instruction makes repeated read cycles to the port, and puts the
data into consecutive locations in memory.

m OUTS (Output String from Port)—transfers a byte, word, or doubleword string element
from memory to an output port. The OUTSB instruction transfers a byte from the memory
location addressed by the DS and ESI registers to the selected port. The OUTSW
instruction transfers a word. The OUTSD instruction transfers a doubleword. A segment
override prefix cannot be used to specify an alternate source segment. Combined with
a REP prefix, an OUTS instruction reads consecutive locations in memory and writes
the data to an output port.

A.2,9.5 Protection and 1/0
The I/O architecture has two protection mechanisms:
m The IOPL field in the EFLAGS register controls access to the 1/O instructions.
m The I/O permission bit map of a TSS segment controls access to individual ports in the
I/O address space.
These protection mechanisms are available only when a separate I/O address space is
used. When memory-mapped I/O is used, protection is provided using segmentation or
paging.
A.2.9.5.1 1/O Privilege Level
In systems that use /O protection, the IOPL field in the EFLAGS register controls access
to I/O instructions. This permits the operating system to adjust the privilege level needed
to perform 1/O operations. In a typical protection ring model, privilege levels 0 and 1 have
accessto the /O instructions. This lets the operating system and the device drivers perform
I/0, butkeeps applications and less privileged device drivers from accessing the I/O address
space. Applications access I/O through the operating system. The following instructions
can be executed only if CPL < IOPL:
I'N —Input
INS —Input String
OUT —Output
OUTS —Output String
CLI —Clear Interrupt-Enable Flag
STI —Set Interrupt-Enable Flag
A-78 General Guidelines for Programming

AMDH

A.2.9.5.2

These instructions are called “sensitive” instructions, because they are sensitive to the
IOPL field. In Virtual-8086 Mode, IOPL is not used; only the 1/O permission bit map limits
access to 1/O ports.

To use sensitive instructions, a procedure must run at a privilege level at least as privileged
as that specified by the IOPL field. Any attempt by a less privileged procedure to use a
sensitive instruction results in a general-protection exception. Because each task has its
own copy of the EFLAGS register, each task can have a different IOPL.

A task can change IOPL only with the POPF instruction; however, such changes are priv-
ileged. No procedure may change its IOPL unlessitis running at privilege level 0. An attempt
by aless privileged procedure to change the IOPL does not result in an exception; the IOPL
simply remains unchanged.

The POPF instruction also may be used to change the state of IF (as can the CLI and STI
instructions); however, changes to IF using the POPF instruction are IOPL-sensitive. A
procedure may change the setting of IF with a POPF instruction only if it runs with a CPL
at least as privileged as the IOPL. An attempt by a less privileged procedure to change IF
does not result in an exception; IF simply remains unchanged.

I/O Permission Bit Map

The Am486 microprocessor can generate exceptions for references to specific I/0 address-
es. These addresses are specified in the I1/O permission bit map in the TSS (see Figure A-
50). The size of the map and its location in the TSS are variable. The microprocessor finds
the 1/O permission bit map with the I/O map base address in the TSS. The base address
is a 16-bit offset into the TSS. This is an offset to the beginning of the bit map. The limit of
the TSS is the limit on the size of the 1/O permission bit map.

Figure A-50

1/0 Permission Bit Map

Task State Segment

11111111

I/0O Permission Bit Map

h 4

I/O Map Base

Note: The Base Address for the I/O Bit Map must not
exceed DFFFh. The last byte of the Bit Map must
be followed by a byte with all ones.

General Guidelines for Programming A-79

b‘l AMD

A.3

Because each task has its own TSS, each task has its own I/O permission bit map. Access
to individual 1/0O ports can be granted to individual tasks.

If CPL is less than or equal to IOPL in Protected Mode, then the microprocessor allows
I/O operations to proceed. If CPL is greater than IOPL, or if the microprocessor is operating
in Virtual 8086 Mode, then the microprocessor checks the /O permission map. Each bit in
the map corresponds to an I/O port byte address; for example, the control bit for address
41 (decimal) in the 1/0O address space is found at bit position 1 of the sixth byte in the bit
map. The microprocessor tests all the bits corresponding to the 1/0 port being addressed;
for example, a doubleword operation tests four bits corresponding to four adjacent byte
addresses. If any tested bit is set, a general-protection exception is generated. If all tested
bits are clear, the 1/0O operation proceeds.

Because I/O ports that are not aligned to word and doubleword boundaries are permitted,
it is possible that the microprocessor may need to access two bytes in the bit map when
I/O permission is checked. For maximum speed, the microprocessor has been designed
to read two bytes for every access to an I/O port. To prevent exceptions from being gener-
ated when the ports with the highest addresses are accessed, an extra byte needs to come
after the table. This byte must have all of its bits set, and it must be within the segment limit.

It is not necessary for the 1/0O permission bit map to represent all the I/O addresses. /0
addresses not spanned by the map are treated as if they had set bits in the map. For
example, if the TSS segment limit is 10 bytes past the bit map base address, the map has
11 bytes and the first 80 I/O ports are mapped. Higher addresses in the I/O address space
generate exceptions.

If the I/O bit map base address is greater than or equal to the TSS segment limit, there is
no 1/0 permission map, and all I/O instructions generate exceptions. The base address
must be less than or equal to ODFFFh.

DEBUGGING

The Am486 microprocessor has advanced debugging facilities that are particularly impor-
tant for sophisticated software systems, such as multitasking operating systems. The failure
conditions for these software systems can be very complex and time-dependent. The de-
bugging features of the Am486 microprocessor give the system programmer valuable tools
for looking at the dynamic state of the microprocessor.

The debugging support is accessed through the debug registers. They hold the addresses
of memory locations, called breakpoints, that invoke debugging software. An exception is
generated when a memory operation is made to one of these addresses. A breakpoint is
specified for a particular form of memory access, such as an instruction fetch or a double-
word write operation. The debug registers support both instruction breakpoints and data
breakpoints.

With other microprocessors, instruction breakpoints are set by replacing normal instructions
with breakpoint instructions. When the breakpoint instruction is executed, the debugger is
called. But with the debug registers of the Am486 microprocessor, this is not necessary.
By eliminating the need to write into the code space, the debugging process is simplified
(there is no need to set up a data segment mapped to the same memory as the code
segment) and breakpoints can be setin ROM-based software. In addition, breakpoints can
be set on reads and writes to data that allows real-time monitoring of variables.

A-80

General Guidelines for Programming

AMDH

A.3.1

A.3.2

A.3.2.1

A.3.2.2

Debugging Support
The features of the architecture that support debugging are:

m Reserved Debug Interrupt Vector—specifies a procedure or task to call when an event
for the debugger occurs

m Debug Address Registers—specifies the addresses of up to four breakpoints
m Debug Control Register—specifies the forms of memory access for the breakpoints
m Debug Status Register—reports conditions in effect at the time of the exception

m Trap Bit of TSS (T-bit)}—generates a debug exception when an attempt is made to
perform a task switch to a task with this bit set in its TSS

m Resume Flag (RF)—suppresses multiple exceptions to the same instruction
m Trap Flag (TF)—generates a debug exception after every execution of an instruction

m Breakpoint Instruction—calls the debugger (generates a debug exception). This instruc-
tion is an alternative way to set code breakpoints. Itis especially useful when more than
four breakpoints are desired, or when breakpoints are placed in the source code.

m Reserved Interrupt Vector for Breakpoint Exception—calls a procedure or task when a
breakpoint instruction is executed

These features allow a debugger to be called either as a separate task or as a procedure
in the context of the current task. The following conditions are used to call the debugger:
Task switch to a specific task

Execution of the breakpoint instruction

Execution of any instruction

Execution of an instruction at a specified address

Read or write of a byte, word, or doubleword at a specified address

Write to a byte, word, or doubleword at a specified address

Attempt to change the contents of a debug register

Debug Registers

Six registers control debugging. The registers are accessed by a MOV instruction. A debug
register can be the source or destination operand for the instruction. Debug registers are
privileged resources; MOV instructions that access them can execute only at privilege level
0. An attempt to read or write the debug registers from any other privilege level generates
a general-protection exception. Figure A-51 shows the debug register format.

Debug Address Registers (DR3-DRO)

Each of these registers holds the linear address for one of the four breakpoints. That is,
breakpoint comparisons are made before physical address translation occurs. Each break-
point condition is specified further by the contents of the DR7 register.

Debug Control Register (DR7)

The debug control register shown in Figure A-51 specifies the sort of memory access
associated with each breakpoint. Each address in registers DR3—-DRO corresponds to a
field R/IW3-R/WO in the DR7 register. The microprocessor interprets these bits as follows:

00—Break on instruction execution only

01—Break on data writes only

10—Undefined

11—Break on data reads or writes but not instruction fetches

General Guidelines for Programming A-81

b‘l AMD

Figure A-51 Debug Registers

Debug Registers

31 23 15 7 0
LIRJL|R]L|R|JL]|R
E|/|E|/|E|/7|E|/]oooooolCLCLGILGILGIY DR7
NIW([N|W| N|W[N[W E|E|3[3[2[2]1]|1|0[O
3|13f|2f2f[1]1f0]oO
B|B|B B(B|B|B
0000000000000000 ||5|p|000000000(s|514|o| DR6
Reserved DR5
Reserved DR4
Breakpoint 3 Physical Address DR3
Breakpoint 2 Physical Address DR2
Breakpoint 1 Physical Address DR1
Breakpoint 0 Physical Address DRO

[Reserved, always 0

The LEN3-LENO fields in the DR7 register specify the size of the breakpoint. The length
fields are interpreted as follows:

00—One-byte length
01—Two-byte length
10—Undefined

m 11—Four-byte length

Note: If RWn is 00 (instruction execution), then LENn should also be 00. The effect of using
any other length is undefined.

The GD bit enables the debug register protection condition that is flagged by BD of DR6.
Note that GD is cleared at entry to the debug exception handler by the microprocessor.
This allows the handler free access to the debug registers.

The Low 8 bits of the DR7 register (fields L3—L0 and G3-G0) individually enable the four
address breakpoint conditions. There are two levels of enabling: the local (L3-L0) and
global (G3-GO0) levels. The local enable bits are automatically cleared by the microproces-
sor on every task switch to avoid unwanted breakpoint conditions in the new task. They
are used to breakpoint conditions in a single task. The global enable bits are not cleared
by a task switch. They are used to enable breakpoint conditions that apply to all tasks.

A-82

General Guidelines for Programming

AMDH

A.3.2.3

A.3.2.4

The Am486 microprocessor always uses exact data breakpoint matching in debugging.
That is, if any of the Ln/Gn bits are set, the microprocessor slows execution so that data
breakpoints are reported for the instruction that triggers the breakpoint, rather than the next
instruction. In such a case, one-clock instructions that access memory take two clocks to
execute.

In the Am386 microprocessor, exact data breakpoint matching does not occur unless it is
enabled by setting either the LE or the GE bit. The Am486 microprocessor ignores these
bits.

Debug Status Register (DR6)

The debug status register shown in Figure A-51 reports conditions sampled at the time the
debug exception was generated. Among other information, it reports which breakpoint
triggered the exception. Update only occurs if the exception is taken, then all bits will be
updated.

When an enabled breakpoint generates a debug exception, it loads the Low four bits of
this register (B0O—B3) before entering the debug exception handler. The B bit is set if the
condition described by the DR, LEN, and R/W bits is true, even if the breakpoint is not
enabled by the L and G bits. The microprocessor sets the B bits for all breakpoints that
match the conditions present at the time the debug exception is generated, whether or not
they are enabled.

The BT bit is associated with the T bit (debug trap bit) of the TSS. The microprocessor sets
the BT bit before entering the debug handler if a task switch has occurred to a task with a
set T bitin its TSS. There is no bit in the DR7 register to enable or disable this exception;
the T bit of the TSS is the only enabling bit.

The BS bit is associated with TF. The BS bit is set if the debug exception is triggered by
the single-step execution mode (TF set). The single-step mode is the highest-priority debug
exception; when the BS bit is set, any of the other debug status bits may also be set.

The BD bitis set if the next instruction reads or writes one of the eight debug registers while
it is being used by in-circuit emulation.

Note: The contents of the DR6 register are never cleared by the microprocessor. To avoid
any confusion in identifying debug exceptions, the debug handler should clear the register
before returning.

Breakpoint Field Recognition

The address and LEN bits for each of the four breakpoint conditions define a range of
sequential byte addresses for a data breakpoint. The LEN bits permit specification of a
1-, 2-, or4-byte range. Align 2-byte ranges on word boundaries (addresses that are multiples
of 2) and 4-byte ranges on doubleword boundaries (addresses that are multiples of 4).
These requirements are enforced by the microprocessor; it uses the LEN bits to mask the
lower address bits in the debug registers. Unaligned code or data breakpoint addresses
do not yield the expected results.

A data breakpoint for reading or writing is triggered if any of the bytes participating in a
memory access is within the range defined by a breakpoint address register and its LEN
bits. A data breakpoint for an unaligned operand can be made from two entry sets in the
breakpoint registers where each entry is byte-aligned, and the two entries cover the oper-
and. This breakpoint generates exceptions for the operand, not for any neighboring bytes.
Instruction breakpoint addresses must have a 1-byte length specification (LEN = 00); the
behavior of code breakpoints for other operand sizes is undefined.

General Guidelines for Programming A-83

b‘l AMD

Table A-17 Breakpoint Examples
Comment Address Length in bytes
DRO Contents A0001h 1 (LENO =00)
DR1 Contents A0002h 1 (LENO =00
DR2 Contents B0002h 2 (LENO = 01)
DR3 Contents C0000h 4 (LENO =11)
A0001h 1
A0002h 1
A0001h 2
A0002h 2
Memory Operations That Trap B0002h 2
B0001h 4
C0000h 4
C0001h 2
C0003h 1
A0000h 1
Memory Operations That Do Not A0003h 4
Trap BOO0OOh 2
C0004h 4
Table A-17 gives some examples of combinations of addresses and fields with memory
references that do and do not cause traps. The processor recognizes an instruction break-
point address only when it points to the first byte of an instruction. If the instruction has any
prefixes, the breakpoint address must point to the first prefix.
A.3.3 Debug Exceptions
Two of the interrupt vectors of the Am486 microprocessor are reserved for debug excep-
tions. The debug exception is the usual way to invoke debuggers designed for the Am486
microprocessor. The breakpoint exception is intended to put breakpoints in debuggers.
A.3.3.1 Interrupt 1—Debug Exceptions
The handler for this exception usually is a debugger or part of a debugging system. The
microprocessor generates a debug exception for any of several conditions. The debugger
can check flags in the DR6 and DR7 registers to determine which condition caused the
exception and which other conditions also might apply. Table A-18 shows the states of
these bits for each kind of breakpoint condition.
Table A-18 Debug Exception Conditions
Flags Tested Description
BS=1 Single-step trap
BO=1and (GEO=1orLEO=1) Breakpoint defined by DRO, LENO, and R/WO
Bl=1and (GE1=1o0rLE1=1) Breakpoint defined by DR1, LEN1, and R/W1
B2=1and (GE2=1o0rLE2=1) Breakpoint defined by DR2, LEN2, and R/W2
B3=1and (GE3=1o0rLE3=1) Breakpoint defined by DR3, LEN3, and R/W3
BD=1 Debug registers in use for in-circuit emulation
BT=1 Task switch
A-84 General Guidelines for Programming

AMDH

A.3.3.1.1

A.3.3.1.2

A.3.3.1.3

Instruction breakpoints are faults; other debug exceptions are traps. The debug exception
may report either or both at one time. The following sections present details for each class
of debug exception.

Instruction-Breakpoint Fault

The microprocessor reports an instruction breakpoint before it executes the breakpointed
instruction (i.e., a debug exception caused by an instruction breakpoint is a fault).

The Resume Flag (RF) permits the debug exception handler to restart instructions that
cause faults other than debug faults. When a debug fault occurs, the system software writer
must set the RF bit in the copy of the EFLAGS register that is pushed on the stack in the
debug exception handler routine. This bit is set in preparation of resuming the program’s
execution at the breakpoint address without generating another breakpoint fault on the
same instruction.

Note: RF does not cause breakpoint traps nor other kinds of faults to be ignored.

The microprocessor clears RF at the successful completion of every instruction except after
the IRET instruction, the POPF instruction, POPFD instruction, and JMP, CALL or INT
instructions that cause a task switch. These instructions set RF to the value specified by
the saved copy of the EFLAGS register.

The microprocessor sets RF in the copy of the EFLAGS register pushed on the stack before
entry into any fault handler. When the fault handler is entered for instruction breakpoints,
for example, RF is set in the copy of the EFLAGS register pushed on the stack; therefore,
the IRET instruction that returns control from the exception handler sets RF in the EFLAGS
register and execution resumes at the breakpointed instruction without generating another
breakpoint for the same instruction.

If, after a debugger RF is set and the debug handler retries the faulting instruction, it is
possible that retrying the instruction will generate other faults. The restart of the instruction
after these faults also occurs with RF set, so repeated debug faults continue to be sup-
pressed. The microprocessor clears RF only after successful completion of the instruction.

Data-Breakpoint Trap

A data-breakpoint exception is atrap (i.e., the processor generates an exception for a data
breakpoint after executing the instruction that accesses the breakpointed memory location).
The Am486 microprocessor always does exact data breakpoint matching, regardless of
GE/LE bit settings. Exact reporting is provided by forcing the Am486 microprocessor exe-
cution unit to wait for completion of data operand transfers before beginning execution of
the next instruction.

If a debugger needs to save the contents of a write-breakpoint location, it should save the
original contents before saving the breakpoint. Because data breakpoints are traps, the
original data is overwritten before the trap exception is generated. The handler can report
the saved value after the breakpoint is triggered. The data in the debug registers can be
used to address the new value stored by the instruction that triggered the breakpoint.

General-Detect Fault

The general-detect fault occurs when an attempt is made to use the debug registers at the
same time they are being used by in-circuit emulation. This additional protection feature is
provided to guarantee emulators can have full control over the debug registers when re-
quired. The exception handler can detect this condition by checking the state of the BD bit
of the DR6 register.

General Guidelines for Programming A-85

b‘l AMD

A.3.3.1.4

A.3.3.1.5

A.3.3.2

A.4

Single-Step Trap

This trap occurs after an instruction is executed if TF was set before the instruction was

executed. Note the exception does not occur after an instruction that sets TF. For example,
if the POPF instruction is used to set TF, a single-step trap does not occur until after the

instruction following the POPF instruction.

The microprocessor clears TF before calling the exception handler. If TF was setina TSS
at the time of a task switch, the exception occurs after the first instruction is executed in
the new task.

The single-step flag normally is not cleared by changing privilege levels inside a task. INT
instructions do, however, clear TF. Therefore, software debuggers that single-step code
must recognize and emulate INTn or INTO instructions rather than executing them directly.

To maintain protection, the operating system should check the current execution privilege
level after any single-step trap to see if single stepping should continue at the current
privilege level.

The interrupt priorities guarantee that if an external interrupt occurs, single stepping stops.
When both an external interrupt and a single-step interrupt occur together, the single-step
interrupt is processed first. This clears TF. After saving the return address or switching
tasks, the external interrupt input is examined before the first instruction of the single-step
handler executes. If the external interrupt is still pending, then it is serviced. The external
interrupt handler does not run in single-step mode. To single step an interrupt handler,
single step an INTn instruction that calls the interrupt handler.

Task-Switch Trap

The debug exception also occurs after a task switch if the T bit of the new task’s TSS is
set. The exception occurs after control has passed to the new task, but before the first
instruction of that task is executed. The exception handler can detect this condition by
examining the BT bit of the DR6 register.

Note: If the debug exception handler is a task, the T bit of its TSS should not be set. Failure
to observe this rule will put the microprocessor in a loop.

Interrupt 3—Breakpoint Instruction

The breakpoint trap is caused by execution of the INT 3h instruction. Typically, a debugger
prepares a breakpoint by replacing the first opcode byte of an instruction with the opcode
for the breakpoint instruction. When execution of the INT 3h instruction calls the exception
handler, the return address points to the first byte of the instruction following the INT 3h
instruction.

With older microprocessors, this feature is used extensively for setting instruction break-
points. With the Am486 microprocessor, this use is more easily handled using the debug
registers. However, the breakpoint exception still is useful for breakpointing debuggers,
because the breakpoint exception can call an exception handler other than itself. The
breakpoint exception also can be useful when it is necessary to set a greater number of
breakpoints than permitted by the debug registers, or when breakpoints are being placed
in the source code of a program under development.

CACHING

The Am486 microprocessor has an on-chip internal cache for storing 8 Kbytes of instruc-
tions and data. The cache raises system performance by satisfying an internal read request
more quickly than a bus cycle to memory. This also reduces the microprocessor’s use of
the external bus. The internal cache is transparent to program operation.

A-86

General Guidelines for Programming

AMDH

A.4.1

The Am486 microprocessor can use an external second-level cache outside of the proces-
sor chip. An external cache normally improves performance and reduces bus bandwidth
required by the Am486 microprocessor.

Cachesrequire special considerationin multiprocessor systems. When one microprocessor
accesses data cached in another microprocessor, it must not receive incorrect data. If it
modifies data, all other microprocessors that access that data must receive the modified
data. This property is called cache consistency. The Am486 microprocessor provides mech-
anisms that maintain cache consistency in the presence of multiple microprocessors and
external caches.

The operation of internal and external caches is transparent to application software, but
knowledge of the behavior of these caches may be useful in optimizing software perfor-
mance. In multiprocessor systems, maintenance of cache consistency may require inter-
vention by system software.

The cache is available in all execution modes: Real Mode, Protected Mode, and Virtual
8086 Mode. For properly designed single-processor systems, the cache can be initially
enabled and not require further control.

Introduction to Caching

Caches are often implemented as associative memories. An associative memory has extra
storage for each unit of memory, called a tag. When an address is applied to an associative
memory, each tag simultaneously compares itself against the address. If a tag matches
the address, access is provided to the unit of memory associated with the tag.

This is called a cache hit. If no match occurs, the cache signals a cache miss. A cache
miss requires a bus cycle to access main memory. To gain efficiency in the implementation
of the internal cache, storage is allocated in chunks of 128 bits, called cache lines. External
caches are not likely to use cache lines smaller than those of the internal cache.

The cache of the Am486 microprocessor does not support partially-filled cache lines, so

caching asingle doubleword requires caching four doublewords. This would be an inefficient
use of the cache if it were not for the fact that the microprocessor rarely accesses random
locations in memory. Over any small span of time, the microprocessor usually accesses a
small number of areas in memory, such as the code segment or the stack, and it usually

accesses many neighboring addresses in these areas.

To simplify the hardware implementation, cache lines can only be mapped to aligned 128-
bit blocks of main memory. (An aligned 128-bit block begins at an address that is clear in
its Low four bits.) When a new cache line is allocated, the microprocessor loads a block
from main memory into the cache line. This operation is called a cache line fill. Allocated
cache lines are said to be valid. Unallocated cache lines are invalid.

Caching can be write-through or write-back. On reads, both forms of caching operate as
described above. On writes, write-through caching updates both cache memory and main
memory; write-back caching updates only the cache memory. Write-back caching updates
main memory when a write-back operation is performed. Write-back operations are trig-
gered when cache lines need to be deallocated, such as when new cache lines are being
allocated in a cache that is already full. Write-back operations also are triggered by the
mechanisms used to maintain cache consistency.

The internal cache of the Am486 microprocessor is a write-through cache. It can be used
with external caches that are write-through, write-back, or a mixture of both.

General Guidelines for Programming A-87

b‘l AMD

A.4.2

A.4.2.1

Operation of the Internal Cache

Software controls the operating mode of the cache. Caching can be enabled (its state
following reset initialization), caching can be disabled while valid cache lines exist (a mode
in which the cache acts like a fast, internal RAM), or caching can be fully disabled.

Precautions must be followed when disabling the cache. Whenever CD is set to 1, the
Am48